6. FINDINGS AND CONCLUSIONS
The following findings and conclusions were reached as a result of the statistical
analysis of relationships between traffic accidents and geometrics of interchange ramps and
speed-change lanes conducted in this research:
- Traditional multiple linear regression is generally not an appropriate statistical
approach to modeling accident relationships because accidents are discrete, non-
negative events that often do not follow a normal distribution.
- The Poisson and negative binomial distributions appear to be better suited to the
modeling of accident relationships than the normal distribution. In all cases, the
form of the statistical distribution selected for any particular modeling effort should
be chosen based on a review of the data to be modeled.
- The choice between the Poisson and the negative binomial distributions should be
based on the overdispersion observed in the accident data. Overdispersion results
when the variance of the accident data exceeds the mean of the Poisson
distribution. Extra variation or overdispersion in a Poisson model causes
underestimation of the variance of the model coefficients. This, in turn, results in
overstating the significance of the coefficients; in other words, some coefficients
may be found to be statistically significant when, in fact, they are not. In the
modeling of accidents for interchange ramps and speed-change lanes with Poisson
regression, overdispersion was commonly observed and, therefore, the negative
binomial distribution was preferred.
- Regression models to determine relationships between accidents and the geometric
design and traffic volume characteristics of ramps, based on the negative binomial
distribution, explained between 10 percent and 42 percent of the variability in the
accident data.
- Accident frequencies on interchange ramps and speed-change lanes are so low at
most locations that they are very difficult to model. Between 50 percent and
80 percent of the ramps studied experienced no accidents or only one accident in
the 3-year study period. Only a very few ramps experienced a substantial number
of accidents during the 3-year period.
- Negative binomial regression models developed to predict total accidents generally
performed slightly better than did models to predict fatal and injury accidents.
- Negative binomial regression models developed to predict the combined accident
frequency for an entire ramp, together with its adjacent speed-change lane,
generally fit the available accident data better than separate models for ramps and
speed-change lanes.
- The independent variables, whose effects on accident frequency were most often found
to be statistically significant, were:
- Ramp AADT.
- Mainline freeway AADT.
- Area type (rural/urban).
- Ramp type (off/on).
- Ramp configuration (diamond/loop/outer connection/direct or semi-direct
connection).
- Ramp length.
- Speed-change lane length.
The ramp AADT was the strongest predictor of accident frequency; the other
variables, while they were generally statistically significant, had much less predictive
ability.
- A number of other geometric design variables for ramps and speed-change lanes were
considered in modeling. These included:
- Traveled-way width for ramps and speed-change lanes.
- Right shoulder width for ramps and speed-change lanes.
- Left shoulder width for ramps.
- Ramp grade (upgrade/downgrade).
- Radii of horizontal curves on ramp.
However, none of these geometric design variables was found to have a statistically
significant relationship to accident frequency, except in limited situations in models
that were not ultimately recommended for use.
- The best models obtained for predicting accident frequencies for ramps and speed-
change lanes are the model presented in table 38 for total accidents and the model
presented in table 39 for fatal and injury accidents. These models are also presented in
equations (15) and (16), respectively.
- A review of hard-copy police accident reports found that rear-end accidents on urban
off-ramps of four configurations (diamond, parclo loop, free-flow loop, and outer
connection ramps) were generally related to the operation of the cross-road ramp
terminal, rather than to the geometric design of the ramp itself. Only 5 percent of the
rear-end accidents reviewed were not related to the operation of the cross-road ramp
terminals.