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1. SUMMARY

1.1 Intelligent Information Services for Collaborative Planning and Scheduling

Knowledge-based systems can provide a key information processing aid to operational planning,
scheduling and monitoring of operations. Specifically, these systems can provide key information support
for current deficiencies in crisis action planning for transportation logistics. Requirements for these
systems include the ability to access, manipulate, and modify the information stored in existing databases,
and, a high level of collaborative and cooperative processing with the other planning agents including
people and software components. Within the ARPA/Rome Lab Planning Initiative (ARPI), , in
collaboration with USC ISI and UCLA, demonstrated an intelligent information services architecture has
been demonstrated which integrated cooperative user interaction and integrated information location via
domain/user-oriented object representations. This effort involving participants and software

components developed by Lockheed Martin, USC ISI and UCLA demonstrated an experimental
prototype operating in real-time over the internet capable of providing information satisfying user
requests making transparent to the user 1) query relaxation and reformulation despite over-specific
queries and lack of data, 2) location and selection of information sources based upon multiple selection

criteria, 3) transformation of low-level data
source information from databases into
domain and user relevant information
structures, and 4) the query language
utilized. Internal communications over the
internet were implemented using KQML,
the Knowledge Query and Manipulation
Language, an ARPA-sponsored emerging
language and protocol for information
exchange.

" 1.2 Objective

Lockheed Martin Tactical Defense
Systems (LMTDS) is developing
technology components to support
persistent storage and retrieval of plans and
other military transportation relevant
entities. This includes the integration of
knowledge-based (KB) representation and
reasoning systems with standard database
(DB) management systems and the
development of new standards for
interface languages between knowledge-
based systems and other software
components including knowledge-based
systems themselves. These components,
when integrated with other intelligent

TECHNICAL FOCUS

APPROACH: | |

e ° Develop common-interfaces and representations for access to

- relational'and object-oriented databases from LOOM and to
- intelligent agents using KRSL and shared domain definitions. -

ISSUES: , 8 o

o Persistent integration of data and knowledge stored in
distributed, heterogeneous systems including databases and

-intelligent agents e

TRADE-OFFS: ‘

) 'Co’mmon representations supporting multi-system interactions

-~ vs'isolated and application-specific representations

e Multiple interface layéfs sﬁpport information hiding and
promote modularity vs single-purpose tailored interfaces.

PROBLEMS:

o Multi‘-layér systems add overhead - performance being
addressed .

o * Persistent "plans" requires shared PI definitions - SDO being
developed

e Many possible multi-agent, multi-knowledge server systems -
ARPI multi-agent systems being defined in PI CPE, TIEs and
IFDs




information system components being developed at USC ISI (SIMS) and at UCLA (CoBASE), will
provide intelligent access to distributed information sources in a fault tolerant and cooperative manner

supporting military planners.

1.3 Approach

Lockheed Martin is developing and
demonstrating technology components
providing intelligent access to distributed
information sources including databases
and knowledge-based systems.
Demonstrations are based upon providing
intelligent information services identified
by military planners as desired capabilities
lacking in current systems. The integration
of knowledge bases and databases is
accomplished by extending the current
prototype implementation of the LOOM
Interface Module (LIM). LIM allows
LOOM applications to reason efficiently
over a large collection of data from a
database by utilizing the efficient
computational capabilities of a database
management system and by avoiding the
need to create regular LOOM objects to
represent intermediate data.. In order to
enhance the integration of multiple
knowledge-based systems, Lockheed
Martin is designing and prototyping a
new high-level protocol for conveying
knowledge between systems. This

FOCUS
GOALS:

Persistent storage of SDO definitions, ¢.g., Common Plan
Representation (CPR), COAs, high-level and detailed employment
and deployment plans, schedules, etc.

Promote runtime sharing of data and knowledge via shared
knowledge and data bases using common language for
communication and shared domain representations,

BASELINE:

Some "standard" SDO definitions mapped to data base
representations for query and simple update, e.g., geographic
locations, assets, etc.

No persistence for emerging common plan representation

Experimental sharing of knowledge - individual systems have
private knowledge and data (redundant, inconsistent, ad hoc)

EXPECTED RESULTS:
Data base representations for common plan representation

LIM: Standard mapping of PI domain ontology to data bases with
persistence

Knowledge sharing in multi-agent systems

protocol, KQML (Knowledge Query and Manipulation Language), is being developed in conjunction
with the ARPA Knowledge Sharing Initiative. The Lockheed Martin Planning Initiative effort supports
experimental use of KQML for intelligent information access under technology integration experiments
and is not a principal deliverable of this contract. A separate effort under the ARPA I3 program supports
development of the language and software system.

1.4 Progress

Lockheed Martin achieved significant progress in providing convenient, efficient access to remote
databases for Loom applications. We focused heavily on performance enhancement: as a result of our
efforts, current LIM/IDI performance on our benchmark query suite (based on actual queries from the
ARPI FMERG TIE in November 1992) is 40 times better on average, and 65 times better in the worst
case, than the first trials with these data. To restate these results for the sake of clarity, the current mean
total execution time is approximately 2.5% of the original total execution time, and the worst-case total
execution time is approximately 1.5% of the original total execution time: all queries execute, from query




issuance to return of resulting Loom instances, in under one second, and the mean is approximately 240
milliseconds. On our secondary benchmark suite (derived from the ARPI KAKEE/FORMAT TIE in
February 1994), performance is over 4 times better on average, and almost 10 times better in the worst
case, than in the first trials with these data: average total execution time is now on the order of 2.0
seconds, with only the largest five queries (which return hundreds of objects, and require thousands of
slot-value sets) in the test suite taking more than 2.0 seconds, and most (65%) taking well under 1.0

seconds.
1.5 Recent Accomplishments STATUS N e
Our principal focus in this stage of LIM Significant Accomplishments:
devel_Opment was on making LIM a ik £ Supiao rt 'for DDL added :
practical tool for use by other systems. Tl o ST
| This includes dramatic improvements in . Partial instantiation finished :
1 performance, added features that extend its ' Performaq ce improved dramiatically

capabilities, and a significant contribution
to the integration of LIM into other

near-O(2) imprdvement relative to baseline
systems. typical queries processed in 2 seconds or less

¢ Performance: SRR
Future Work:
e We have compared critical portions

of the LIM execution profile,
specifically, object creation and slot | Expand coverage of domain (CPR, intermediate results)
filling algorithms, with those ' :

l availble in a commercial product c

’ expert system shell. LIM, .. Distributed multi-knowledge server systems
implemented in Common Lispand |
Loom, outperforms the commercial v ;
product, one written in C, by almost  |* - Develop additional common problem sets for intelligent
a factor of 100x. ..~ information access experiments

Additional domain and persistent representations
Expand functionality and improve performance

Eliminate single‘égent knowledge server bottleneck

e We further improved LIM/IDI
performance; at this point, we have
improved average-case performance by a factor of almost 40, and worst-case performance by a
factor of over 60, since the original benchmark on the TIE query set.

e We revised and enhances our performance and benchmarking tools to permit capturing a wider
range of performance measures and controlling performance monitoring with fine resolution.

¢ Features:

e We added DDL capability to LIM and the IDI: it is now possible to create and destroy tables, and
to add and drop indices on tables, via simple statements in the LIM query/update language

e We completed the implementation of partial object instantiation, a capability that permits the user
to specify which slots of newly-retrieved objects should be filled.

e We ported both LIM and the IDI to Allegro Common Lisp, a port which will make both systems
more accessible to end-users, since ACL has become a leader distributor of Lisp environments.

e We ported the Lisp API of KQML to Allegro Common Lisp, a port which will make KQML more
accessible to end-users, since ACL has become a leader distributor of Lisp environments.

¢ Integration, Collaboration, and Support:




® We assisted Rome Lab staff in installing and integrating LIM, CoBase, and SIMS using the same
databases, knowledge bases, and software releases. '

® We began the process of restructuring the knowledge-bases and Lisp packages used by LIM to
facilitate and simplify future integration with other components.

® We continued to support demonstrations by collaborators in the KB/DB group, including several
live remote SIMS demonstrations by USC ISI.

® We exported the Lockheed Martin SDO for use with SRI’s GKB knowledge editor, and performed
two rounds of evaluation for them using the SDO KB; we also provided this KB to staff at Rome
Lab for their use.

* We provided the Allegro Common Lisp port of the IDI to Dr. Peter Karp’s group at SRI for use in
their access to biological databases.

® We began experiments with the Stanford World Wide Web interface to Ontolingua, with an eye
toward possible use in development of ontologies, and possible future LIM attachment.

» We provided the Lockheed Martin implementation of KQML to the SIPE group at SRI for use in a
collaborative planning experiment and evaluation. KQML was selected by the SRI group as the
language of choice for implementing collaborative agent-based planning systems.

¢ Miscellaneous:

® We prepared a synopsis of the work to date on LIM and its use in TIEs with USC ISI and UCLA
for inclusion in the IEEE Expert special issue on the Planning Initiative. :

* The Valley Forge Engineering Center has received ISO 9000 certification by an official ISO
registration audit team. In preparation for this visit, we prepared a number of web-based project
directories of information including reports, presentation, documentation, etc..

e We participated in and contributed to several proposals. These include ARPA proposals for
integrating software engineering and ontology development and a proposal to the Logistics R+D
program. Also we contributed to a proposal for an Enterprise Integration Toolkit (EIT) for
healthcare information networks selected by NIST ATP. Both proposals were awarded, largely on
the strength of our architectures and methodologies.

1.6 Technology Transition

The IDI, LIM and KQML as well as the underlying military transportation databases have been used
extensively within the ARPI Common Prototyping Environment (CPE) and Technology Integration
Experiments. All are components in the current CPE and are significant candidates for the future ARPI
shared tools. USC ISI's SIMS multi-source information access planning system and UCLA's CoBASE
cooperative database system use LIM, the models, databases and sample queries developed by Lockheed
Martin as their underlying representation and database interface. Mitre's active database prototype
system, the Mitre/ISX force module definition prototype, the UCI information integration project and SRI
very large knowledge-base efforts utilize the IDI to support database access.

Outside of the ARPI community, our technology contributed to the awarding of contracts to Unisys
Health Information Management for an Enterprise Integration Toolkit (EIT) under NIST ATP, and to
Lockheed Martin by the State of Wisconsin for a Medicaid information system (KUMA). We contributed
significantly to both proposal efforts, and expected to participate in the realization of the designs on
which we collaborated.




Key technologies exported from this project include intelligent interfaces to databases and interagent
communication.

Systems -

e LOOM Interface Module (LIM) - LIM supports an interface to relational databases for the LOOM
knowledge representation and reasoning system. LIM runs in Lucid Common Lisp using Oracle on
SPARC 2 UNIX platforms with a minimum of 32MB of physical memory. POC: Jon Pastor,
Lockheed Martin Tactical Defense Systems, (610) 648-2769, pastor@vfl.paramax.com.

e Intelligent Database Interface (IDI) - IDI defines a generic interface to databases from Common Lisp
currently supporting Oracle and Ingres. The IDI runs in Lucid Common Lisp on SPARC 2 UNIX
platforms with a minimum of 32MB of physical memory. POC: Robin McEntire, Lockheed Martin
Tactical Defense Systems, (610) 648-2191, robin@vfl.paramax.com.

e Knowledge Query and Manipulation Language (KQML) - KQML defines a common language and
protocol for intelligent agent communication and its development is supported via the ARPA
Knowledge Sharing Initiative. KQML implementations exist for Common Lisp (Lucid) and C
running on SPARC 2 UNIX platforms with 2 minimum of 16MB of physical memory. POC: Don
McKay, Lockheed Martin Tactical Defense Systems, (610) 648-2256, mckay@vfl.paramax.com.

1.7 Accomplishments

In this report, we present the basic accomplishments achieved under this contract which include:

e Software systems and associated documentation for knowledge base access to databases (the LOOM
" Interface Module and the Intelligent Database Interface) and for communication among multi-agent

systems (the Knowledge Query and Manipulation language).

e Performance metrics and instrumentation for knowledge base access to databases which highlight
performance improvements.

e Software supporting the KB/DB Technical Working Group and the development of joint
demonstrations.
Military transportation logistics knowledge bases and databases for use within the Planning Initiative.
Technology Integration Experiments and demonstrations at Rome Laboratory and at the Planning
Initiative Workshops. ‘

The Intelligent Database Interface (IDI) acts as an intermediary between a knowledge-base and one or
more external databases. In addition to allowing more than one connection to an external database, the
IDI allows connections to different DBMSs (currently they must be relational DBMSs) and allows
different methods of making those connections. It can be used as a software library to interface Common
Lisp applications to databases, either external or internal, as a standalone software system via its logic-
oriented query language or as an embedded system, for example as part of the LIM system supporting a
knowledge server. The IDI is in principle use within the Planning Initiative in this embedded form,
however, a few sites have been interested in the IDI as a standalone or embedded system including
MITRE, the University of Massachusetts, USC ISI, Georgia Tech, MIT Sloan School and SRI.
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The LOOM Interface Module (LIM) is designed to provide convenient access to DBs for knowledge-
based systems that use the Loom knowledge-representation system, using a multi-layer architecture based
on the IDI. The present release of LIM supports retrieval of both values and objects, including
hierarchically-structured objects, as well as update for objects. The View-Object model is an extended
entity-relationship model that maps relational tables into hierarchical objects; LIM extends this further by
mapping to the semantically-rich structures of a frame-based knowledge-representation system. All
processing in LIM is driven by a multi-layer Loom model of DBs, applications, and the mappings
between them. LIM generates a Loom model of the schema for each DB. A Knowledge Base
Administrator (KBA), whose role is analogous to that of a DBA for databases, then defines Loom
concepts in the application domain, and describes the mappings from roles of these to roles of concepts in
the schema model. When a query is posed against an application concept that has been mapped to the DB,
LIM translates this into a query against the DB, submits it, retrieves the result, and does any post-
processing necessary before returning the answer to the application that issued the query.

The advantage of the LIM architecture is that application writers do not need to know anything about:

e tables, columns, names, types, or other attributes of DB structures;
e DBMS open, connection, and close protocols; or
e DBMS query languages.

Furthermore, Loom objects created by LIM are indistinguishable from other knowledge-base objects, and
applications need only be aware that a given object is derived from the DB if it must be updated.

These basic ideas have been tested and proven effective in two classes of applications:

¢~ aknowledge server which maps knowledge structures from relevant portions of the Planning
Initiative Shared Domain Ontology (SDO) onto standard military transportation databases

e aPlanning Initiative Information Agent system which integrates the capabilities of LIM with
those of CoOBASE (UCLA) and SIMS (USC ISI).

In the case of the knowledge server, access to military transportation knowledge bases and databases was
made transparent to applications such as the FMERG force module expansion system. For example,
FMERG requires basic information about the combat support and combat service support units associated
with a particular combat unit. In the Infrastructure Prototype Technology Integration Experiment done as
a joint effort among Lockheed Martin, BBN, ISX, SRI and GE CRD, FMERG retrieved this force
structure and expansion information from a knowledge server using SDO definitions. The knowledge
server, via LIM, mapped queries against these SDO definitions to an Oracle database when the
information resided in databases. Further, FMERG was insulated from the actual storage location as was
demonstrated when database information was cached in the knowledge server’s instance-level knowledge
base.

For the Information Agent, several different configurations have been developed and demonstrated:

e CoBASE is a cooperative database system which can relax queries based on a semantic model of the
domain represented in LOOM, e.g., relaxing specific geographic coordinates to regions or areas. In
August of 1992, a system integrating CoOBASE and LIM was demonstrated in which LIM was used as
an embedded query processor.

e SIMS is a multi-source information planning system used, in its current application to the Planning
Initiative, as an information access planner to multiple databases. In the summer of 1992, SIMS was
demonstrated using LIM as its query processor for each individual database.

o At the second Planning Initiative Workshop, these systems were demonstrated along with a third
system which integrated CoBASE, SIMS and LIM to demonstrate an integrated Information Agent
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capable of providing cooperative responses to user queries (CoBASE) supported by multiple
databases (SIMS) which was based upon the Planning Initiative SDO mapped to Oracle databases
(LIM). This system was developed and integrated in a relatively short amount of time since all
systems were already using the LOOM knowledge representation system and its query language as
well as SDO and database components already having been developed and disseminated for use by
this group under Lockheed Martin effort.

e At the third Planning Initiative Workshop in February, 1994, the Information Agent architecture had
evolved to an agent architecture where each component, LIM, CoBASE and the SIMS was an
independent software process. Each was accessible via KNET using the Lockheed Martin KQML
implementation. This architecture operates over a local area network or over the internet in a location
transparent manner. The architecture can be manipulated to local in one configuration and then
quickly changed to an internet demonstration. Several demonstrations of this architecture using SIMS
and CoBASE were given during January 1994 through May 1994.

Rome Lab staff recently installed the three components described above in their facility. At that time,
each system used its own knowledge bases and associated declarations for standalone use, and we were
consulted on the integration of these. We produced a consistent set of files that can be shared among all
three applications, even when each is used independently. Finally, it was demonstrations of the
CoBase/SIMS/LIM/IDI system that finally convinced Unisys staff of the validity and value of the
architecture that we had proposed to them for EIT.

We continued to concentrate on performance for the combination of the LIM/IDI, based upon the test
suite of queries we have developed, a set of queries generated by the FMERG system as a part of the
Infrastructure Prototype TIE, and a set of queries generated by the KAKEE TIE in February and March
1994. For these evaluations, we compared performance from the November 1992 FMERG TIE and the
February 1994 KAKEE TIE with performance of the LIM 1.3 and LIM 1.4 systems after performance
improvements were made to each of the systems. The results are described in detail in below. We believe
that including queries generated by hand as well as those from the actual execution of CPE (FMERG) and
potential CPE components (FORMAT) provides a representative test set. The basic summary of the
performance results are:

e for FMERG queries
e mean total execution time has been reduced by a factor of approximately 40x, with a range of
approximately 20x to 72x
e worst-case performance has been improved by a factor of approximately 65x
e all queries execute in less than 1.0 second, with a mean total execution time of approximately 240
millliseconds
e for KAKEE queries
e mean total execution time has been reduced by a factor of approximately 4.25x, with a range of
approximately 2.8x to 9.8x [recall that the original KAKEE results are just over one year old, and
thus substantially better than they would have been in November 1992]
o worst-case performance has been improved by a factor of approximately 4.6x
e all but the largest 5 queries execute in less than 2.0 seconds, with a mean total execution time of
approximately 2.0 seconds; the five exceptions all have over 100 (104-711) component objects,
and require over 8,000 (8,139-56,092) slot-value sets

1.8 Lessons Learned




The primary lessons learned are:

A particularly critical enabling issue is that of data, knowledge and use of the data and knowledge (e.g.,
queries). The Knowledge Base / Data Base Technical Working Group established at the Planning
Initiative kick-off meeting in February of 1991 identified the lack of coherent data sets, in database form
or any form, as well as queries to be a severe limitation to demonstrating the key ideas of the technical
groups involved. To this end, Lockheed Martin has led the effort in the Planning Initiative in providing
domain data in the form of usable databases, knowledge bases and fragments of the SDO from which
retrieve information from the databases. The success, and importance, of this effort can be measured by
the number of sites and systems using the data and databases in their day to day research and
development efforts. The initial efforts yielded examples and small use scenarios that supported
significant demonstration of the SIMS and CoBASE systems for over three years of continuous research
and development within the Planning Initiative. Further, Lockheed Martin has used this data to establish
performance test suites for its own internal development efforts as reported here.

While providing the underlying data, knowledge and examples is important for the research and
development tier, the application of the resultant technology is dependent on application development
issues such as basic applicability of the technology, scalability and performance. To this end, Lockheed
Martin has participated in the Technology Integration Experiment (TIE) efforts to understand first hand
some of these issues and feed them back to the research community as additional test and performance
suites. As a first step, Lockheed Martin has supplied the same databases that are used in the Infrastructure
Prototype TIE to the research groups at USC ISI and UCLA for use in their individual development
efforts as well as other collaborative work. For Lockheed Martin efforts, the participation in TIEs has
been fruitful to the extent application requirements become identified under the aegis of developing
integrated prototypes. We believe that the performance issues uncovered during the TIE process provided
an essential component to our development work which would otherwise been unavailable to us. The
performance evaluation section of this report is a direct outcome of Lockheed Martin participation in the
TIEs. The conclusion that we reached after analysis of the KAKEE results is that doing anything non-
trivial 60,000 times is costly.

1.9 Documents Produced

1.9.1 Government Documents

The following documents describe the software developed under this contract:

1. Software Design Document for the LOOM Interface Module (LIM) and Intelligent Database
Interface (IDI)

2. Software User’s Manual and for the LOOM Interface Module (LIM) and Intelhgent Database
Interface (IDI)

3. Computer Systems Operations Manual for the LOOM Interface Module (LIM) and Intelligent
Database Interface (IDI)

1.9.2 Technical Papers
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The following technical papers were developed or contributed to under this contract:

Contributions to Planning Initiative IEEE Expert Issue.

Jon Pastor and Don McKay, "View-Concepts - Persistent Storage for Planning and Scheduling”,
Proceedings of the ARPA/Rome Lab 1994 Knowledge-Based Planning and Scheduling Initiative
Workshop, Tucson, February, 1994.

Jon Pastor, Don McKay and Tim Finin, "View-Concepts: Knowledge-Based Access to Databases,” First
International Conference on Information and Knowledge Management, Baltimore, November 1992.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire, "KQML: An Information and Knowledge
Exchange Protocol" , in Kazuhiro Fuchi and Toshio Yokoi (Ed.), "Knowledge Building and Knowledge
Sharing", Ohmsha and IOS Press, 1994.

Tim Finin, Don McKay, Rich Fritzson and Robin McEntire, KQML - A Language and Protocol for
Knowledge and Information Exchange. Proceedings of the 13th International Distributed Artificial
Intelligence Workshop.

Tim Finin, Rich Fritzson and Don McKay, A language and protocol to support intelligent agent
interoperability. In Proceedings of the CE and CALS Washington '92 Conference, June, 1992.

Ramesh Patil, Richard Fikes, Peter Patel-Schneider, Don McKay, Tim Finin, Thomas Gruber, Robert
Neches, The DARPA Knowledge Sharing Effort: Progress Report. In Proceedings KR '92, Boston, MA,
November, 1992.

1.10 Major Software Systems

During the reporting period, we have developed two major releases of LIM. The release notes described
the basic features of the software. The software is available to Planning Initiative participants under the
ARPI internal technology sharing agreements.

LIM Release 1.1

e Loom 2.0 compatibility: LIM 1.1 has been tested under Loom 2.0 (final) through patch-level 12.

e Due to incompatible changes between Loom 2.0b2 and Loom 2.0(f), LIM 1.1 as distributed cannot be
used with Loom 2.0b2; if it is impossible for you to switch to Loom 2.0, please contact us for advice.

e Logical pathnames: In conformance with Common Prototyping Environment (CPE) standards, LIM
now uses Common Lisp logical pathnames in the specification of all filenames, as well as using the
standard CPE defsystem. We have included the CPE files PE defsystem.lisp (in the sub-directory
Jutils) and logical-pathnames.lisp (in the top-level IDI directory) in the IDI 2.4 release for your
convenience ; if you require any assistance in using them, contact the support personnel for the ARPI
CPE.

e Use of Loom Key- and Index-roles: Loom 2.0(f) introduced the notions of key- and index-roles,
where the former specify sets of roles that are constrained to have unique values for all instances, and
the latter specify sets of roles on which retrieval indices are maintained.




e Improved performance for object queries: object identifiers and changes to A-Box “cache” checking:
LIM can now be told to generate identifiers for any Loom objects it creates, and to use these
identifiers for retrievals in the Loom Abox wherever possible. This is possible only for instances of
concepts for which LIM key-roles have been defined, and the identifier is the concatenation of the
concept-name and the key-values for an instance; the order of the key-values is canonicalized in a
manner that guarantees that the same identifier will always be generated for the same set of key-
values. Use of identifiers is strongly encouraged, as it results in the best possible performance for
LIM Abox checking; however, if identifiers are not used, instances of concepts with LIM key-roles
defined will have a significant performance advantage over those without LIM key-roles defined,
since LIM key-roles imply Loom indexing on those roles. Even in the case of concepts without key-
roles, retrieval is significantly faster in LIM 1.1 than in previous releases due to the use of Loom
retrieval functions publicized since the LIM 1.0 release. The net result of all of these changes is an
improvement in performance that ranges from moderate to significant, depending on the number of
objects returned by a query. For queries returning a large number of objects (say, 100 or more), the
improvement is dramatic: relative to performance in November 1992, total execution time has
decreased by an order of magnitude or more for such queries.

o Faster startup (IDI): Release 2.4 of the IDI incorporates changes that speed up reading of DB schema
information substantially; schema-read times under IDI 2.4 should be on the order of 15-25% of
schema-read times under IDI 2.3.

LIM 1.2
LIM 1.2 includes a number of significant additions and improvements relative to earlier releases:

* support for update of all View-Concepts, including those involving joins and those having DB-
derived sub-parts _

* support for Meta-View-Concepts, permitting class-level information from a DB to be retrieved and
automatically asserted about View-Concepts representing those classes

* improved performance

» support for Loom 2.1

* support for Lucid CL 4.1.1

In addition to data about individual real-world objects like seaports and ships, the ARPI databases contain
data about classes of real-world objects. Examples of this include data about the dozens of types of ships
that are recognized, and about the characteristics of a dozen or so types of berths. The Shared Domain
Ontology (SDO) currently represents this information explicitly in the knowledge base files. It is highly
desirable that information about classes of objects be accessible from the context of the objects
themselves. In LIM 1.2, we have implemented a meta-view-concept facility for LIM that provides the
ability to define meta-level view-concepts, and to retrieve data for instances of these — i.e., View-
Concepts — from the database (see Section 2.3.4). Complete details are described in the LIM 1.2
Software Design Document and the Software User's Manual.

LIM 1.3

The principal features of LIM 1.3 were:
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Performance: average performance has improved significantly in LIM 1.3 relative to previous
releases, in terms of both execution time and memory consumption. The initial query for a given
concept (not instance) typically takes approximately the same time as under LIM 1.2, but subsequent
queries for the same concept are 15-30% faster.

Memory consumption (“Dynamic Bytes Consed” and “Ephemeral Bytes Consed”, as reported by the
LCL TIME function) has been reduced by 25-50%, with savings proportional to the number and size
of the objects created.

A new release of IDI has been distributed concurrently with this LIM release. Some of the
performance improvements in LIM are due to features of this release of IDI.
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LIM1.4
The principal features of LIM 1.4 were:
 further improved performance, particularly for large queries (e.g., the largest KAKEE force modules)

e compatibility features to support the integration of LIM, CoBASE and SIMS; these were made with
the cooperation of UCLA and ISI staff, primarily for the benefit of Rome Lab’s installation of our
systems for demonstration and internal use.

LIM 2.0
The principal features of LIM 1.4 were:
¢ further improved performance, particularly for large queries (e.g., the largest KAKEE force modules)

e compatibility features to support the integration of LIM, CoBASE and SIMS; these were made with
the cooperation of UCLA and ISI staff, primarily for the benefit of Rome Lab’s installation of our
systems for demonstration and internal use.

For a discussion of LIM performance in general, see Sections 2.3.5 and 3.

1.11 Software Sites

The software systems developed under this contract has been in use within the Planning Initiative for well
over the past two years. These were early interim releases of the software that were made available to
obtain early use as well as feedback to guide further development. The approach, although not always
successful, has aided substantially in the rapid development of the software especially with regard to
performance. These are the principle sites within the PI where projects have used the indicated software.

There is use of the software outside of the Planning Initiative within the Intelligent Integration of
Information program at SRI, UCI, USC ISI, UCLA and Georgia Tech.

The following sites are using, plan to use or are investigating the use of the Intelligent Database
Interface either standalone or as an embedded system:

MITRE

USC ISI

UCLA

SRI

UCI

Georgia Tech

University of Massachusetts

The following sites are using, plan to use or are investigating the use of the LOOM Interface Module
either standalone, as an embedded system or as a part of a knowledge server:

ISX
BBN
USC ISI
UCLA
MITRE
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The following sites within have used KOML successfully to integrate one or more systems or are
investigating the further use of KQML:

BBN/ISX
UCLA
USCISI
Mitre
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2. LOOM INTERFACE MODULE (LIM)

2.1 Introduction

The integration of artificial intelligence (47) and database management system (DBMS) technologies
promises to play a significant role in shaping the future of computing. As noted in [7], AI/DB integration
is crucial not only for next-generation computing, but also for the continued development of DBMS
technology and, in many cases, for the effective application of Al technology. The motivations driving
the integration of these two technologies include the need for

e access to large amounts of shared data for knowledge and information processing,

o efficient management of knowledge as well as data, and

¢ intelligent processing of data.

In addition, AI/DB integration at Lockheed Martin was motivated by the desire to preserve the substantial
investment in most existing, or legacy, databases. To that end, a key design criterion was that our
integration technology support the use of existing DBMSs as independent system components. Finally,
the development of large-scale, heterogeneous, distributed Al systems involving a number of discrete
cooperating agents, as well as a general need to retain results of Al processes for the long-term, have led
to a need for persistent storage of knowledge to permit knowledge sharing among those agents.

Some work has been done toward implementing a view-object model [15] on relational DBs for which a
semantic schema exists. In particular, Barsalou and Wiederhold [3,4] describe a system based on the
Structural Model [14], an extended entity-relationship model. In this system, the user selects a pivot
relation that includes the intended key(s) for the object being defined. The various link-types in a
structural schema are then traversed, and, using a relevancy metric, a tree of candidate relations—rooted
at the pivot—is generated. The user then prunes this tree, leaving only the relations and attributes that

~ s/he wishes to have in the defined object. Once the object is defined, it is linked into an object hierarchy.
Barsalou and Wiederhold provide algorithms that assure that objects are retrievable, and, if desired,
updatable. The View-Concept model described here is intended as a knowledge-based extension of the
view-object model; it also draws upon work done at Lockheed Martin on an Ingres DB interface for the
CYC KRS [12] and on the Cache-based Intelligent Database Interface (CIDI) [11]. We have
implemented a prototype system for LOOM called the LOOM Interface Module (LIM).

LIM is being developed in the context of the ARPA/Rome Lab Planning Initiative (PI) a multi-site project
whose goal is the development and introduction of a knowledge-based system to support military
logistics planning for the United States Transportation Command, which is responsible for planning
large-scale movements of troops and materiel. The current planning system is a 1970s-vintage system
that uses large, heavily-encoded records; the plan for even a moderate-sized operation is enormous, with
some containing hundreds of thousands of records, effectively precluding any purely memory-resident
storage scheme. The system has recently been extended to use a relational database in place of flat files
for some applications, and in some cases, object oriented databases. The designers of the relational DB
schema were constrained by a need to adhere fairly closely to the original data format for the plan
records, since the planners are quite familiar with the current structure of the data. Our project is thus
faced with the task of interfacing a knowledge representation system to a collection of legacy databases
that lack a coherent semantic schema. There is also a need to share data derived by one among a group of
Al systems with other systems, either in real-time or at a later time.

Related work within the ARPI is being performed by groups at ISI [1,2] and UCLA [8]. ISI’s SIMS
(Services and Information Management for Decision Systems) is designed to map the queries of users,
who are presumed to be ignorant of the structure and content of a collection of databases, into retrievals
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against those databases. UCLA’s COBASE (Cooperative Database) is a knowledge-based extension to
standard relational query languages (e.g., SQL) that provides approximate operators supporting query
relaxation and approximate answers.

2.1.1 Architecture

LIM acts as an intermediary between a Loom application and one or more DBs, using the services of the
IDI to access the DBs. The inter-relationships among the various components of the overall system are
illustrated in Figure 1. LIM uses the IDI to read the DB schema, building a Loom representation of the
schema based on this information. Subsequently, in response to a query or update request from a Loom
application that requires access to the DB, LIM parses the request and uses the IDI to generate the
appropriate data manipulation language (DML) statements for the DBMS; in the case of a query, it then
processes the tuples returned to it by the IDI into the form requested by the application.

Processing within LIM is directed by a multi-layer KB architecture that is built in a mixed-initiative
process. Figure 2 depicts the layers in this architecture.

2.1.2 Semantic Mapping KB (SMKB)

_ The Semantic Mapping
Loom objects .
and values KB (SMKB) is an
: ‘ Loom isomorphic
Loom KB o updstes Application representation of the
' . DB schema. It is
e tes s constructed by a

\ : Knowledge Base
Schema LIM Administrator (KBA)

information
— analogous to the
_ Schema T l Parsed queries T;ff;;iﬁfﬁ database administrator
informaton and updates for a DB — from an
ciDI automatically-
— —— generated schema
and updates Schema  andupdates | '] Schema model. LIM creates
(eg.SQL) ] | wommaton.  (eg.SQU) s this schema model by
using the IDI to read
the DB schema; based
_ on this information, it
Figure 1. LIM Overview defines one Loom
concept for each table

and one Loom relation for each column. The relation representing each column is defined as a role on the
concept representing the appropriate table, value-restricted to a type that represents the DB type (domain)
of the column; these DB types are typically simple types like integer and string. The SMKB is
created primarily by defining semantic types, and then substituting these for the simple DB types that
appear in the schema model. LIM stores information identifying the DB, table, and column with the
concepts and relations in the SMKB.

2.1.3 Application KB (AKB)

Application KBs (AKBs) refer to concepts and relations in the SMKB. Unlike concepts in the SMKB,
which are isomorphic to tables in the DB, and which presently have no hierarchical structure, concepts in
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the AKB do not necessarily map in any simple way to the tables in the DB, and can have arbitrary
hierarchical structure. Connections to the DB are implemented via DB-mapping declarations, in which a
concept-role pair in the AKB is mapped to a SMKB role.

2.2 Operation

LIM, given a query or update request involving a concept in the SMKB or AKB,

e obtains schema mapping information from the SMKB;

e translates the request into an equivalent DML statement with the aid of the IDI, which submits the
statement to the DBMS and assembles the result; and

e for a query, restructures the returned tuples as necessary, generating any KB structures required to
satisfy the query.

With regard to the last point, a fundamental principle of LIM is that KB structures are created only on
demand: queries are satisfied without creation of KB objects whenever possible, to minimize overhead
and bookkeeping. Control over object creation is entirely at the discretion of the application.

The processing performed by LIM is illustrated in Figure 3.

2.2.1 Schema Generation

As described above, when a DB is opened via the IDI, schema information is cached by the IDI in local
data structures. The schema generation module reads this information, and generates one Loom concept
per table and one Loom relation per column. The relations corresponding to the columns of a table are
then added as roles of the corresponding concept via value-restrictions.

2.2.2 Schema Augmentation

The automatically-generated schema model is a literal representation of the DB schema. One implication
of this is that the semantics of relationships among tables are not explicit, since the schema does not
identify the columns in the DB over which joins are semantically reasonable. In creating the SMKB, the
KBA augments this literal
schema representation by
defining semantic types to
Application explicate the semantics of
(AKB) joins. In particular, where
two relations represent
columns over which a join is
semantically reasonable, the

Semantic value restrictions on these
Mapping relations in their respective
(SMKB) concepts are changed to the
same KB type. For example,
] ] / two DB columns whose DB
gic_cd  |glc_ltcn § glc_Ince ey cd | ... type 1s integer, but
External 1
Databace whu.:h both _represent a
oy particular kind of
SEAPORTS GEOLOC I .
identification number,

would have their value
restrictions specialized to a
concept representing that

Figure 2. LIM Knowledge Base
Architecture
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kind of identification number.

In addition to modification of role value restrictions, it is usually desirable to represent the structural
semantics of the domain more closely than is possible in the relational model. Such restructuring may be
specified in the AKB by defining View-Concepts and mapping their roles to those of SMKB concepts.
When such semantic restructuring takes place, it is necessary to ensure that the proposed structures are
retrievable, and — if desired — updatable. Retrievability requires that all participating tables can be
joined, and that sufficient information (e.g., keys) is preserved in the semantic representation to permit
unambiguous access of all necessary tuples. Updatability requires that all key, index, and non-null
columns in the DB tables underlying a View-Concept in the AKB are included in the View-Concept.

Retrievability of a View-Concept is assured via a mixed-initiative dialog, in which the system computes
all semantically meaningful ways of joining all of the DB tables required for the construction of a View-
Concept; if there is more than one such alternative, LIM presents them for selection by the user. It is not
possible for the system to compute join paths without user intervention, since any given pair of tables
might be joinable in several ways, not all of which are semantically equivalent.

Updatability of View-Concepts, when required, is checked automatically by the system. If any necessary
information is unavailable in the view, the system identifies the missing information, and suggests that it

be added to the model.

2.2.3 Query Translation

Given a LIM query, the query translation module:
e identifies variables in the query corresponding to Loom relations that are derived from the DB,
e - identifies variables in the query corresponding to Loom concepts having roles derived from the DB,

and
e constructs a DML query and submits it to the IDI for processing against the DB.

If the query requests the return of Loom objects, rather than just values from the DB, the DML query will
select and return values in each tuple to permit generation of the appropriate Loom objects.

2.2.4 Update

The design of a DB update facility for Loom is not as straightforward as might appear at first. In this
section, we will address the semantic issues involved in update; discussion of additional technical issues

will be deferred to Section 2.3.

Loom instances can be constructed incrementally, by asserting the existence of the instance, and then
subsequently asserting facts about it. Furthermore, classification of an instance does not take place as a
result of asserting its existence, or asserting facts about it, but must be explicitly requested. In addition to
the incremental nature of instance creation, certain semantic requirements must be taken into
consideration: as noted in Section 2.3.3, if an instance is to be stored into a DB, an update cannot be
performed unless sufficient information (e.g., values for keys and indices) is available.

While it would be possible to determine when a user considered a given instance’s definition complete
(i.e., when classification is requested), or to determine the point at which sufficient information has been
asserted about an instance to permit storage in the DB, we saw no justification for presuming that either
of these conditions should necessarily imply that the user intended to make the instance in question
persistent. We therefore chose to separate instance creation from a request for storage in the DB.

When a user issues a request to store a DB-derived Loom instance, LIM verifies that it has values for all
roles mapped to key- and index-columns for underlying tables, as well as for all columns for which
NULL values are not permitted. If the instance contains all requisite information, the DB is modified via
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the IDI. Note that a request to store an instance of a View-Concept that draws information from more
than one table may result in DB operations against all such tables. Note also that the it must be decided,
for each such table, whether to modify (update) an existing tuple, or to create (insert) a new tuple. Both
of these issues will be discussed in Section 2.3.3.

2.2.5 Object Generation

A LIM query consists of a list of output variables to be bound, and one or more statements (in a syntax
similar to that of the Loom assertional language) that produce sets of bindings for these variables. It is
easily determined from the positions of variables in the output list and the query expressions whether a
particular output variable corresponds to a role value or a concept. For a variable corresponding to a role
value, the value retrieved from the DB can be returned to the application, possibly with some conversion
due to the differences between semantic types used in the KB and simple DB types (cf. Section 2.3.2).
For a variable corresponding to a concept, however, the application will expect to have returned to it an
instance of that concept; this requires that LIM be capable of creating Loom instances using values
retrieved from the DB. LIM’s object generation module extracts from the returned tuples all values
requested specifically for the purpose of building Loom objects, creates the objects, and returns them to
the application.

2.3 Technical Details

The descriptions in Section 2.2 glossed over several critical technical issues in the design,
implementation, and operation of LIM. Among these are caching, data inference, complexities in update,
and Meta-View-Concepts.

2.3.1 Caching

LIM uses three different caching schemes, for two purposes. The first purpose is the conventional one of
improving performance; the second is related to preserving referential integrity in an Object-Oriented
system. For improved performance, LIM can make use of the IDIis results cache: the IDI stores the
result of every query it
processes, indexed under a
canonicalized version of the
IDIis internal representation
of the query; if a subsequent
query is translated to the
same canonical form, modulo
variable names, the result
from the earlier query is
returned. In addition, LIM
employs a similar cache
based on a canonicalization of
the original user query: the
results of each LIM query are
stored, indexed under this
s o P msmT canonical form, and a .

| h 4 | v subsequent query that is

| identical, modulo variable

Figure 3. LIM Internal Architecture and
Processing
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names, will return the cached result.

Both of these can result in dramatic performance increases, because DB execution time dominates total
LIM processing time for all but the largest of queries (as detailed in Section 2.3.5). A “hit” on the LIM
results cache returns results almost instantaneously, since the query need not even be translated and
submitted to the IDI, and a hit on the IDI results cache incurs only LIM translation time; in neither case
will the DBMS be involved.

A query will hit the LIM cache only if it is virtually identical to a previous query, modulo variable names;
on the other hand, a query might hit the IDI cache even if it is superficially quite dissimilar to an earlier
query, provided that both translate to an identical IDI query. The extreme case of this is a query for an
instance following a query for all of the instance’s values: both will translate to the same IDI query, even
though they look quite dissimilar at the surface syntactic level.

Use of both LIM and IDI caching is controllable both globally and at the individual query level. This is
important in applications where the contents of the DB are known to be dynamic, and it cannot
necessarily be presumed that a subsequent query should return the same results as an earlier identical
query. We intend to augment the current caching schemes with “smart” caching techniques, such as
subsumption-based caching, in future versions of LIM.

The caching used to assure referential integrity uses a similar mechanism, but for a completely different
purpose. When a user queries LIM for an instance of a View-Concept, and then subsequently queries for
an instance with the same key values, it is usually the case that s/he expects the same KB object to be
returned in both cases. Since both results caches presently used by LIM are based purely on syntax, they
afe incapable of recognizing syntactically-distinct queries that should (semantically) return the same
object.

A “smart” cache will alleviate this problem to a large degree, but it is still necessary to assure that
syntactically-distinct queries referencing the same instance return the same object. For this reason, LIM
checks the Loom instance database (ABox) prior to creating instances. Given an object query, after
submitting a query to the IDI and receiving return values, LIM queries the Loom ABox before creating a
new instance. If the View-Concept that is to be the type for the instance has keys defined, LIM uses these
(in conjunction with Loom’s indexing capabilities) to speed the search; otherwise, all values are used.

Note that “ABox cache” checking is not an efficiency measure: on the contrary, it carries a performance
penalty that can become significant on extremely large queries (many hundred to several thousand
objects). For this reason, and because of situations (like that of dynamic DB contents) where ABox cache
checking is undesirable, it is controllable both globally and at the individual query level.

2.3.2 Data Inference

Data values in a DB not are necessarily in the form required or desired for the KB. LIM presently
supports data value rendering, which maps from simple data values in the DB to scalar KB types; e.g.,
“M” |C|Military
Future releases of LIM will support data object rendering, which maps from simple data values in the
DB to instances of concepts; €.g.,
“BSRL” |i|Bizerte (Geoloc)
where “BSRL” is the GEOLOC_CODE for the GEOLOC Bizerte.

Finally, LIM will support data classification, which results in classification of instances in the KB after
creation; e.g.,
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> (db-retrieve ?ship
(:and (Ship ?ship)
(name ?s “Constitution”)))

[i|Constitution(Frigate)
Here, it has been determined that the instance named “Constitution” is an instance of the concept
Frigate, even though the query specified the more general concept Ship.

2.3.3 Update Issues

Update of simple View-Concepts that are mapped to single DB tables is relatively straightforward and
unambiguous: if the View-Concept has roles mapped to all requisite columns of the underlying table (i.e.,
key-, index-, and no-nulls-columns), and has values for all roles so mapped, tuples underlying it can be
updated or inserted. The principal subtlety in this case is determining whether an insert or update is
appropriate. Our approach to making this determination is to keep track, for each instance retrieved from
the DB, of the values actually retrieved. When an object is stored, LIM checks to see whether it was
originally retrieved from the DB, and, if so, checks the current values against those recorded originally. If
the object was not retrieved from the DB, the request to store it will be treated as an insert, and will
succeed if there is no matching record in the DB. If the object was retrieved, and its key values have
changed, the store request will be treated as an insert; otherwise, if its values have changed, the store
request will be treated as an update, and if they have not, the request will be treated as a no-op.

When a View-Concept involves one or more joins, or has sub-View-Concepts (i.e., roles that are value-
restricted to a View-Concept), the situation becomes more complex. In either case, the View-Concept is
only considered updatable if all information required for the joins is stored in the View-Concept(s)
involved; the complexity lies in the fact that LIM has no control over which of the two (or more) columns
involved in the join(s) are mapped to the View-Concept, and it is typically the case that the values must
be propagated to all of the relevant tables, even to columns that are not DB-mapped by the View-
Concept. In such cases, LIM must use information about joins and subview-joins to propagate values
from DB-mapped roles to both the SMKB roles to which they are mapped and those representing the
columns across which joins are required.

The other subtlety introduced with joins is the fact that not all component tables will necessarily require
either update or insert operations for all store requests. For example, short of the creation of a new

seaport or airport, it is extremely unlikely that any new GEOLOCs (the DB table used to represent
geographic locations of all kinds in the DB) would be created by any store request, and yet many
application concepts in our domain contain information drawn from (i.e., have roles DB-mapped to) the
GEOLOC table; it will seldom, if ever, be the case that a request to store an instance of one of these
concepts should result in an update or insert to the GEOLOC table. Other, even more extreme, examples of
this include tables like the one for COUNTRY~-CODES, which maps arbitrary country codes to country
names: it will seldom be the case that a routine update will want to add to, or modify, such tables.

2.3.4 Meta-View-Concepts

In addition to data about individual real-world objects like seaports and ships, some DBs (including those
used by the ARPI) contain data about classes of real-world objects. Examples of this include data about
the dozens of types of ships that are recognized. The need to represent this information in a domain
model should be obvious; it should also be obvious that it is inappropriate — and potentially dangerous
from the standpoint of data integrity — to permit this data to be manually encoded in the domain model.

20




Furthermore, it is highly desirable — if not absolutely critical — that information about classes of objects
be accessible from the context of the objects themselves.

For this purpose, LIM supports a Meta-View-Concept facility. In Object-Oriented systems, the term
metaclass is typically used to describe classes whose instances are all classes: just as a class describes the
structure (i.e., slots or roles) of objects of that class, so a metaclass describes the structure of a class. In
the case of ships, for example, a ship meta-class would describe the structure of something that represents
a collection of similar ships — i.e., a class of ships — while a ship class would describe the attributes of
something that represented an individual ship. While it is possible, and in many cases reasonable, for a
metaclass and its classes to share attributes, it is typical for each to have attributes that are not meaningful
for the other. For example, while it is reasonable that both ship classes and ships share some common
attributes such as length and draft, it is meaningless for ship classes — i.e., instances of the ship
metaclass — to have a hull-number attribute; and, while it is possible to represent the number of ships in
its class in the object representing each individual ship — i.e., as an attribute of individual ships, defined
in ship classes — it is clearly more appropriate to model this as an attribute of ship classes, defined at the
ship metaclass.

LIM’s Meta-View-Concept facility provides the ability to define meta-level View-Concepts, and to
retrieve data for instances of these — i.e., View-Concepts — from the database. In addition to supporting
queries about class-level concepts — say, for the number of ships in a particular class — meta-View-
Concepts provide the basis for a mechanism implementing any of several varieties of defauits. For
example, if an instance is missing a value for a particular attribute, it may be quite reasonable to obtain a
proxy value by default from the instance’s class; in the case of a particular type of ship, if the 1ength is
missing from one instance, for example, it may be reasonable to use the length value from the ship’s
class in its place. It may also be reasonable to “inherit” class-level values, such as the number of ships in
a class, at the instances.

Extended Example
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The diagram in Figure 4 identifies the relationships among the concepts Ship, Ship-Class, ship classes
such as the CAPE H class and individual ships. Class level attributes are available from the SHIP-CLASS
table in the ARPI database and individual ship attributes are retrieved from the SHIP table. This extended
example explains the detailed information available in the KRSL definitions of each of these and depicted
in the diagram.

Starting with the SDO definition of Ship:

(lim:def-view-concept ship

:is-primitive (:and vehicle
(:all ship-beam quantity)
(:all ship-height quantity)
(:all ship-max-draft number)
(:all ship-min-draft number)
(:all ship-max-speed quantity)
(:all ship-service-speed quantity)
(:all first-year-built calendar-date)
(:all fleet-name string))

:characteristics :clos-class)

we define sub-classes of Ship, for example:

(defconcept CAPE-H-CLASS-SHIP :is-primitive ship)

Ship-Class

[ Ship-Height

Capacity
ape-H-Class-Ship

SHIP-CLASS
J Ship-Class-
i ] Name @) *Cape H"

750
2
i Vehicle-Type-

Name _E) “Cape Hudson
SHIPS

Figure 4. Metaview concepts define meta-class relationships found in
databases. This example uses the two kinds of Ship information
found in the Planning Initiative databases. The text explains the
components of the model and how they are used.
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{defconcept CAPE-H/CAPE-HENRY-CLASS-SHIP :is-primitive CAPE-H-CLASS-ship)

(defconcept CAPE-H/CAPE-HORN-CLASS-SHIP :is-primitive CAPE-H-CLASS-ship)

We then define the Meta-View-Concept for Ship-Classes:

(defconcept Ship-Class

:ig-primitive

(:and Meta-View-Concept

.the Sh-Cl-Class-Name String) (:the Sh-Cl-Subclass-Name String)
.the Sh-Cl-Add-Container-Space String) (:the Sh-Cl-Class String)
:the Sh-Cl-Total-Sg-Ft Number) (:the Sh-Cl-Refrig-Sq-Ft Number)
:the Sh-Cl-Ship-Type-P£ff Number) (:the Sh-Cl-Fixed-Containers Number)
:the Sh-Cl-Barges Number) (:the Sh-Cl-Year-Of-First-Ship Number)
.the Sh-Cl-Fleet String) (:the Sh-Cl-Length Number)
.the Sh-Cl-Beam Number) {:the Sh-Cl-Height Number)
.the Sh-Cl-Max-Draft Number) (:the Sh-Cl-Min-Draft Number)
:the Sh-Cl-Max-Speed Number) (:the Sh-Cl-Service-Speed Number)
.the Sh-Cl-Range Number) (:the Sh-Cl-Fuel-Cap Number)

)

and map the roles of interest to the SHIP_CLASS table, in which class-level Ship information is stored:

Ship_Class.Sh_Class)
Ship_Class.Sh_Subclass)
Ship_Class.Sht_Cd)

(def-db-mapping ship-class Sh-Cl-Class-Name
(def-db-mapping ship-class Sh-Cl-Subclass-Name
(def-db-mapping ship-class Sh-Cl-Sht-Cd ;
(def-db-mapping ship-class Sh-C1-Num-Ships-In-Class
Ship Class.Num_Ships_In_Class)

o

o

o

Finally, we declare the association between the concepts Ship and Ship-Class, and describe the roles upon
whose values LIM should base the determination of the correct sub-concept of Ship to load from the DB.
The mapping indicates the particular DB value which licenses an inference to 2 particular concept in the
Loom knowledge base. '
(declare-meta-view-concept 'Ship-Class 'Ship
:concept-mapping-roles ' (Sh-Cl-Class-Name Sh-Cl-Subclass-Name)
:concept-role-value-mapping
" ((("ADM WM M CALLAGHAN" NIL)
("AIDE" NIL)

ADM-WM-M-CALLAGHAN-CLASS-SHIP)
AIDE-CLASS-SHIP)

("AMBASSADOR" NIL)
("AMERICAN EAGLE" NIL)
("AUSTRAL LIGHTNING" NIL)
("BANNER" NIL)

("BAYAMON" NIL)

("CAPE A CLASS" NIL)
("CAPE B CLASS" NIL)

("CAPE C CLASS" NIL)

("CAPE D CLASS" NIL)

("CAPE E CLASS" NIL)

("CAPE F CLASS" "GREEN VALLEY")
("CAPE F CLASS" "ROBERT E LEE")
("CAPE F CLASS" NIL)

("CAPE G CLASS" NIL)

(*CAPE H CLASS" "CAPE HENRY")
("CAPE H CLASS" "CAPE HORN")
("CAPE I CLASS" NIL)

("CAPE J CLASS" NIL)

("CAPE M CLASS" NIL)

(*T-ACS 1-3" NIL)
("WASHINGTON" NIL)

AMBASSADOR-CLASS-SHIP)
AMERICAN-EAGLE-CLASS-SHIP)
AUSTRAL-LIGHTNING-CLASS-SHIP)
BANNER-CLASS-SHIP)
BAYAMON-CLASS-SHIP)
CAPE-A-CLASS-SHIP)
CAPE-B-CLASS-SHIP)
CAPE-C-CLASS-SHIP)
CAPE-D-CLASS-SHIP)
CAPE-E-CLASS-SHIP)
CAPE-F/GREEN-VALLEY-CLASS-SHIP)
CAPE-F/ROBERT-E-LEE-CLASS-SHIP)}
CAPE-F-CLASS-SHIP)
CAPE-G-CLASS-SHIP)
CAPE-H/CAPE-HENRY-CLASS-SHIP)
CAPE-H/CAPE-HORN-CLASS-SHIP)
CAPE-I-CLASS-SHIP)
CAPE-J-CLASS-SHIP)
CAPE-M-CLASS-SHIP)

T-ACS-1-3-CLASS-SHIP)
WASHINGTON-CLASS-SHIP))
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At this stage, the definitions of all subconcepts of Ship have no information asserted about them:

> (pc CAPE-H-CLASS-SHIP)

(defconcept Cape-H-Class-Ship
:ig-primitive (:and Sdo-Kb”Ship

(:all
(:all
(:all
(:all
(:all
(:all
(:all
(:all
(:all
(:all
(:all
(:all
(:all

Sdo-Kb”*Ship-Beam Sdo-Kb*Quantity)

Sdo-Kb”*Ship-Height Sdo-Kb”*Quantity)

Sdo-Kb*Ship-Max-Draft Loom::Upper-Structure-Kb"Number)
Sdo-Kb*Ship-Min-Draft Loom::Upper-Structure-Kb“Number)
Sdo-Kb”*Ship-Max-Speed Sdo-Kb”*Quantity)
Sdo-Kb*Ship-Service-Speed Sdo-Kb”“Quantity)
Sdo-Kb*First-Year-Built Sdo-Kb”Calendar-Date)
Sdo-Kb*Fleet-Name Loom::Upper-Structure-Kb”String)
Sdo-Kb*Fuel-Storage-Capacity Sdo-Kb”Quantity)
sdo-Kb*Vehicle-Range Sdo-Kb”*Quantity)
Sdo-Kb*Vehicle-Length Sdo-Kb”Quantity)
Sdo-Kb~Vehicle-Description Loom::Upper-Structure-Kb*String)
Sdo-Kb*Vehicle-Type-Name Loom::Upper-Structure-Kb*String))

:constraints

{:and
:all
:all
:all
:all
:all
:all
:all
:all
rall
:all
:all
rall
(:all

P N A e e e e e

:kb Sdo-Kb)

Sdo-Kb*Vehicle-Type-Name Loom::Upper-Structure-Kb*String)
sdo-Kb*Vehicle-Description Loom::Upper-Structure-Kb*String)
sdo-Kb*Vehicle-Length Sdo-Kb*Quantity)
Sdo-Kb”*Vehicle-Range Sdo-Kb”*Quantity)
Sdo-Kb*Fuel-Storage-Capacity Sdo-Kb”“Quantity)
Sdo-Kb”Fleet-Name Loom: :Upper-Structure-Kb“String)
Sdo-Kb*First-Year-Built Sdo-Kb”Calendar-Date)
Sdo-Kb”*Ship-Service-Speed Sdo-Kb*Quantity)
Sdo-Kb”*Ship-Max-Speed Sdo-Kb”*Quantity)
Sdo-Kb*Ship-Min-Draft Loom: :Upper-Structure-Kb"Number)
Sdo-Kb*Ship-Max-Draft Loom::Upper-Structure-Kb"Number)
Sdo-Kb”Ship-Height Sdo-Kb*Quantity)

Sdo-Kb“Ship-Beam Sdo-Kb”*Quantity))

> (pc CAPE-H/CAPE-HORN-CLASS-SHIP)

(defconcept Cape-H/Cape-Horn-Class-Ship
:is-primitive (:and Sdo-Kb“Cape-H-Class-Ship

(:all
:all
:all
:all
:all
:all
:all
:all
;all
:all
:all
:all
(:all

P e e e e

Sdo-Kb*Vehicle-Type-Name Loom::Upper-Structure-Kb*String)
Sdo-Kb”*Vehicle-Description Loom::Upper-Structure-Kb"String)
Sdo-Kb”*Vehicle-Length Sdo-Xb“Quantity)
Sdo-Kb”*Vehicle-Range Sdo-Kb*Quantity)
Sdo-Kb”*Fuel-Storage-Capacity Sdo-Kb”“Quantity)
Sdo-Kb*Fleet-Name Loom::Upper-Structure-Kb”*String)
Sdo-Kb”*First-Year-Built Sdo-Kb“Calendar-Date)
Sdo-Kb*Ship-Service-Speed Sdo-Kb“Quantity)
Sdo-Kb”*Ship-Max-Speed Sdo-Kb”"Quantity)
Sdo-Kb”*Ship-Min-Draft Loom::Upper-Structure-Kb*Number)
Sdo-Kb”*Ship-Max-Draft Loom::Upper-Structure-Kb*Number)
Sdo-Kb”“Ship-Height Sdo-Kb*Quantity)

Sdo-Kb”Ship-Beam Sdo-Kb“Quantity))

:constraints (:and (:all Sdo-Kb”Ship-Beam Sdo-Kb”“Quantity)

(:all
:all
rall
:all
:all
:all
:all
:all
:all
:all
:all
(:all

B T S

:kb Sdo-Kb)

Sdo-Kb”*Ship-Height Sdo-Kb*Quantity)

Sdo-Kb”“Ship-Max-Draft Loom::Upper-Structure-Kb*Number)
Sdo-Kb”*Ship-Min-Draft Loom: :Upper-Structure-Kb*Number)
Sdo-Kb”*Ship-Max-Speed Sdo-Kb*Quantity)
Sdo-Kb”*Ship-Service-Speed Sdo-Kb”*Quantity)
Sdo-Kb*First-Year-Built Sdo-Kb“Calendar-Date)
Sdo-Kb”*Fleet-Name Loom::Upper-Structure-Kb”*String)
Sdo-Kb”Fuel-Storage-Capacity Sdo-Kb”*Quantity)
Sdo-Kb*Vehicle-Range Sdo-Kb”*Quantity)
Sdo-Kb*Vehicle-Length Sdo-Kb”“Quantity)
Sdo-Kb”"Vehicle-Description Loom::Upper-Structure-Kb*String)
Sdo-Kb”*Vehicle-Type-Name Loom::Upper-Structure-Kb*String))
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Now, with a single retrieval request, we load all sub-concepts of Ship from the DB:

> (db-retrieve ?x (ship-class ?x))

(|C|AUSTRAL-LIGHTNING-CLASS-SHIP |C|PRIDE-CLASS-SHIP || ADM-WM-M-CALLAGHAN-CLASS-SHIP |C|CAPE-

J-CLASS-SHIP |C|GREEN-WAVE-CLASS-SHIP |C|CAPE-G-CLASS-SHIP |c| CAPE-M-CLASS-SHIP |C|CAPE-F-
CLASS-SHIP |C|CAPE-F/GREEN-VALLEY-CLASS-SHIP | ¢ | CAPE-F/ROBERT-E-LEE-CLASS-SHIP |C|COMET-
'CLASS-SHIP |C|AIDE-CLASS-SHIP |C|BANNER-CLASS-SHIP |C|CAPE-A-CLASS-SHIP |C|CAPE-C-CLASS-
SHIP |C|GULF-TRADER-CLASS-SHIP |C|T-ACS-1-3-CLASS-SHIP | C|METEOR-CLASS-SHIP |C|CAPE-B-
CLASS-SHIP |C|WASHINGTON-CLASS-SHIP |C|DEL-MONTE-CLASS-SHIP | | PONCE-CLASS-SHIP

| C| BAYAMON-CLASS-SHIP |C|LYKES-CLASS-SHIP | C|CAPE-E-CLASS-SHIP |C|CAPE-D-CLASS-SHIP
|¢|FAST-SEALIFT/ALGOL-CLASS - SHIP |C|FAST-SEALIFT/CAPELLA-CLASS-SHIP |C|FAST-
SEALIFT/ALTAIR-CLASS-SHIP |C|LYRA-CLASS-SHIP |C|JAMES-MCHENRY-CLASS-SHIP |C|CAPE-I-CLASS-
SHIP |C|CAPE-H/CAPE-HENRY-CLASS-SHIP |C|CAPE-H/CAPE-HORN-CLASS - SHIP |C|MPS-MAERSK-CLASS-
SHIP |C|AMBASSADOR-CLASS-SHIP |C|MAERSK-CONSTELLATION-CLASS-SHIP | | AMERICAN-EAGLE-CLASS-
SHIP |C|MPS-WATERMAN-CLASS-SHIP |C|MPS-AMSEA-CLASS-SHIP |C|LOGISTICS-SUPPORT-VESSEL-CLASS-
SHIP)

Examining the concept CAPE-H-CLASS-SHIP, we find that it still has no assertions:
> (pc CAPE-H-CLASS-SHIP)

(defconcept Cape-H-Class-Ship

:is-primitive (:and Sdo-Kb”*Ship
(:all Sdo-Kb”*Ship-Beam Sdo-Kb*Quantity)

:all Sdo-Xb*Ship-Height Sdo-Kb*Quantity)

:all Sdo-Kb”“Ship-Max-Draft Loom::Upper—Structure-Kb‘Number)

:all Sdo-Kb*Ship-Min-Draft Loom::Upper-Structure-Kb*Number)

:all Sdo-Kb*Ship-Max-Speed Sdo-Kb*Quantity)

:all Sdo-Kb”Ship-Service-Speed Sdo-Kb"Quantity)

:all Sdo-Kb*First-Year-Built Sdo-Kb*Calendar-Date)

:all Sdo-Kb*Fleet-Name Loom::Upper-Structure-Kb*String)

:all Sdo-Kb*Fuel-Storage-Capacity Sdo-Kb“Quantity)

:all Sdo-Kb*Vehicle-Range Sdo-Kb“Quantity)

.all Sdo-Kb*Vehicle-Length Sdo-Kb*Quantity)

:all sdo-Kb*Vehicle-Description Loom: : Upper-Structure-Kb*String)
(:all Sdo-Kb*Vehicle-Type-Name Loom::Upper-Structure-Kb*String))

.constraints (:and (:all Sdo-Kb”Vehicle-Type-Name Loom: : Upper-Structure-Kb*String)
(:all Sdo-Kb*Vehicle-Description Loom::Upper-Structure-Kb“String)

:all Sdo-Kb*Vehicle-Length Sdo-Kb”“Quantity)

:all Sdo-Kb*Vehicle-Range Sdo-Kb“Quantity)

:all Sdo-Kb“Fuel-Storage-Capacity Sdo-Kb“Quantity)

.all Sdo-Kb*Fleet-Name Loom: :Upper-Structure-Kb*String)

:all Sdo-Kb*First-Year-Built Sdo-Kb*Calendar-Date)

:all Sdo-Kb”*Ship-Service-Speed Sdo-Kb”*Quantity)

:all Sdo-Kb*Ship-Max-Speed Sdo-Kb“Quantity)

:all Sdo-Kb*Ship-Min-Draft Loom::Upper-Structure-Kb Number)

:all Sdo-Kb*Ship-Max-Draft Loom::Upper-Structure-Kb Number)

:all Sdo-Kb*Ship-Height Sdo-Kb”*Quantity)
(:all Sdo-Kb*Ship-Beam Sdo-Kb”*Quantity))

:kb Sdo-Kb)

This is because there is no information in the DB for CAPE-H-CLASS-SHIP — it is a construct we
introduced into the KB as a modeling convenience; CAPE-H/CAPE-HORN-CLASS-SHIP, on the other
hand, corresponds to a SHIP_CLASS in the DB, and so has values asserted for it:

> (pc CAPE-H/CAPE-HORN-CLASS-SHIP)
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(defconcept Cape-H/Cape-Horn-Class-Ship
:ig-primitive (:and Sdo-Kb”*Cape-H-Class-Ship
(:all Sdo-Kb*Vehicle-Type-Name Loom::Upper-Structure-Kb*String)

:all Sdo-Kb*Vehicle-Description Loom: :Upper-Structure-Kb”*String)
:all Sdo-Kb*Vehicle-Length Sdo-Kb*Quantity)
:all Sdo-Kb“vVehicle-Range Sdo-Kb“Quantity)
:all Sdo-Kb*Fuel-Storage-Capacity Sdo-Kb*Quantity)
:all Sdo-Kb”*Fleet-Name Loom::Upper-Structure-Kb”*String)
:all Sdo-Kb“First-Year-Built Sdo-Kb”*Calendar-Date)
:all Sdo-Kb”“Ship-Service-Speed Sdo-Kb”*Quantity)
:all Sdo-Kb*Ship-Max-Speed Sdo-Kb*Quantity)
:all Sdo-Kb*Ship-Min-Draft Loom::Upper-Structure-Kb*Number)
:all Sdo-Kb“Ship-Max-Draft Loom::Upper-Structure-Kb*Number)
:all Sdo-Kb”Ship-Height Sdo-Kb”*Quantity)

(:all Sdo-Kb”“Ship-Beam Sdo-Kb“Quantity))
:constraints (:and (:all Sdo-Kb“Ship-Beam Sdo-Kb“Quantity)

(:all Sdo-Kb"Ship-Height Sdo-Kb“Quantity)

(:all Sdo-Kb”*Ship-Max-Draft Loom::Upper-Structure-Kb“Number)

(:all Sdo-Kb*Ship-Min-Draft Loom::Upper-Structure-Kb*Number)

(:all Sdo-Kb“Ship-Max-Speed Sdo-Kb”*Quantity)

(:all Sdo-Kb*Ship-Service-Speed Sdo-Kb”*Quantity)

(:all Sdo-Kb"First-Year-Built Sdo-Kb“Calendar-Date)

(:all Sdo-Kb“Fleet-Name Loom::Upper-Structure-Kb“String)

(

(

{

(

e o o o o . o~

:all Sdo-Kb“Fuel-Storage-Capacity Sdo-Kb“Quantity)

:all Sdo-Kb“Vehicle-Range Sdo-Kb“Quantity)

:all Sdo-Kb*Vehicle-Length Sdo-Kb“Quantity)

:all Sdo-Kb*Vehicle-Description Loom: :Upper-Structure-Kb*String)
(:all Sdo-Kb*Vehicle-Type-Name Loom::Upper-Structure-Kb*String))

:annotations ((SH-CL-CRANES-15-LTON 0) (SH-CL-CRANES-10-LTON 0) (SH-CL-SHIP-TYPE-PFF 9)

(SH-CL-HEIGHT 158) (SH-CL-CRANES-60-LTON 0) (SH-CL-TOTAL-SQ-FT 178948)
(SH-CL-FLEET "RRF") (SH-CL-MIN-DRAFT 15.5) (SH-CL-SEABARGE-ELEVATORS 0)
(SH-CL-ADD-CONTAINER-SPACE "X")} (SH-CL-CLASS-NAME "CAPE H CLASS")
(SH-CL-CARGO-CAP-LTONS 26742) (SH-CL-CRANES-7-LTON 0) (SH-CL-POL-CAP 0)
(SH-CL-CRANES-35-LTON 1) (SH-CL-SERVICE-SPEED 17) (SH-CL-CRANES-212-LTON 0)
(SH-CL-FUEL-CAP 3638) (SH-CL-FIXED-CONTAINERS 676) (SH-CL-RORO-CAP "R")
(SH-CL-CRANES-50-LTON 0) (SH-CL-REFRIG-SQ-FT 0) (SH-CL-NUM-SHIPS-IN-CLASS 2)
(SH-CL-CRANES-5-LTON 0) (SH-CL-BEAM 106) (SH-CL-SUBCLASS-NAME "CAPE HORN")
(SH-CL-MAX-DRAFT 35.6) (SH-CL-LENGTH 750) (SH-CL-MAX-SPEED 21)
(SH-CL-SHT-CD "1402") (SH-CL-CRANES-450-LTON 0) (SH-CL-CRANES-120-LTON 0)
(SH-CL-RANGE 24317) (SH-CL-YEAR-OF-FIRST-SHIP 1979) (SH-CL-BARGES 0)
(SH-CL-CRANES-25-LTON 0))

:kb Sdo-Kb)
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2.3.5 LIM Performance

We have defined metrics for performance evaluation and have been using them continuously throughout
the development of LIM. The definitions of the major components appear in Figure 5.

. Using a Force Module benchmark derived from interactions between the FMERG system and the

Knowledge Server during previous TIEs, we have improved average performance significantly in LIM
1.4 relative to previous releases, and by a factor of almost 40x since the original FMERG TIE. The
queries all involve the retrieval of specific force modules for combat services and combat services
support; each force module is retrieved independently. The benchmark consists of executing the LIM
query 25 times with all caching turned off, i.e., queries are sent to Oracle each time. Chart 1below
compares performance from initial baseline performance in November 1992, LIM 1.1 performance in
May 1993, LIM 1.2 performance in May 1994, and LIM 1.4 performance in May 1995; additional
performance charts can be found on pages 71 and 72.
We have improved LIM performance dramatically since November 1992 TIE. The most notable
improvements are due to the following factors: ’
e Loom use
o We now use of faster Loom primitives where available, or adopted them they became available,
which has dramatically improved basic execution speed.

« In cases where repeated use of the same Loom inferencing chain might otherwise result, we cache
information retrieved from Loom knowledge base to “memoize” knowledge base access

LIM Performance Measures

Components of total execution time measured are:

Augmentation CPU time required to add concept-derived restrictions to
query

Translation CPU time required to translate LIM query into internal
canonical form

Query Generation CPU time required to translate internal canonical form into
DML

Connection Real time required to establish connection with DBMS server

Execution Real time required to execute query on DBMS server

Collection CPU time required to accumulate results of query

Object Generation CPU time required to post-process results, including creation
of Loom instances when requested

Abox Cache CPU time required to search Loom instance DB (ABox) to

prevent creation of duplicate instances, included in Object
Generation time

Total Execution Time  Sum of all of the above excluding Abox Cache time

Figure 5. Definition of LIM internal performance
metrics.
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¢ Database Interface
® We use improved fundamental data structures within the LIM and IDI implementations
» We improved algorithms; for example, it is now possible to specify that results be returned from the
Oracle interface in batches, rather than tuple-at-a-time.
¢ General
e We tuned fundamental data structures extensively for speed and space:
o use of lists has been dramatically reduced, since their use tends to consume cons space, and to
result in excessive search:
o where lists must be used, care is taken to avoid excessive traversal; for example, special queue
structures are used when results must be appended to the ends of lists
e components which formerly used separate data structures have been modified to share data
structures wherever possible

All data has been collected on SUN SPARC 2 CPU with 96MB memory. Since a component of LIM
processing is due to actual execution of queries on a remote Oracle database, the times reported below are
dependent on the actual system used to support Oracle as well.

We have compared critical portions of the LIM execution profile, specifically, object creation and slot
filling algorithms, with those availble in a commercial product expert system shell. LIM, implemented in
Common Lisp and Loom, outperforms the commercial product, one written in C. Figure 1 compares the
performance of LIM with that of Nexpert Object (NO) on two query sets, showing both DB execution
and Object Creation. The database and queries were slected from a set developed in another project by

LIM Performance Comparison

November '§2

May '93 mAboxCache
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Chart 1. Comparison of LIM 1.4 performance (May ‘95) with previous realeases, and
with original data, for FMERG force module benchmark query set.

28




different staff. We used LIM’s ability to pick up and use a database schema to generate a skelton
knowledge base in a short period of time and were executing the perfomance suite of queries in under a
total of couple hours work time. While the times for LIM are approximately 25% of those for Nexpert,
that is not the whole story. The LIM query set results in the creation of almost 4 times as many objects
and sets almost 20 times as many slots as the NO query, and thus the differences in performance are even
more substantial. For example, Figure 2 compares object creations per second of DB execution time,
Figure 3 compares object creations per second of object creation time, and Figure 4 compares slots set
per second of object creation time. The differences in performance range from “only” 10:1 to almost
exactly 100:1. This is easily explained: the 10:1 ratio for object creations per second of DB execution
time does not take into consideration the much larger size of the LIM objects, nor does the 20:1 ratio for
object creations per second of object creation time. The most accurate figure is, in fact, the 100:1 figure
for slot-value sets, since this accurately reflects the total amount of data being transmitted and processed.
If the sum of DB execution time and object creation time is divided into the number of slot sets for LIM
and NO, the overall performance advantage for LIM is on the order of 70:1.
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Performance Comparison, Nexpert Object vs. LIW/IDI:
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2.3.6 Example

To illustrate the processes described in Section 2.2, we present a small, fairly simple example. Let us
presume that an application requires information about the location of various seaports. In the
USTRANSCOM databases with which we are working, information about seaports is stored in a table
called SEAPORTS, and information about geographic locations in a table called GEOLOC. The various
KB layers representing the mapping from application to DB are shown in Figure 2. Note that from a
user’s perspective, the SMKB and DB pre-exist, and definition of application concepts thus appears to be
a top-down process; however, in order to illustrate the process of defining the mappings, we will proceed
bottom-up.
The bottom panel shows a simplified tabular representation of the schema definitions for the two tables,
SEAPORTS and GEOLOC. The middle panel shows the SMKB concepts representing the two tables.
These were created by modifying the value-restrictions in the Loom definitions automatically generated
by the schema generation module. For example, the initial Loom concept definition for the portion of the
GEOLOC table shown is:

(defconcept Geoloc

tis-primitive
(:and db-concept
(:the Geoloc.Glc_cd String)

(:the Geoloc.glc_lncn Number)
(:the Geoloc.glc_ltcn Number)))

Note that role value restrictions correspond to the simple data types (e.g., string, number) that appear in
relational databases. This definition is modified by the KBA to produce the SMKB definition: |

(defconcept Geoloc J

tis-primitive ‘
(:and db-concept

(:the Geoloc.Glc_cd Geoloc_Code)

(:the Geoloc.glc lncn Longitude)

(:the Geoloc.glc_ltcn Latitude)))

For example, the role of Geoloc that corresponds to the column g1 c_cd has type string; this has
been modified in the SMKB to geoloc_code. This permits LIM to infer that Seaports and Geoloc
can be joined over their glc_cd roles.

Loom definitions for the semantic type hierarchies above the types used in Geoloc are:

(Defconcept Identifier :Is-Primitive Thing)
(Defconcept Code :Is-Primitive

(:and String Identifier))
{(Defconcept Location :Is-Primitive Code)
(Defconcept Geoloc_Code :Is-Primitive Location)
(Defconcept Measured Qty :Is-Primitive Number)
(Defconcept Degrees :Is-Primitive Measured Qty)
(Defconcept Latitude :Is-Primitive Degrees)
(Defconcept Longitude :Is-Primitive Degrees)

Finally, the top panel shows a simple application-level concept derived from information in both DB
tables. The following is the Loom concept definition for the AKB concept seaport, which was created
manually:
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(defconcept seaport
tis-primitive
(:and View-Concept
(:the primary-port-name string)
(:the lat latitude)
(:the lon longitude)))

This is mapped to the DB by making the following declarations, which are stored as assertions in the
Loom KB:

(def-db-mapping primary-port-name seaport seaports. port_name)
(def-db-mapping lat seaport
geoloc.glc_ltcn)
(def-db-mapping lon seaport
geoloc.glc_lncn)
Queries can be posed against either the SMKB or the AKB. (Note: the names used in the following
examples have been changed; we have not yet obtained permission to publish the data in our test

database.) For example, the query:

(db-retrieve (?name)
(:and

(Seaports ?port)
(Geoloc ?geoloc)
(Seaports.Glc_cd ?port 2geocode)
(Geoloc.Port_Code 2geoloc ?geocode)
(Seaports.port name ?port ?name)
(Geoloc.Country State Code ?geoloc “DP”)
(Seaports.Clearance Rail_Flag ?port “Y”)))

(“What are the names of seaports in Dogpatch that have railroad capabilities at the port?”) can be posed
against the SMKB. The SQL generated by LIM and the CIDI for this query is:

SELECT DISTINCT RV1.name
FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc cd = RVl.glc cd
AND RV2.country state_code = ‘DP’
AND RVl.clearance rail flag = ‘Y’

The values returned are:

(“Cair Paravel” “Minas Tirith” “Coheeries Town”
“Lake Woebegon” “0z”)

The query:

(db-retrieve ?port
(:and
(seaport ?port)
(primary-port-name ?port %“0z”)))
(“Return a seaport object for the port whose name is ‘Oz’”) can be posed against the AKB. The SQL
generated by LIM and the CIDI for this query is:

SELECT DISTINCT RV1.name,
RV2.latitude,
RV2.longitude

FROM SEAPORTS RV1, GEOLOC RV2

WHERE RV2.glc_cd = RVIl.glc_cd

AND RV1.name = ‘0z’
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The value returned by this query is an object whose Loom definition is:

(TELL
(:ABOUT SEAPORT59253
SEAPORT
(LON 98.6)
(LAT 3.14159)
(PRIMARY-PORT-NAME “0z”)))

2.3.7 Conclusion

We have described a View-Concept model which uses a knowledge representation language, Loom, to
define the semantic schema of a database. This definition has two levels, each of which is of utility to a
knowledge-based application. Both are based on a verbatim model of the database; for legacy databases,
this can be generated automatically from the database schema, and can be used by any knowledge-based
application which would assist a knowledge base administrator in the development of the semantic
mapping layer (i.e., a knowledge-based semantic schema).

The semantic mapping layer defines the relevant concepts supported by the database domain; in our
current knowledge bases, the semantic mapping layer adds semantic types to the automatically-generated
schema model. We envision additional information in the semantic mapping layer, including composites
of database objects which form larger conceptual structures.

Finally, the View-Concept model includes an application-specific layer that defines the mapping between
an application domain’s conceptual structures and the semantic definition of database concepts. We
believe that the structured approach embodied in the View-Concept model significantly elucidates the
knowledge-base-to-database interface problem. Further, we expect that grounding the implementation in
the IDI will support reasonable performance.

Our preliminary implementation includes algorithms for properly defining objects to determine
retrievability and updatability, as well as retrievals against a database. In the coming year, we will be
developing a more sophisticated application for the military transportation logistics domain using LIM. -
We expect feedback from this experience primarily to concern the completeness of the application
knowledge base, and to give us valuable performance data.
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3. KNOWLEDGE QUERY AND MANIPULATION LANGUAGE (KQML)

3.1 Introduction

Many computer systems are structured as collections of independent processes, frequently distributed
across multiple hosts linked by a network. Database processes, real-time processes and distributed Al
systems are a few examples. Furthermore, in modern network systems, it should be possible to build new
programs by extending existing systems; a new small process should be conveniently linkable to existing
information sources and tools (such as filters or rule based systems). The idea of an architecture where
this is easy to do is quite appealing. (It is regularly mentioned in science fiction.) Many proposals for
intelligent user-agents such as Knowbots [Kahn] assume the existence of this type of environment.

One type of program that would thrive in such an environment is a mediator [Wiederhold]. Mediators are
processes which situate themselves between “provider” processes and “consumer” processes and perform
services on the raw information such as providing standardized interfaces; integrating information from
several sources; translating queries or replies. Mediators (also known as “middleware”) are becoming
increasingly important as they are commonly proposed as an effective method for integrating new
information systems with inflexible legacy systems.

However, networks that support “plug and play” processes, are still rare, and most distributed systems are
implemented with ad hoc interfaces between their components. Many Internet resources, such as library
catalog access, “finger," and menu based systems are designed to support process-to-user interaction.
Those which support process-to-process communication, such as ftp or mosaic, rely on fairly primitive
communication protocols. The reason for this is that there are no adequate standards to support complex
communication among processes. Existing protocols, such as RPC, are insufficient for several reasons.
They are not all that standard; there are currently several successful and incompatible RPC standards
(ONC and DCE). They are also too low level; they do not provide high level access to information, but
are intended only as “remote procedure calls."

Nor are there standard models for programming in an environment where some of the data is supplied by
processes running on remote machines and some of the results are needed by other similarly distant
processes. While there are many ad hoc techniques for accomplishing what is needed, it is important that
standard methods are adopted as early as is reasonable in order to facilitate and encourage the use of
these new architectures. It is not enough for it to be possible to communicate, it must be easy to
communicate. Not only should low level communication tasks such as error checking be automatic, but
using and observing protocol should be automatic as well.

KQML is a language and a protocol that supports this type of network programming specifically for
knowledge-based systems or intelligent agents. It was developed by the ARPA supported Knowledge
Sharing Initiative [Neches 91, Patil 92] and separately implemented by several research groups. It has
been successfully used to implement a variety of information systems using different software
architectures.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is a consortium to develop conventions facilitating sharing
and reuse of knowledge bases and knowledge based systems. Its goal is to define, develop, and test
infrastructure and supporting technology to enable participants to build much bigger and more broadly
functional systems than could be achieved working alone.
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The current approaches for building knowledge-based systems usually involve constructing new
knowledge bases from scratch. The ability to efficiently scale up Al technology will require the sharing
and reuse of existing components. This is equally true of software modules as well as conceptual
knowledge. Al system developers could then focus on the creation of the specialized knowledge and
reasoners new to the task at hand. New system could interoperate with existing systems, using them to
perform some of its reasoning. In this way, declarative knowledge, problem solving techniques and
reasoning services could all be shared among systems. The ability to build, manage and use sharable and
reusable knowledge resources is thought to be a key to the realization of large-scale intelligent systems.
The definition of conventions enabling sharing among collaborators is the essential first step toward these
goals.

The KSE is organized around four working groups each of which is addressing a complementary problem
identified in current knowledge representation technology:

*The Interlingua Group is concerned with translation between different representation languages, with
sub-interests in translation at design time and at run-time.

*The KRSS Group (Knowledge Representation System Specification) is concerned with defining
common constructs within families of representation languages.

*The SRKB Group (Shared, Reusable Knowledge Bases) is concerned with facilitating consensus on
contents of sharable knowledge bases, with sub-interests in shared knowledge for particular topic areas
and in topic-independent development tools/methodologies.

*The External Interfaces Group is concerned with run-time interactions between knowledge based
systems and other modules in a run-time environment, with sub-interests in communication protocols
for KB-to-KB and for KB-to-DB.

The KQML language is one of the main results which have come out of the external interfaces group of
the KSE.

3.2 KQML

We could address many of the difficulties of communication between intelligent agents described in the
Introduction by giving them a common language. In linguistic terms, this means that they would share a
common syntax, semantics and pragmatics.

Getting information processes, especially Al processes, to share a common syntax is a major problem.
There is no universally accepted language in which to represent information and queries. Languages such
as KIF [Genesereth et. al. '92], extended SQL, and LOOM [MacGregor] have their supporters, but there
is also a strong position that it is too early to standardize on any representation language. As a result, it is
currently necessary to say that two agents can communicate with each other if they have a common
representation language or use languages that are inter-translatable.

Assuming a common or translatable language, it is still necessary for communicating agents to share a
framework of knowledge in order to interpret message they exchange. This is not really a shared
semantics, but a shared ontology. There is not likely to be one shared ontology, but many. Shared
ontologies are under development in many important application domains such as planning and
scheduling, biology and medicine.

Pragmatics among computer processes includes 1) knowing who to talk with and how to find them and 2)
knowing how to initiate and maintain an exchange. KQML is concerned primarily with pragmatics (and
secondarily with semantics). It is a language and a set of protocols that support computer programs in
identifying, connecting with and exchanging information with other programs.
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3.3 KQML Protocols

There are a variety of interprocess information exchange protocols. There is the simple case of one
process (a client) sending a query to another process (a server) and waiting for a reply as is shown in
Figure 10. This occurs commonly when a backward-chaining reasoner retrieves information from a
remote source. As it needs data, it places queries and waits for the replies before attempting any further
inferences. This case includes those where the server’s reply message actually contains a collection of

replies.
Another common
case is when the
server’s reply is not
the complete answer
but a handle which
allows the client to
ask for the
Figure 10. In this example of a synchronous components of the
communication query, a blocking query waits for reply, one at a time
an expected reply. as shown in Figure
11. A common
N\ Query =P |
~ | -——Handid [
o [Next ——pm| |
Client ' | <g§——Reply |
| Next  ———pp{
| - Reply

Figure 11. Remote server can maintain state by remembering the partial answer. Replies are sent
individually, each at the request of the client.

example of this type of exchange is a simple client querying a relational database or a reasoner which can
produce a sequence of instantiations in response to a query. Although this exchange requires that the
server maintain some internal state, the individual transactions are each the same as in the single reply
case. L.e., each transaction is a “send-a-query / wait / receive-a-reply” exchange. We refer to these
transactions as being synchronous because messages arrive at the client only when they are expected.
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A somewhat different case occurs in real-time
systems (among others) where the client
subscribes to a server’s output and an indefinite
number of replies arrive at irregular intervals in
the future, as shown in Figure 12. In this case, the
client does not know when each reply message
will be arriving and may be busy performing some

Figure 12. Asynchronous Communication
Protocol - A non-blocking subscribe request

other task when they do. We refer to these results in an irregularly spaced, indeterminate
number of incoming messages

transactions as being asynchronous.

There are other variations of these protocols.
Messages might not be addressed to specific hosts, but broadcast to a number of them. The replies,
arriving synchronously or asynchronously have to be collated and, optionally, associated with the query
that they are replying to.

3.4 The KQML Language

KQML supports these protocols by making them an explicit part of the communication language. When
using KQML, a software agent transmits messages composed in its own representation language,
wrapped in a KQML message.

KQML is a layered language. The KQML language can be viewed as being divided into three layers: the
content layer, the message layer and the communication layer. The content layer is the actual content of
the message, in the programs own representation language. KQML can carry any representation
language, including languages expressed as ASCII strings and those expressed using a binary notation.
All of the KQML implementations ignore the content portion of the message except to the extent that
they need to determine where it ends.

The communication level encodes a set
Communication g 1 pdoyoniee ofcommunicapf fea.tures to the message which o
P Logic of communication describe the lower level.comr.numcatlon
(pefformative or speech aparameters, such as the 1dent1ty of the
Cobtent of communicatiosender and recipient, and a unique
agreed upon language, e.gidentifier associated with the
KIF, KRSL, etc.) . .
communication.

The message layer forms the core of the
language. It determines the kinds of
interactions one can have with a KQML-
speaking agent. The primary function of
the content layer, the message the message layer is to identify the

layer and the communication ~ protocol to be used to deliver the

layer. message and to supply a speech act or
performative which the sender attaches
to the content. The performative signifies that the content is an assertion, a query, a command, or any of a
set of known performatives. Because the content is opaque to KQML, this layer also includes optional
features which describe the content: its language, the ontology it assumes, and some type of more general

Figure 13. The KQML
language can be viewed as
being divided into three layers:
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description, such as a descriptor naming a topic within the ontology. These features make it possible for
KQML implementations to analyze, route and properly deliver messages even though their content is
inaccessible.

Conceptually, a KQML message consists of a performative, its associated arguments which include the
real content of the message, and a set of optional arguments which describe the content in a manner
which is independent of the syntax of the content language. For example, a message representing a query
about the location of a particular airport might be encoded as: '

(ask-one :content (GEOLOC LAX (?long ?lat)) :ontology GEO-MODEL3)

In this message, the KQML performative is ask-one, the content is (geoloc lax (?long ?lat)) and the
assumed ontology is identified by the token :geo-model3. The same general query could be conveyed
using standard Prolog as the content language in a form that requests the set of all answers as:

(ask-all :content "geoloc(lax, [Long,Lat])"
:language standard prolog

:ontology GEO-MODEL3)

The syntax of KQML is based on a balanced parenthesis list. The initial element of the list is the
performative and the remaining elements are the performative’s arguments as keyword/value pairs.
Because the language is relatively simple, the actual syntax is relatively unimportant and can be changed
if necessary in the future. (The current syntax was selected because most of the original implementation
efforts were done in Common Lisp.)

The set of KQML performatives is extensible. There is a set of reserved performatives which have a well
defined meaning. This is not a required or minimal set; a KQML agent may choose to handle only a few
(perhaps one or two) performatives. However, an implementation that chooses to implement one of the
reserved performatives must implement it in the standard way. A community of agents may choose to use
additional performatives if they agree on their interpretation and the protocol associated with each.

Some of the reserved performatives are shown in Figure 14. In addition to standard communication
performatives such as ask, tell, deny, delete, and more protocol oriented performatives such as subscribe,
KQML contains performatives related to the non-protocol aspects of pragmatics, such as advertise -
which allows an agent to announce what kinds of asynchronous messages it is willing to handle; and
recruit - which can be used to find suitable agents for particular types of messages.

For example, agent B might send the following performative to agent A:

(advertise
:language KQML
:ontology K10
:content (subscribe :language KQML
:ontology K10
:content (stream-about
:language KIF
:ontology motors
:content motorl)))

to which agent B might responds with:
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(subscribe :reply-with sl
:language KQML

:ontology K10

:content (stream-about
:language KIF

:ontology motors

:content motorl))

Agent A would then send B a stream of tell and untell performatives over time with information about

motorl, as in:

(tell :language KIF
:ontology motors
tin-reply-to sl

:content (= (val (torque motorl) (sim-time 5))

(scalar 12 kgf))

(tell :language KIF

:ontology structures

tin-reply-to sl

:content (fastens framel2 motorl))
(untell :language KIF

:ontology motors

rin-reply-to sl

:content (= (val (torque motorl) (sim-time 5))

(scalar 12 kgf))

Basic query performatives:

evaluate, ask-if, ask-in, ask-one, ask-all
Multi-response query performatives:
stream-in, stream-all

Response performatives:

reply, sorry

Generic informational performatives:

tell, achieve, cancel, untell, unachieve
Generator performatives:

standby, ready, next, rest, discard, generator
Capability-definition performatives:
advertise, subscribe, monitor, import, export
Networking performatives:

register, unregister, forward, broadcast, route

Figure 14. There are about two dozen reserved
performative names which fall into seven basic
categories.

KQML Semantics. A semantic model is under
development that assumes that a KQML-speaking
agent has a virtual knowledge base with two separate
components: an information store (i.e., "beliefs") and
a goal store (i.e., "intentions"). The primitive
performatives are defined in terms of their effect on
these sores. A TELL(S), for example, is an assertion
by the sending agent to the receiving agent that a
particular sentence is in its virtual belief store. An
ACHIEVE(S) is a request of the sender to the
receiver to add S it its intention store.

The protocols that govern the allowable responses
when an agent receives a KQML message must also
be defined. These are currently defined informally in
English descriptions, but work is underway to
provide formal definitions in terms of a grammar
using the definite clause grammar (DCG) formalism.
KQML Internal Architectures KQML was not
defined by a single research group for a particular
project. It was created by a committee of
representatives from different projects, all of which
were concerned with managing distributed

implementations of systems. One was a distributed collaboration of expert systems in the planning and
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scheduling domain. Another was concerned with problem decomposition and distribution in the
CAD/CAM domain. A common concern was the management of a collection of cooperating processes
and the simplification of the programming requirements for implementing a system of this type.
However, the groups did not share a common communication architecture. As a result, KQML does not
dictate a particular system architecture, and several different systems have evolved.

Our group has two implementations of KQML. One is written in Common Lisp, the other in C. Both are
fully interoperable and are frequently used together.

The design of these implementations was motivated by the need to integrate a variety of preexisting
expert systems into a collaborating group of processes. Most of the systems involved were never
designed to operate in a communication oriented environment. The design is built around two specialized
programs, a router and a facilitator, and a library of interface routines, called a KRIL.

KQML Routers. Routers are content independent message routers. Each KQML speaking software
agent is associated with its own separate router process. All routers are identical; each is just an executing
copy of the same program. A router handles all KQML messages going to and from its associated agent.
Because each program has an associated router process, it is not necessary to make extensive changes to
each program’s internal organization to allow it to asynchronously receive messages from a variety of
independent sources. The router provides this service for the agent and provides the agent with a single
point of contact for the rest of the network. It provides both client and service functions for the
application and manages multiple simultaneous connections with other agents.

The router never looks at the content
fields of the messages it handles. It relies
on the KQML performatives and its
arguments. If an outgoing KQML
message specifies a particular Internet
address, the router directs the message to

Router it. If the message specifies a particular
service, the router will attempt to find an
Network KQML Internet address for that service and
Connections objects deliver the message to it. If the message
Network only provides a description of the content

(e.g. query, :ontology “geo-domain-3”,
:language “Prolog”, etc.) the router may
attempt to find a server which can deal
with the message and it will deliver it

Figure 15. A router gives an application a single interface to
the network, providing both client and server capabilities,
managing multiple simultaneous connections, and handling
some KQML interactions autonomously.

there, or it may choose to forward it to a
smarter communication agent which may be willing to route it. Routers can be implemented with varying
degrees of sophistication -- they can not guarantee to deliver all messages.

KQML Facilitators. To deliver messages that are incompletely addressed, routers rely on Sacilitators. A
facilitator is a network application which provides useful network services. It maintains a registry of
service names;it will forward messages on request to named services. It may provide matchmaking
services between information providers and consumers. Facilitators are actual network software agents;
they have their own KQML routers to handle their traffic and they deal exclusively in KQML messages.
There is typically one facilitator for each local group of agents. This can translate into one facilitator per
local site or one per project; there may be multiple local facilitators to provide redundancy.
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Facilitator

Network

Figure 16. A Communication Facilitator is an agent that
performs various useful services, e.g. maintaining a registry
of service names, forwarding messages to named services,
routing messages based on content, providing
“matchmaking” between information providers and clients,
and providing mediation and translation services.

When each application starts up, its
router announces itself to the local
facilitator so that it is registered in the
local database. When the application
exits, the router sends another KQML
message to the facilitator, removing the
application from the facilitator’s
database. In this way applications can
find each other without there having to be
a hand maintained list of local services.

KQML KRILs. Since the router is a
separate process from the application, it
is necessary to have a programming
interface between the application and the
router. This interface is called a KRIL
(KQML Router Interface Library). While

the router is a separate process, with no
understanding of the content field of the KQML message, the KRIL is embedded in the application and
has access to the application’s tools for analyzing the content. While there is only one piece of router
code, which is instantiated for each process, there can be various KRILs, one for each application type or
one for each application language. The general goal of the KRIL is to make access to the router as simple
as possible for the programmer.
To this end, a KRIL can be as tightly embedded in the application, or even the application’s programming
- language, as is desirable. For example, an early implementation of KQML featured a KRIL for the Prolog
language which had only a simple declarative interface for the programmer. During the operation of the
Prolog interpreter, whenever the Prolog database was searched for predicates, the KRIL would intercept
the search; determine if the desired predicates were actually being supplied by a remote agent; formulate
and pose an appropriate KQML query; and return the replies to the Prolog interpreter as though they were
recovered from the internal database. The Prolog program itself contained no mention of the distributed
processing going on except for the declaration of which predicates were to be treated as remote
predicates. Figure 19 shows an example of this together with a facilitation agent which provides a central
content-based routing service.

ask(X)

Address Routing | A"

tell(X)

Content Based (7
Routing 4

tell(X) tetl(X)

broker(ask()g gy ectise
' Brokering |

tell(X) tell(X)

broker(ask(OR vertise

Brokering [ A"

tell(X)

Figure 17. Facilitators are agents that deal in knowledge
about the information services and requirements of other
agents. They can offer services such as forwarding,
brokering, recruiting and content-based routing.
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function

KQML
Network objects

Figure 18. The KRIL is part of the application and has
access to its internals. It provides internal access points to
which the router delivers incoming messages, analyzes
outgoing messages for appropriate domain tagging and
routing, and provides application specific interface and
procedures for communication access.

It is not necessary to completely embed
the KRIL in the application’s
programming language. A simple KRIL
generally provides two programmatic
entries. For initiating a transaction there
is a send-kqml-message function. This
accepts a message content and as much
information about the message and its
destination as can be provided and
returns either the remote agent’s reply (if
the message transmission is synchronous
and the process blocks until a reply is
received) or a simple code signifying the
message was sent. For handling incoming
asynchronous messages, there is usually a
declare-message-handler function. This
allows the application programmer to
declare which functions should be

invoked when messages arrive. Depending on the KRILs capabilities, the incoming messages can be

sorted according to performative, or

Knows “Pif Q and

5BV,
export(p/2).
import(g/1).
import(r/1).

topic, or other features, and routed to
different message handling functions.

In addition to these programming
interfaces, KRILs accept different types
of declarations which allow them to
register their application with local
facilitators and contact remote agents to
advise them that they are interested in
receiving data from them. Our group has

Knows Q ‘
q(a)
export(q/1

Knows R

export(r/1)

R,

Vants to know P
- p(A.B)
import(p/2)

implemented a variety of experimental
KRILs, for Common Lisp, C, Prolog,
Mosaic, SQL, and other tools.

3.5 KQML Performance

Figure 19. This example shows the use of a facilitator to do
content-based routing allowing a set of Prolog-based agents
to work together to prove goals.

We have developed a simple performance model for KQML communication which has allowed us to
analyze the efficiency of communication and to identify and eliminate bottlenecks by tuning the software
and adding additional capabilities. For example, various compression enhancements have been added
which cut the communication costs by reducing the message sizes and also by eliminating a substantial
fraction of symbol lookup and string duplication.
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One of the serious system integration comments from BBN and ISX has concerned the execution
performance of knowledge servers. In particular, we have noticed considerable delays in communication

which have not been accounted for by normal
Reaging & decoding reply Encoding & writing reply network traffic and latency. In an attempt to
4— - understand this issue, we have developed a
Waiﬁn* ‘ performance model for communication among
‘ intelligent agents. The performance model defines
Encoding & wniting dueryelding & decodi

metrics from the standpoint of a sender and
receiver agent (see Figure 20). Performance is
Figure 20. A simple performance model for KQML | measured both with respect to the apparent

communication has allowed us to analyze the elapsed time as observed from the sender but also
efficiency of KQML-based communication and to | from the perspective of the receiver. For example,
eliminate bottlenecks. in a simple test, the sender sends a message to the

receiver and subsequently receives a reply. For the
sender, there is write time to actually write the message on the communication channel, wait time while
the receiver actually processes the message and read time once the reply has been sent and is available to
be read. Similarly, for the receiver, there is the time to actually read the message from the sender, process
or execute the message and the time to actually write the message back to the receiver. In a simple test
where the sender sent a short coded message to the receiver for the receiver to reply with an already
constructed message, we observed excessive elapsed times for large responses. We derived our sample
set of messages from the set of messages passed among the knowledge server and an agent in the
Common Prototyping Environment that we had collected previously. It appeared the read time of the
sender was 2-3 times greater than the write time for the receiver. Lucid Common Lisp’s implementation
of TCP/IP streams uses the Lucid multi-tasking environment, and, since the scheduling of tasks is non-
preemptive, the task which handled the sender’s reading of the response was getting every third time slice
of the Lucid task scheduler. The specific times observed were due to the setting of the time slice interval,
i.e., the sender was only reading one half to one third of the time and was otherwise not occupied. We
have begun developing operational strategies to cope with the Lucid scheduler and have introduced a
communications switch which manipulates the time slice setting so that one can choose rapid I/0O with
almost no time delay with near lock out of other processing or choose normal I/0 with moderate time
delay.
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Figure 21. KQML performance for small messages was dominated by
wait time introduced by the Common Lisp task scheduler. Eliminating
extra wait time reduces message turnaround time for agent A from
717ms to 63 ms. A small reply is one which consists of approximately
100 bytes.

factor of 1.5-2.

Figure 21 shows the case
for small messages in
which the sender has an
excessive wait time even
though both the sender and
receiver spend little time
actually doing and I/O. The
wait time of the sender is
nearly determined by the
333ms time slice of the
Common Lisp task
scheduler. By eliminating
the excessive time slicing,
we reduced the wait time
considerably. In Figure 22,
for larger messages which
cannot be all read within on
time slice, the observation
is that the sender spends
more time reading what the
receiver sent by about a

We have tested a direct Reading and decoding reply

Encoding & writing repty

compression technique for
KRSL query and object
instance response forms. The

Waiting |

compression technique is a .

simple dictionary coding
scheme for S-expressions, it is
similar to “hash consing”
where a given sub-expression
appears exactly once in the
input stream and is otherwise
referenced from the code
dictionary. Initial experiments
indicate that the redundancies
present in KRSL object forms
for force modules, e.g.,
repetition of slot names filled
by the same value, occur less

Encoding & writing query Reading. and decoding query
Agent A sends small query to Agent B and receives 16K byte reply.
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Figure 22. Performance for larger messages is dominated by Common
Lisp I/0 processing which accounts for almost all of the read time. For
uncompressed messages, performance has been improved by up to a
factor of 2. Compression further reduces the read time for the agent.

Round Trip: 2957 ms
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frequently than expected. A simple coding technique which codes only Lisp symbols seems to be most
effective in terms of encode-decode time and space performance. This reduces the number of times the
Lisp reader does a symbol lookup in a given package to one. This is appears to be the significant
component of read-write performance for handling KRSL forms. We believe that this approach will very
quickly lead to performance that BBN achieved special purpose communication code within their
CRONUS product. Our version is relatively straight forward Lisp code that can be shared with the
Planning Initiative. Initial performance measurements indicate between a 2 and 5 fold improvement. As
the compression technique both reduces the message size for highly redundant messages and eliminates
some of the excess Common Lisp I/O time, the actual performance improvement is subject to the
structure and content of the messages. In our test set, we have used KRSL messages collected from actual
message sets involving Force Modules. Since they are highly redundant, the results for compression are
about as good as one would expect to see.

KQML Thruput
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Figure 23. KQML throughput for local networks and the internet.
Compression leads to sustainable rates of 25KB/sec for messages of 150KB
to over 2MB. Uncompressed messaging is dominated by Common Lisp i/o
time.

3.6 Lessons Learned

This Section has described KQML -- a language and associated protocol by which intelligent software
agents can communicate to share information and knowledge. We believe that KQML, or something very
much like it, will be important in building the distributed agent-oriented information systems of the
future. One must ask how this work is to be differentiated from the work in two closely related areas --
distributed systems and distributed Al
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KQML and Distributed Systems. There has been considerable good work involving distributed systems
theory and practice in the past decades. This is also true for this work as it relates to distributed
information systems such as distributed databases and distributed object systems. We feel that what
KQML offers is an abstraction of an information agent (provider or consumer) at a higher level that is
typical in other areas of Computer Science. In particular, KQML assumes a model of an agent as a
knowledge-based system (KBS). Although this will not seem to be surprising or profound in our Al
community, it is a significant advance (we hope!) for the general CS community. The KBS model easily
subsumes a broad range of commonly used information agent models in use today, including database
management systems, hypertext systems, server-oriented software (e.g. finger demons, mail servers,
HTML servers, etc), simulations, etc. Such systems can usually be modeled as having two virtual
knowledge bases -- one representing the agent's information store (i.e., beliefs) and the other representing
its intentions (i.e., goals).

We hope that future standards for interchange and interoperability languages and protocols will be based
on this very powerful and rich model. This will avoid the built-in limitations of more constrained models
(e.g., that of a simple remote procedure call or relational database query) and also make it easier to
integrate truly intelligent agents with simpler and more mundane information clients and servers.

In addition to having something to offer, KQML also has something it seeks from distributed systems
work -- the right abstractions and software components to provide basic communication services. Current
KQML-based systems have been built on the most common transport layers in use today -- TCP/IP and
EMAIL. The real contributions that KQML makes are independent of the transport layer. We anticipate
that KQML interface implementations will be based on whatever is seen as the best transport mechanism.

KQML and Distributed AL The contribution that KQML makes to Distributed Al research is to offer a
standard language and protocol that intelligent agents can use to communicate among themselves as well
as with other information servers and clients. We believe that the flexibility afforded by KQML
permitting agents to use whatever content language they like will make it appropriate for most DAI
research. In designing KQML, our goal is to build in the primitives necessary to support all of the
interesting agent architectures currently in use. If we have been successful, then KQML should serve to
be a good tool for DAI research, and, if used widely, should enable greater research collaboration among
DALI researchers.

KQML and the Future. The ideas which underlie the evolving design of KQML are currently being
explored through experimental prototype systems which are being used to support several testbeds in
such areas as concurrent engineering [Cutkowski, McGuire, Tenenbaum, Kuokka], intelligent design
[Genesereth] and intelligent planning and scheduling. We have also used KQML, for example, to support
the interchange of knowledge among a planner, a plan simulator, a plan editor and a knowledge server,
which is the repository for the shared ontology and access point to common databases through the
Intelligent Database Interface [McKay, Pastor].

We have developed a simple performance model for KQML communication which has allowed us to
analyze the efficiency of communication and to identify and eliminate bottlenecks by tuning the software
and adding additional capabilities. For example, various compression enhancements have been added
which cut the communication costs by reducing the message sizes and also by eliminating a substantial
fraction of symbol lookup and string duplication.
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4. KNOWLEDGE SERVER ARCHITECTURE AND EXAMPLES

4.1 KQML as a Knowledge Server Language

4.1.1 What is an Agent Communication Language?

A wide variety of systems, languages, frameworks and standards efforts are associated with software
agents; this is due in part to the vagueness of the term "software agent.” In this section we attempt to tease
apart these approaches, and show how KQML relates to each of them. We divide agent technologies into
two broad categories: agent languages and coordination protocols.

The agent languages category comprises all languages that can be used to implement software agents.
Virtually any programming language can be used for software agent development. One class of languages
that has gained much attention lately is the so—called scripting languages, especially those designed for
mobile programs. Languages like Tcl/Tk, Java, Telescript, etc., offer the advantage of a level of
abstraction that seems particularly attractive for the development of software agents. We place them
under the agent languages rubric, because they can be used to program software agents. We distinguish
them from agent communication languages though because they are designed primarily to control
processes on a single platform. To the extent that these languages contain communication primitives
tailored to agent development, they are largely concerned with the transportation of a single agent from
one machine to another.

In contrast, agent communication languages are designed specifically to describe and facilitate
communication among two or more agents. Three broad sub—categories may be identified under the
label of agent communication languages: models of human communication, theoretical frameworks, and
communication languages for software agents. Human communication is traditionally modeled in terms
of speech act theory. Considerable work has been done ( e.g., Cohen and Lesveque, Singh) to capture the
assumptions and conventions of interaction between human agents and subsequently translate them into
workable paradigms for the development of their artificial counterparts. Often, such work leads to
theoretical frameworks for artificial agents with human—like capabilities. Such frameworks attempt to
account for all aspects of the internal state of an artificial autonomous agent, with a particular attention to
how this state changes as the agent interacts (and/or communicates) with the world or with other agents.
Sometimes, as in the case of Agent Oriented Programming, those frameworks may evolve into
implemented software systems. In contrast, agent communication languages (ACL) are concerned strictly
with the communication between such computational entities. An ACL (the sub—category that includes
KQML) is more than a protocol for the exchange of data, because an attitude about what is exchanged by
the agents is also communicated. An ACL may be thought as a communication protocol (or a collection
of protocols) that supports many message types.

The other main class of software agent technologies is that of standards and coordination protocols.
CORBA, ILU, OpenDoc, OLE, etc., are efforts that are often promulgated as solutions to the agent
communication problem. Driving such work is the difficulty of running applications in dynamic,
distributed environments. The primary concern of these technologies is to ensure that applications can
exchange data structures and methods across disparate platforms. Although the results of such standards
efforts will be useful in the development of software agents, they do not provide complete answers to the
problems of agent communication. After all, software agents are more than collections of data structures
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and methods on them. Thus, these standards and protocols are best viewed as a substrate on which agent
languages might be built.

4.1.2 Desiderata

In this section we identify requirements for agent communication languages. We divide these
requirements into seven categories: form, content, semantics, implementation, networking, environment,
and reliability. We believe that an agent communication language will be valuable to the extent that it
meets these requirements. At times, these requirements may be in conflict with one another. For example,
a language that can be easily read by people might not be as concise as possible. It is the job of the
language designer to balance these various needs.

Form. A good agent communication language should be declarative, syntactically simple, and readable
by people. It should be concise, yet easy to parse and to generate. To transmit a statement of the language
to another agent, the statement must pass through the bit stream of the underlying transport mechanism.
Thus, the language should be linear or should be easily translated into a linear stream of characters.
Because a communication language will be integrated into a wide variety of systems, its syntax should be
extensible. Finally, the form should be stylistically acceptable to a variety of communities, possibly
through the use of “syntactic sugar.”

Content. A communication language should be layered in a way that fits well with other systems. In
particular, a distinction should be made between the communication language, which expresses
communicative acts, and the content language, which expresses facts about the domain. Such layering
facilitates the successful integration of the language into applications while providing a conceptual
framework for the understanding of the language. The language should commit to a well—defined set of
communicative acts (primitives). Although this set could be extensible, a core set of primitives that
captures most of our intuitions about what constitutes a communicative act irrespective of application
(database, object—oriented system, knowledge base, etc.) will ensure the usability of the language by a
variety of systems. The choice of the core set of primitives also affects the decision of whether to commit
to a specific content language. A commitment to a content language allows a more restricted set of
communicative acts, because it is then possible to carry more information at the content language level.
The disadvantage of commitment to a content language is that all applications must then use the same
content language; this is a heavy constraint.

Semantics. Semantics is an issue that has often been neglected during the design of communication
languages. Such neglect is the direct result of the obscurity that surrounds the purpose and the desired
features of communication languages. Although the semantic description of communication languages
and their primitives is often limited to natural language descriptions, a well—defined semantic
description is anything but a luxury. This is especially true if the communication language is intended for
interaction among a diverse range of applications. Applications designers should have a shared
understanding of the language, its primitives and the protocols associated with their use, and abide by that
shared understanding.

The semantics of a communication language should exhibit those properties expected of the semantics of
any other language. It should be grounded in theory, and it should be unambiguous. It should exhibit
canonical form (similarity in meaning should lead to similarity in representation). Because a
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communication language is intended for interaction that extends over time among spatially dispersed
applications, location and time should be carefully addressed by the semantics. Finally, the semantic
description should provide a model of communication, which will be useful for performance modeling,
among other things.

Implementation. The implementation should be efficient, both in terms of speed and bandwidth
utilization. It should provide a good fit with existing software technology. The interface should be easy to
use; details of the networking layers that lie below the primitive communicative acts should be hidden
from the user. It should be easy to integrate or build application program interfaces for a wide variety of
programming languages, including procedural languages ( e.g., C and Lisp), scripting languages ( e.g.,
Tcl and Perl), object—oriented languages ( e.g., Smalltalk and C++), and logic programming languages (
e.g., Prolog). Finally, the language should be amenable to partial implementation, because simple agents
may only need to handle a subset of the primitive communicative acts.

Networking. An agent communication language should fit well with modern networking technology.
This is particularly important because some of the communication will be about concepts involving
networked communications. The language should support all of the basic connection types---point—to—
point, multicast and broadcast. Both synchronous and asynchronous connections should be supported.
The language should contain a rich enough set of primitives that it can serve as a substrate upon which
higher—level languages and protocols can be built. Moreover, these higher—Ilevel protocols should be
independent of the transport mechanisms ( e.g., TCP/IP, email, http, etc.) used.

Environment. The environment in which software agents will be required to work will be distributed,
heterogeneous, and dynamic. To provide a communication channel to the outside world in such an
environment, a communication language must provide tools for coping with heterogeneity and
dynamism. It must support interoperability with other languages and protocols. It must support
knowledge discovery in large networks. Finally, it must be easily attachable to legacy systems.

Reliability. A communication language must support reliable and secure communication among agents.
Provisions for secure and private exchanges between two agents should be supported. There should be a
way to guarantee authentication of agents. Because neither agents nor the underlying transport
mechanisms are infallible, a communication language must be robust to inappropriate or malformed
messages. The language should support reasonable mechanisms for identifying and signaling errors and
warnings.

4.1.3 How KQML Stacks Up

In this section, we evaluate the KQML language as it stands today, relative to our desiderata for agent
communication languages.

Form. The only primitives of the language, the performatives, convey the communicative act and the
actions to be taken as a result. Thus the form of KQML should be deemed to be declarative. The default
format for a KQML message is a linear stream of characters with a Lisp—like syntax. Although this
formatting is irrelevant to the function of the language, it makes messages easy to read, easy to parse, and
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easy to convert to other formats. The inclusion of named parameter—value pairs has several advantages:
optional parameters need not be included; KQML messages are easily converted to an object—oriented
or frame—based representation; and extensions using additional parameters are easily added. On the
negative side, some potential users find Lisp—like syntax to be undesirable.

Content. The KQML language can be viewed as being divided into three layers: the content layer, the

" message layer and the communication layer. KQML messages are oblivious to the content they carry.

Although in current implementations of the language there is no support for non—ASCII content, there is
nothing in the language that would prevent such support. The language offers a minimum set of
performatives that covers a basic repertoire of communicative acts. They constitute the message layer of
the language and are to be interpreted as speech acts. Although there is no “right’’ necessary and
sufficient set of communicative acts, KQML designers tried to find the middle ground between two
extremes: 1) providing a small set of primitives thereby requiring overloading at the content level; and 2)
providing an extensive set of acts, where inevitably acts will overlap one another and/or embody fine
distinctions. The communication layer encodes in the message a set of features that describe lower—Ilevel
communication parameters (such as the identity of the sender and recipient, and a unique identifier
associated with the communication).

Semantics. KQML semantics is still an open issue. For now there are only natural language descriptions
of the intended meaning of the performatives and their use ( i.e., protocols). An approach that emphasizes
the speech act flavor of the communicative acts is a thread of ongoing
research~[labrou94a,Smith95,Cohen95.

Labrou and Finin [labrou94a have proposed a specific framework for KQML that defines cognitive states
for agents and uses them to describe the performative and associated preconditions, postconditions and
satisfiability conditions for felicitous use. In addition, conversation policies are provided in the form of
dialogue grammars specifying additional constraints for coherent discourse.

Implementation. There are currently a number of KQML software suites that have been implemented
and are in use. These include KATS (Lockheed Martin and UMBC), KAPI (Lockheed, EIT and
Stanford), Magenta (Stanford), COOL (University of Toronto), and LogicWare (Crystaliz Inc.). Details
on these systems can be found at http://www.cs.umbc.edw/kqml/software/. These implemented systems
differ in how they measure up to our implementation desiderata. However, taken as a group, it does
appear that implementations are possible that can do well with respect to each of our criteria.

Both the Lockheed KAPI system and the Lockheed Martin/lUMBC KATS suite, for example, provide a
content—independent message router and a facilitator. Facilitators are specialized KQML agents that
maintain information about other agents in their domain, and about those agents’ query—answering
capabilities (existing versions of facilitators supply only simple registration services). The application
must provide a handler function for each performative that is to be processed by the application.

In general, it is not necessary that an application be able to handle all performatives, since not all
KQML—speaking applications will be equally powerful. Creating a KQML—speaking interface to an
existing application is a matter of providing the appropriate handler functions.

The efficiency of KQML communication has been investigated. Various compression enhancements have
been added that cut communication costs by reducing message size, and by eliminating a substantial
fraction of symbol lookup and string duplication~[finin94b.
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Networking. KQML does address most of the networking desiderata and provides, we believe, a good fit
with current networking technology. KQML has been designed to work with multiple transport
mechanisms, and implementations have been done that use TCP/IP, SMTP (email), HTTP and CORBA
objects to carry messages. KQML agents can be addressed using symbolic names, which are resolved
into transport—Ilevel addresses by agent name servers. KQML messages can be sent point—to—point;
multicasting and broadcasting are possible in any of the transport mechanisms through the use of
facilitator class agents. KQML allows both synchronous/asynchronous interactions and blocking/non—
blocking message sending on behalf of an application, through assignment of appropriate values for those
parameters in a KQML message. We have found the basic primitives to be sufficient to create agents that
offer network—oriented services, such as name servers, proxy agents and brokers. Although some work
has been done to build higher—Ilevel protocols on top of KQML, this remains as a rich area to be
explored.

Environment. KQML can use any transport protocol as its transport mechanism (HTTP, SMTP, TCP/IP
etc.). Since KQML messages are oblivious to content, there are no restrictions on the content language
(beyond the obvious requirement that a handler can be written to process the content of each type of
performative). Interoperability with other communication languages remains to be addressed as such
languages appear. One such attempt has been made by Davis, whose Agent—K attempts to join KQML
with Shoham’s Agent Oriented Programming~. The existence of facilitators in the KQML environment
can provide the means for knowledge discovery in large networks, especially if facilitators can cooperate
with other knowledge discovery applications available in the World Wide Web.

Reliability. Since KQML speaking agents might be imperfect, there are performatives (error and sorry)
that can be used to respond to messages that an application cannot process or comprehend; this provides a
crude way for an agent to respond to ill—formed, inappropriate or unwanted incoming messages. A more
general approach being considered is the development of an ontology of warnings, errors and infelicities
that would be appropriate for agents and agent communications languages. Terms in this ontology could
be used in the :content field of the rudimentary error and sorry performatives to describe the problem
encountered.

The issues of security and authentication are only beginning to be addressed by the KQML community. A
security architecture model based on data encryption techniques has been proposed for KQML. In tune
with KQML’s asynchronous nature, the model expects a secure message to be self authenticating and
does not support any challenge/response mechanism to authenticate a message after it has been delivered.
The architecture supports two security models, basic and enhanced. The basic security model supports
sender authentication, message integrity and data privacy. The enhanced security model additionally
supports non—repudiation of origin (proof of sending) and protection from message replay attacks. The
enhanced security model also supports frequent change of encryption keys to guard against cipher
attacks.

4.1.4 Summary

A good agent communication language has many needs, some of which are in competition. KQML is a
new communication language that addresses many (although not all) of these needs. The development of
KQML has been marked by an effort to balance the theoretical requirements for a sound and complete
framework against the technical demands for efficient, easy—to—use implementations.
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The inevitable compromise between the two may not result in a communication language that suits
everyone, but we believe that KQML will prove useful in a wide range of intelligent software agent
architectures. Additional information about KQML, including papers, language specifications, access to
APIs, information on email discussion lists, etc., can be found at http://www.cs.umbc.edu/kqml/ .

4.2 Agent Name Services and the Role of the Agent Name Server

We consider the problem of how agents should be named and what kind of software infrastructure is
necessary in order to locate an agent given only its name. We assume an agent environment which (1) is
dynamic with agents being created and destroyed frequently; (2) undergoes re-organizations with agent
groups and sub-groups forming and disbanding; and (3) supports agent communication by any of several
transport mechanisms such as tcp/ip, email, http and distributed object systems. This leads us to propose
the establishment of agent domains which are organized into an agent domain hierarchy. Agent name
resolution can be done by agent name servers, analogous to Internet domain name servers. One of the
additional benefits from this approach is that it easily supports the definition of proxy agents. We sketch
how this proposal would impact the KQML agent communication language and protocol and describe an
ongoing implementation of a generic KOML Agent Name Serverr and its integration into the KATS
framework.
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with respect to the message transport system. Examples of such “transport address names” would be a
structure which contains an IP address and a port number, or a URL, or an email address for the tcp/ip,
http and smtp protocols. This is a common practice in many of our primitive agent systems today.
Another approach allows agents to use one of more symbolic names and to provide some kind of
mechanism by which names can be registered and associated with their appropriate “transport address
name”. This approach is only slightly more sophisticated than the first. The name registration can be done
in any of several ways, such as hand coding the associations into all of the agents, or broadcasting the
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associations over the transport mechanism or assuming the use of “communication facilitator” type
agents.
The KQML language and protocol includes special commands (the register and unregister performatives)
by which agents can announce the symbolic names by which they wish to be known. Special agents
(commonly known as “communication facilitators™) traffic in this knowledge and provide a name
registration and resolution service. In the Lockheed Martin/lUMBC “KQML Agent Technology Software”
(KATS) architecture, this name registration and resolution is handled automatically by a generic router
sub-agent attached to each agent. From the agents perspective, all it has to do is to specify the set of
symbolic names it wished to be known by. The router sub-agent automatically contacts the local
“facilitator agent” to register the agent by its symbolic names.
For example, suppose the agent named A wants to send a query to agent B. It passes a KQML form like
(ask-one :from A :to B :content ...)
to its router sub-agent (call it r(A)). This router is responsible, among other things, for resolving the agent
name B into an address that can be given to the transport layer for delivery. In KATS, the router checks
it’s cache to see if it knows how to deliver a message to an agent named “B”. If it does, it ships the
message out. If not, it sends a KQML query to the local facilitator, asking for the address of an agent
named “B”. Upon receiving the information, it adds it to its cache and sends off the message.
There are additional wrinkles, of course, such as how to determine when a cache entry is stale and needs
to be flushed, but this describes the current arrangement.
Although this approach works quite well as far as it goes, it just does not go very far. The problem is that
it only supports communication between two agents if they both register with a common facilitator. There
are several possible solutions. All agents could use a single master facilitator, possibly located at a single
internet site protected from natural and man-made calamity. Another approach is to have the facilitators
share their registration databases. Still a third, and more general, technique involves having the
facilitators use a distributed protocol to seek out the contact information on non-local agents. We next
describe our protocol for such a distributed agent name resolution scheme.

4.2.1 Distributed agent-name resolution

In our design, we propose to organize agents into “agent domains” in much the same way that the Internet
is organized into “host domains”. An “agent domain” can be thought of as a collection of agents that are
associated with a particular set of facilitator-class agents. In particular, every agent domain must have an
“agent domain name server” (or “agent name server” or ANS for short) running. There may be other
facilitator-class agents, such as brokers, associated with the agent-domain.

Agent domains will be organized into a hierarchy. Agents will register with an ANS, as shown in figure
one. An ANS, being an agent itself, will register with a “parent ANS”, resulting in a hierarchy. Each
agent will have one or more local names. An agent can also be referred to by its “domain qualified
name”.
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One possibility we might
consider is just to “piggy-back”
on the existing Internet host
structure. For example, why not
refer to the agent “colossus”
running on the machine
“cujo.cs.umbc.edu” as
“colossus@cujo.cs.umbc.edu”
and assume a standard port for
KQML speaking agents. This
idea is attractive in that it makes
efficient use of a well thought out
and implemented architecture.
However, there are several problems which argue against this. The primary difficulty is that we do not
want to tie KQML and agent communication in general to a single transport mechanism. Current research
groups are using a variety of mechanisms to carry KQML messages -- TCP/IP, SMTP, CORBA objects,
and HTTP. We would like to continue to keep KQML flexible in this regard. A consequence of this is
that we need a general mechanism for naming agents that is independant of the transport mechanism.

Figure 24 -- Agent name servers are organized into a hierarchy
through the registration process

4.2.2 What do agent names look like?

We propose a naming scheme similar to the one used for hosts on the Internet. Every agent will have one
or more local names optionally followed by a domain qualifier. A local name can be any non-zero length
sequence of characters chosen from the character set

{a-z,A-Z,0-1,-,_,..+.#}
A domain qualifier begins with the character “.” and consists of one or more agent domain names
separated with a “.” character. Thus a fully qualified agent name has the structure:

<local name> . <domain1>.<domain2>.<domain3>...<domainN>
The following would all be valid names for an agent with the local name “colossus” registered in the
“umbc.edu.” agent domain (and assuming that it is in turn registered in the “edu.” domain which is in the
top-level “.” domain.)!

colossus

colossus.umbc

colossus.umbc.edu.
Furthermore, we propose a correspondence between the names of agent domains and agent domain
servers. Thus in the above example, agent colossus is registered with the ANS with local name umbc
which is registered with the ANS with local name edu which is registered with the global ANS. Thus, the
fully qualified name of an agent could be defined by its local name followed by a “.” followed by the
fully qualified name of its official agent name server.
A number of issues remain to be addressed, these include
e How names are resolved
o Taking names seriously within higher-level abstract protocols such as KQML
o The use of proxy agents to support and implement agent name services.

! An alternate is possible, such as one based on URLs. For example, we might choose to represent an agent using
“agent://<domain>.<domain>...<domain>/<local name> " as in the example “agent://umbc.edu.kqml/colossus”.
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4.2.3 Name resolution and Proxy Agents

We are exploring what it means to take names seriously -- agents should always communicate with other
agents using their names, and not the underlying transport addresses, if known. If you do this, some other
things fall out for free, such as proxy agents, i.e., agents which stand in for other agents, for example,
such proxy mechanisms have proved exceptionally useful in internet security as well as world wide web
operation. The same is true of intelligent agents using KQML.

As an example, suppose we have two agents A and B, both of which use facilitator F. A has proxy agent
Pa and B has proxy agent p(b). Suppose A wants to send a message to B. The following events take
place:

¢ a hands off the message to its router r(a).

e r(a) asks f for b’s address.

e fgives r(a) the address of p(a), a’s proxy.

¢ r(a) delivers the message to p(a) but the :TO field equals b.

e p(a), knowing that it is a proxy for a (possibly among others) and noticing that it has received a
message from a with the :TO field of b, understands that the message is not really intended for it, and
asks its router r(p(a)) to deliver it to b.

e r(p(a)) asks f for the b’s address.

e F gives r(p(a)) the address of p(p) -- b’s proxy).

e 1(p(a)) delivers the message to p(b) with the :TO field equals b.

e p(b), knowing that it is a proxy for n (possibly among others) and noticing that the :TO field is b,
understands that the message is not really intended for it, and asks its router r(p(b)) to deliver it to b.

e 1(p(b)) asks f for the address of b.

e frecognizes that p(b)) is b’s proxy so it gives p(b) the real address of b.

This example demonstrates the use of proxy agents for both outgoing messages and messages. The proxy
agents may do some additional processing of the messages they get, of course, like logging or traffic
analysis, etc. The scenario above is the worst case in that it assumes all of the router caches are empty.
Subsequent communications would find the caches filled, so the facilitator would not have to be involved.

Agent A will register itself with the facilitator with a
(tell :sender A :receiver facilitator :language kqml
:content (transport-address :agent A :content (snoopy.cs.umbc.edu 5501)
:language s-expressions :ontology tcp-host-port))
If agent A wants to register PA as a proxy agent for itself, it will send a
(tell :sender A :receiver facilitator :language kqml
:content (transport-address :agent PA :content (cs.umbc.edu smtpgw)

language s-expressions :ontology smtp-domain-user))

When the facilitator receives the above message, it should tag this transport address with agent A, rather
than agent PA. '

4.3 Planning Initiative Information Agent

This section describes the basic feasibility and utility of a Planning Initiaitive Information Agent --- a
knowledge server or source capable of handling all requests for information in the transportation planning
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domain. We have built a knowledge server prototype which involved the integration of the three
knowledge-base/data-base projects: LIM, SIMS, and CoBase, and focused upon the data and information
collected for the “Tunisia Scenario”. The prototype also tested the robustness of its three component
systems in a realistic information environment. It is anticipated that the performance of tasks in the
transportation planning domain will require access to data stored in a multiplicity of databases, by people
(or computer systems) unfamiliar with their specific structure and contents. It is thus necessary to provide
for the possibility of retrieving required data using a uniform language, independently of where the data
is actually located and how complicated the actual process of retrieving it may be.

The LIM, SIMS, and CoBase systems currently address separate aspects of this problem. This prototype
united them into one system that:

accepted a query in an extension of the Loom language,
relaxed the query, if appropriate, to enable retrieval of additional information of relevance to the
user,

e planned a series of queries to databases and data manipulations that
brought about the retrieval and/or computation of the

requested data, and finally _

e execute the plan, issuing the necessary queries to the appropriate databases, and returned the

resulting data to the user

4.3.1 Technical Approach

LIM, SIMS, and CoBase have been combined in various ways, including both a single Common LISP
imageand a client/server architecture in which the LIM server was at a remote site. shared one Loom
model of the application domain (the Tunisia Scenario) and the (Oracle) databases. Queries were
submitted in the Loom language, extended by the approximation operators proposed by the CoBase
project. CoBase translated the user’s query into one in the standard Loom language. SIMS broke down
the resulting query into a series of LIM queries (again in the Loom language), each restricted to a single
databases. The databases will be automatically accessed over a network, using the LIM/IDI database
interface.

Cooperative query answering was accomplished by CoBase in two ways. First, the user is able to specify
explicit relaxation operators in the query. The operators were syntactically transformed to change a
cooperative query into a standard LOOM query. Second, if no answer was found, CoBase as directed by
the user applied the type abstraction hierarchy and query modification to derive approximate queries that
were answered in place of the original query. The modification process consists of query specialization
and generalization.

The standard LOOM language was extended to allow explicit cooperative operators and user control over
query modification. The explicit operators provided included “approximate”, “near-to” and “similar-to”.
Control operators include “relaxation-order” and “not-relaxable”.

The SIMS planner transformed the new semantic query (thus named to stress that it is phrased in high-
level domain-model terms, not necessarily referring explicitly to any specific databases or relations) into
a series of operations. The operations may consist either of LIM queries directed at individual databases,
or of knowledge manipulations performed by the Loom system.

Each LIM query was processed, the relevant database identified and the query translated into an SQL
query (or queries) for that database. A graphical user interface was provided to show a trace of the
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various stages of a semantic query’s relaxation, modification and processing by the system. The interface
will support the inspection of the inputs and outputs of each of the components mentioned above. If
desired, it will be possible to circumvent the interface entirely, simply handing the system a query and
receiving the desired data in return. This is necessary for the case where the system is utilized by a
computer program, €.g., a planner. The interface will be developed by the CoBase project team based on
the existing SIMS interface, and with help from the SIMS project.

4.3.2 LOOM Interface Module

Intelligent information systems, the integration of artificial intelligence and database technologies,
promises to play a significant role in shaping the future of computing. The motivations driving the
integration of these two technologies include the need for

access to large amounts of shared data for knowledge processing,
e efficient management of knowledge as well as data, and
intelligent processing of data.

In addition, AI/DB integration at Lockheed Martin Defense Systems is motivated by the desire to
preserve the substantial investment in most legacy databases prevalent in the military logistics arena. To
that end, a key design criterion was that our integration technology support the use of existing DBMSs as
independent system components. The development of large-scale, heterogeneous, distributed intelligent
systems for military transportation planning involving a number of discrete cooperating agents has led to
a need for persistent storage of knowledge to permit knowledge sharing among those agents and
conventional legacy applications. Thus, intelligent systems require access to the actual database structures
used regardless of the underlying implementation but translated into structures more amenable to
knowledge-based processing. Finally, one key measure of the impact of the overall initiative will be the
impact on extending the information structures used for, and retained by, the military logistics planning
community resulting in a general need to retain the results of knowledge-based processes for the long-
term.

LIM, the LOOM Interface Module[Pastor 1994, Pastor 1992], is being developed in the context of
supporting military logistics planning for the United States Transportation Command, which is
responsible for planning large-scale movements of troops and materiel. The current planning system is a
70s-vintage batch-oriented system that uses large, heavily-encoded records; the plan for even a moderate-
sized operation is enormous, with some containing hundreds of thousands of records, effectively
precluding any purely memory-resident storage scheme. The system has recently been extended to use a
relational database in place of flat files for some applications, and in some cases, object oriented
databases. The designers of the relational DB schema were constrained by a need to adhere fairly closely
to the original data format for the plan records, since the planners are quite familiar with the current
structure of the data. Our project is thus faced with the task of interfacing a knowledge representation
system to a collection of legacy databases that lack a coherent semantic schema. There is also a need to
share data and knowledge structures derived by one among a group of intelligent systems with other
systems.
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LIM uses a view concept model of the application and data domains stated in a high level language
(KRSL) and implemented on top of the LOOM knowledge representation system. The view concept
model is an extension of the view object model [Wiedehold 1986]. Using LIM, an information agent (see
Figure 25) has been built which mediates between knowledge structures defined for use by the intelligent
system components being developed and demonstrated as a part of the Planning Initiative. This
information agent responds to queries and other commands which operate upon knowledge structures and
translates them to the appropriate target system, e.g., SQL queries and data manipulation commands. This
information agent has been used to support experimental representations of transportation assets (e.g.,
planes and ships), geographical locations (e.g., airports and seaports) as well as transportation relevant
information about forces and transportation schedules. This LIM information agent is used in conjunction
with the CoBASE and SIMS systems described elsewhere in this article to provide a flexible and
distributed cooperative intelligent information agent for transportation data which can be accessed at each
of these interface points. If only mediation to shared representations is desired, the LIM information
agent can be accessed directly; if information access planning is required the SIMS agent can be
accessed; finally, if cooperative processing is desired, CoBASE can be used at the point of contact. All
three systems can be accessed independently depending on the desired functionality. The Knowledge
Query and Manipulation Language (KQML 1994) is used to support this level of communication
transparency.

LIM has been used within the Planning Initiative in several experimental prototypes demonstrating
intelligent systems technology. The most recent is an experiment conducted over the internet involving
agents at Lockheed Martin, USC ISI and UCLA. The demonstration uses information access queries
deemed important by end users of current planning system prototypes which, in part, involved answering
transportation related questions via a map interface. While LIM has demonstrated considerable
functionality required for intelligent access to databases, key challenges of providing efficient access

SIMS (USC ISl
CoBARALRLA)

LIM Information Agent

GaRgratve
AQegssing for
Approximate
Queries

CPE Agent

scﬁiﬂ?
) cumpdlient

Component

Figure 25. LIM Information Agent. LIM provides domain relevant
representations of transportation assets and other resources in a high-level
representation. It mediates between the storage structures and the
representations used by other intelligent agents.
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mediated via large and complex knowledge structures are still of paramount concern. We have developed
several versions of the system and have performed extensive performance evaluations and improvements
throughout the development of LIM. For example, initial tests conducted using large knowledge
structures accessed via LIM required significant processing time which have subsequently have been
reduced to nominal execution times. LIM overhead over and above database execution time has been
measured at about 40%. In addition, the development and attachment of intelligent system models and
advanced representations (e.g., defaults and semantic constraints) required for information modeling are
still under active development. The current system is implemented in Common Lisp, however, the
methods and techniques are 1) applicable to system development methodologies using commercial tools
such as the SNAP development system from Template Software or 2) reimplemented on a ad hoc custom
basis in C++.

4.3.3 Cooperative Information Access Research at UCLA

(Note: This section provided by Wes Chu of UCLA)

In conventional databases, if required data is missing, if an exact answer is unavailable, or if a query is
not well-formed with respect to the schema, the database just returns a null answer or an error. An
intelligent system would be much more resourceful and cooperative, permitting conceptual level queries
(containing concepts that may not be expressed in the database schema) when the user does not know the
precise schema, providing approximate answers when some data is missing, or even volunteering
associative (relevant) information to the query answer.

In ARPI, we have developed Cooperative Query Answering Facility (CoBase) to support such
information access. CoBase provides intelligent access to heterogeneous knowledge and data sources.
This includes approximate answers when exact answers are not available, summary answers grouped
together by category, and answers to high-level conceptual queries [Chu:93,Chu94].

Cooperative answers can be provided by rewriting the query to add variables to the query vector which
carry relevant information to the user [Cuppens:88. The rewrite is not a generalization of the query,
rather, it extends the query to provide more information. Motro [Motro:88] proposes allowing the user to
select the direction of relaxation and thus to indicate which relaxed answers may be of interest. All the
above approaches are rule-based, lack of a systematic organization to guide the query transformation
process, thus are difficult to scale up.

In ARPI, we have been developing the concept of Type Abstraction Hierarchy (TAH) [Chu94] to provide
a structured and scalable approach to query modification and explicit cooperative operators for query
relaxation.

TAH provides multilevel object representation which is not captured by the conventional semantic
network and object-oriented database approaches for the following reasons: grouping objects into a class
and grouping several classes into a super-class only provide a common “title” (type) for the involved
objects without concern for the object instance values and without introducing abstract object
representations. Grouping several objects together and identifying their aggregation as a single (complex)
object does not provide abstract instance representations for its component objects. Therefore, an object-
oriented database deals with information only at two general layers: the meta-layer and the instance
layer. Since forming an object-oriented type hierarchy does not introduce new instance values, it is
impossible to introduce an additional instance layer. In the Type Abstraction Hierarchy, instances of a
super-type and a sub-type may have different representations and can be viewed at different instance
layers. Such multiple layer knowledge representation is essential for cooperative query answering.
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Further, we have developed algorithms to automatically generate TAHs based on database instances
[Matthew:93,chiang:94], which is important for supporting systems with large databases.

The cooperative operations consist of the following three types: context-free, context-sensitive, and
control. For context-free operations, “approximate” operator relaxes the specified values within the
approximate range predefined by the user; “between” operator specifies the interval for an attribute, and
“within” operator specifies a set membership for an attribute value. For context-sensitive operators,
“near-to” is used for specification of geographical nearness; “similar-to” is used to specify a set of objects
semantically similar to the given object. It is a multiple attribute operator with a weight assigned to each
of the attributes. The attributes may be also be expressed in non-numerical values for specifying the
similarity abstractions. For control operators, “relaxation-order” specifies the order of the relaxation;
“not-relaxable” specifies the attributes that should not be relaxed; “preference lists™ specify the preferred
value of the given query conditions; “unacceptable lists” allow users to inform the system not to provide
certain answers; and “alternative TAHs” allows users to use the TAHs of their choices.

When an approximate answer is returned, the user may wish for an explanation of how the answer was
derived, or may be presented with an annotated relaxation path. A context-based semantic nearness will
be provided, allowing the system to rank the approximate answers (in order of nearness) against the
specified query. A user is able to construct his own TAH of any attribute, tuples, or types and is also able
to modify the existing TAH in the knowledge base (KB). There is a directory/dictionary of KB that
specifies all the available TAHs in the system.

The policy for relaxation control depends on many factors, including user profile, query context, control
operators, relaxation level, and the number of answers, as well as rules to combine these factors over

multiple attributes.

A Relaxation Manager combines these rules via certain policies (minimizing search time or nearness, for
example) to restrict the search for approximate answers.

Often it is desirable to provide additional information relevant to, though not explicitly stated in, a user’s
query. For example, in finding the location of an airport satisfying the runway length and width
specifications, we provide additional information about the runway and weather conditions so that this
additional information may help the pilot select a suitable airport to land his aircraft. CoBase employs a
case-based approach to build a case library of associative links and their terminations among the
attributes of previous queries. When a new query is processed, similar query cases and their associative
links are retrieved from the case library and modified to provide additional and relevant information to
the new query [Fouque:94]. CoBase stemmed from the Transportation Planning application, which
requires querying a large number of databases with different schemas. It has also been implemented on a
knowledge-based medical image database, which provides approximate answers to medical queries
[Chu:93a].

4.3.4 The SIMS Project at USC/ISI
(Note this section supplied by Yigal Arens and Craig Knoblock of USC ISI)

The Problem
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Much productivity is lost today due to the inability of people in business, the military, industry, and
academia to identify and access some of the varied stores of information that exist and may be of use in
the performance of their tasks. Even when needed information sources are found, the effort — and hence
cost — that must go into dealing with the different organizations, access and query languages, and
different data formats can be enormous. For example, an intelligence analyst may need information about
a plane suspected of being involved in drug transport. Information about plane ownership can be found in
one database, controlled and maintained by one agency; information about pilot identity and flight plans
filed may be found elsewhere; and information about airports and landing strips in areas of interest are
located elsewhere yet. Furthermore, the data in different sources may require the use of different keys for
identification of the same people or objects and may use different encoding standards. Collecting all the
necessary information will require a large amount of effort that would simply be taken away from more
productive analysis tasks. Often, the difficulties involved will mean that potentially helpful information
will just not be found.

The problem is that locating, retrieving and combining information is an arduous task. Even if one knows
where all information that may be relevant to one’s task is stored — and that is not typically the case —
different information sources organize their data differently, require different access and query languages,
and use different formats for what is stored in them. The recent government initiative on the National
Information Infrastructure will make even greater amounts of information available over electronic
networks. The problem of providing access to heterogeneous, distributed information sources must be
solved to take advantage of the NII — or even just to make full use of the numerous databases that already
exist within even moderately large organizations. Today, people build specialized applications to handle

“Anywhere” Information Automatic Planners

Retrieval

Decision Support

Figure 26. The SIMS architecture supports multiple information sources
and requestors for anywhere information retrieval, decision support and
automatic planning.

62




their specific tasks because general tools for integrating and processing information do not exist.

SIMS attempts to solve this problem in its most general form. It is an information mediator that provides
an interface between human users or application programs and the information sources to which they
need access, locating and integrating information from distributed, heterogeneous sources. SIMS accepts
queries in a uniform language, independent of the distribution of information over sources, of the various
query languages, the location of information sources, etc. SIMS determines which data sources to use,
how to obtain the desired information, how and where to temporarily store and manipulate data, and how
to maintain an acceptable level of efficiency in performing its task.

The Approach .
In contrast to the standard approach to this problem — building custom systems — SIMS applies and

extends a variety of Al techniques and systems to build an intelligent and dynamic interface to the
information sources.

SIMS starts out with a model of its domain of expertise, which defines the terminology for querying it, as
well as models of all information sources that are available to it. The domain model includes class
descriptions, subclass and superclass relationships between classes, roles for each class, and other
domain-specific information.

The SIMS project has developed modeling techniques that enable information sources and their
characteristics to be described in sufficient detail to permit decisions to be made automatically by the
system concerning which information sources should be accessed, when and how. The information
source models describe both the contents of the information sources and the relationship between those
models and the domain model — i.e., how the classes of objects contained in an information source fit into
the general domain model. For each information source the model indicates the data-model used, query
language, network location, size estimates, etc., SIMS' models of different information sources are
independent, greatly easing the process of extending the system.

Queries to SIMS are also expressed in Loom . They are composed using a vocabulary of general terms in
the domain (as defined in the domain model), so there is no need to know or even be aware of the
different terms or languages used in the underlying information sources.

The SIMS project has extended Al planning techniques to translate the domain-level query into a series
of queries to the underlying information sources. The planning component first selects information
sources to be used in answering a query. It then orders sub-queries to the appropriate information sources,
selects the location for processing intermediate data, and determines which sub-queries can be executed
in parallel.

The SIMS project has extended Al learning research to support a learning component: information about
the contents of accessible information sources is collected in the course of executing queries against
them. This information is abstracted in the form of semantic rules, which are later used to improve the
efficiency of the plans generated to satisfy new user queries.

Change to and addition of information sources is handled by changing or adding models only. The
changes will automatically be considered by the planner in producing future plans that utilize information
from the modified sources. This greatly facilitates extensibility. SIMS can currently handle Oracle and
MUMPS databases, Loom knowledge bases, and certain programs. In principle the SIMS approach
supports access to databases, knowledge bases, and even application programs with simple input/output
behavior. We are currently extending the variety of information sources supported. All models used by
SIMS are written in the Loom language [MacGregor 88, MacGregor 90].
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4.3.5 Information Agent Lessons Learned

The system described above has operated in single module form where each of SIMS and CoBASE have
LIM loaded into the same Common Lisp program, independently using LIM as a server remotely over the
network (local or internet) and together in an architecture where SIMS acts both as a server to COBASE
and as a client to multiple LIM-based knowledge agents available on the network in a mixture of local
and internet configurations. The combined system was demonstrated at the San Antonio Planning
Initiative Workshop on February 237d, 1993 and a demonstration using all the components as separate
processes on the internet was demonstrated at the Tucson Planning Initiative Workshop in February,
1994. '

The basic issue addressed in all of the above work is the actual running of demonstrations in a reliable
and repeatable manner. This goal forces one to pay attention to details of normal operations including
performance and documentation. Further, without the attempt to integrate, some issues would have not
been identified as described above in the preceding Sections.

The CoBASE system has evolved to the point where such distributed operation is the normal operational
mode. As demonstrated at the 1995 ARPA Software Systems Symposium, the COBASE system has
evolved to where the use of multiple layers of distributed information agents is a profitable manner in
which to pursue university research.

The SIMS system has placed some unexpected requirements upon communication API’s which are
important to note. See also the description of KQML performance issues in Section 3.5 and Section 3.6.
SIMS partitions a single query into a set of queries to execute on multiple target information and data
resources. The current implementation of SIMS in Common Lisp utilizes a multi-tasking approach, i.e.,
multiple Common Lisp tasks within the same Common Lisp UNIX process implement parallel problem
decomposition, solving and database execution. In part, this means that there are several overlapped
executions of LIM to access different databases satisfying a single SIMS query. Significantly, LIM and
the underlying Intelligent Database Interface implementations are able to be executed in this multi-
threaded manner. In previous configurations of SIMS, LIM was executed in this multi-tasking manner
from a single running Common Lisp program. However, the Lockheed Martin KQML implementation
had not been developed assuming that an application might be implemented using multi-tasking in
Common Lisp. We believe this to be true of other KQML implementations as well.

The Lockheed Martin KQML implementation currently utilizes a connection oriented protocol, i.e., TCP
streams. In order to facilitate interaction over the internet and avoid unnecessary and potentially time
consuming connect establishment for each KQML message, we introduced a connection cache into our
implementation of KQML. When SIMS attempted to execute multiple requests in parallel, given the
Lucid Common Lisp implementation of TCP/IP, a single connection attempt to a remote agent could be
interrupted by the Common Lisp scheduler and inadvertently hand control to a competing SIMS subtask.
The effect is a resource contention over the connection cache leading to indeterminate or errorful results,
e.g., connections associated with the wrong information resource. To address this problem, we have
developed a version of the Common Lisp KQML implementation which protects this and other critical
resources from scheduler interruptions, i.e., they are now identified as critical sections.
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5. KAKEE TIE

ISX and Mitre developed a TIE and demonstration for the February, 1994 ARPI Workshop involving a
use of the CPE and knowledge server for use by the FORMAT force module composition and editing
systems. The FORMAT system makes different performance demands upon the knowledge server, LIM
and the databases. FORMAT acts like a batch system in that it loads all force module descriptions from a
TPFDD first, in part, to enable display to the end-user. In addition, FORMAT provides additional
structural information over and above the information represented in a TPFDD force module
representation and must store this information in TPFDD record comment fields. The update process is
done for all force modules as a complete rewrite.

The batch-oriented processing is distinctly different than the ad hoc (or real-time) oriented query
processing required for other systems such as COBASE or SIMS. For either of these systems, there are
many queries which must be processed, but, the other system pays some attention to the amount of
information that is being returned to the user. This is typically constrained via some aspect of the user
interface or querying system, aka a limited region query from CoBASE. While we have handled queries
within the Infrastructure Prototype effort, e.g., requests for force modules required for support and
sustainment planning in the FMERG system, and addressed performance issues, e.g., reduced operating
time from several hundreds of seconds for a total run down to about a minute, the additional attributes
and different force module structures utilized by FORMAT are about 10x more complex. This results in
over 700 force module instances created and about 60,000 attribute value sets within those instances. The
total execution time for this query set as of May 1994 was on the order of ten minutes; current execution
time (LIM 1.4) is approximately 1 minute 25 seconds. The improvement in performance from the original
runs of the KAKEE query set can be seen in Chart 2, in which it is also evident that the improvement has
been proportional to the size of the result. Improvements in performance over the past year can be seen
more clearly in Chart 3, in which the scale has been expanded to make the distinctions among the timings
more apparent.
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7. PLANNING INITIATIVE REVIEW

Lockheed Martin served on the Planning Initiative working group in preparation for the subsequent Phase
III BAA. These were our significant inputs.

7.1 Missed Opportunities

o agent-oriented planning and scheduling architectures

More emphasis needs to be placed on developing planning and scheduling system components in an
agent framework (such as that enabled by the ARPA Knowledge Sharing Initiative) so that mixed
initiative, incremental, iterative, reactive and dynamic planning and scheduling systems can be
developed. This is a key part to enabling the actual development of the visionary architecture and demo.
The research being sponsored by ARPA within the KSI and DAI communities should be encouraged to
contribute to a Common Integration Environment which subsumes the notions of a Common Prototyping
Environment and Common Tools Environment.

An agent environment which equally supports mixed initiative interactions of human and computer-based
agents alike is required. '

Recommend explicitly soliciting work which builds on other ARPA initiatives and cooperative efforts to
build a mixed initiative demo system out of existing P components. And, encourage the development and
running of such a system over the Internet including the existence of firewalll machines, etc.

Note: There has been a fundamental miscommunication about what the prototype developers want and
what they get from the PI. The prototype developers want tools or components that can participate in an
overall system which is inherently “person in the loop” (aka mixed initiative), “person in control” and
reacts well to a constantly changing data environment. The CPE has delivered components which work in
a single lock-step flow (a unidirectional pipe). I believe the design and the expense of the communication
infrastructure for the CPE encourages this lock-step flow. The message from the scenario dramas and the
domain experts, in part because of the use of tidy process models reminiscent of the “waterfall s/w
development model”, is that a total (i.e. THE TOTAL) system is desired. We missed emphasizing all of
the “ooops” and change notice postings in the scenarios which would have led immediately to the mixed
initiative problem as being a high priority area two years ago. So, now we have TARGET which really
cries out for the incremental tools and the PI that has stand alone systems (for the most part), or,
successfully deployed incremental tools which were given poor review when integrated into the CPE
because they were unable to be used in the incremental fashion in which they were intended (e.g., TMM).

o Lack of a realized Visionary Architecture

Encourage the development of a running Visionary Demo as the output of a two to three month ‘summer
workshop’ to be hosted at some university site or institute. Participants should include mostly graduate
students from the Tier 1 research community who can integrate their systems. The effort should be led by
either a visionary end-user with a constrained planning and scheduling problem, or, someone from a
government lab. Think of this as a “skunk works” for the PI and run them each summer.

e HCI & AMP; task manager
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The mixed initiative system model presumes a human-computer interaction model which has been
assumed by prototype developers and CPE developers and Tier 1 researchers. Clearly, for the visionary
demo to actually succeed, the right HCI modules and a task manager have to exist. Also, TARGET will
eventually fail without a more rationalized HCI manager. Requesting proposals which add one to
TARGET

e case-based planning

Encourage the submission of proposals dealing with the capture and elaboration of large case bases. CBR
for taking plans off the shelf is hindered by the lack of such qualitatively different case only for the lack
of data. The payoff for CBR is so huge in the area. Recommend the use of a CBR solution to ‘solving’
the PI NEO scenario play.

e planning and scheduling with uncertain and missing data
Planning and scheduling systems have assumed that the data for basic information is ‘perfect’ (complete
consistent, correct, ... ) and always accessible. In the real world, such is not the case. Integration with the
intelligent database effort would begin to address these issues and provide an interesting experiment to
push the planning and scheduling algorithms.

(source: Craig Knoblock - ISI; editor: Don McKay -- Lockheed Martin)

7.2 Structural Model

e Make the model effective:

Establish a “PI Technology Review Board” consisting of the Technology Providers (or representative
from each technology area), the Technology Integrator (one representative) and the Demonstration
Developer (one or two representatives). The charter of the group is to identify technology transition and
insertion opportunities on an ongoing basis as well as to identify to the PI as a whole the requirements for
technology transition and insertion. The Technology Integration should be the chair and report to PI
program management on progress. Another way to think of this is as a continuing SWAT Team A/B or as
a continuing focus group on technology transition and insertion. Within the BAA, if this recommendation
were used, include the suggestion to include funding for such participation in PI community activities as
options.

Note: While some might see this as the function of the TAB, the TAB is primarily for the ARPA and RL
program managers at a program level -- this PITRB is focussed entirely internal to the application of PI
technology into the CPE and prototypes developed under the PI and other ARPA programs.

e Support the model:

Foster effective collaborations and cooperation by emphasizing and giving priority to technical
integration efforts in the Phase III BAA. These should not be limited to using the current CPE—but
should include the elaboration, demonstration and evaluation of a Common Integration Environment.
Programmatically, metrics about number of technology components that can be integrated, the cost, time
and other intangibles should be readily available. I.e., innovative methods of integration which yield more
real integration and direct application of technology.

e Keep selling the model:

Almost everyone’s comments have neglected the role of the ‘Technology Provider’ in their comments,
the role of the initial working groups within the PI, or the role of the ‘Technology Integrator’. Every
research group wants direct contact with end-users, customers, etc as if that gets them access to data,
models, scenarios, etc that they can use to demonstrate their research. The charge at the Tucson workshop
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to demonstrate relevance has perhaps intensified this. The structural model was initially set up to address
the issues and problems the “chaos model” engenders. The Tier 1 areas need to be self-organizing (the
role of the “Technology Provider”) and to have an effective voice in the planning and execution of the
CPE and IFDs (the role of the “Technology Provider” and “Technology Integrator”). Everyone must be
reminded of the model and sold it by the program management and see it work effectively. I believe most
everyone suggests the “chaos model” because the Structural Model has apparently been abandoned by the
Technology Integrators, IFDs and program management.

o Keep improving the model:

Who can deny continuous improvement. PI should clearly develop this as a focus group. But, perhaps the
TRP will take care of this....

e Use the model:

Use the SDO and CPR—require that everyone contribute to it and use it. The fact that the IFDs do not use
such as a starting point and an integral part of their effort hinders subsequent technology integration.
(source: Yigal Arens - ISI; editor and second: Don McKay --Lockheed Martin)

e Technology needs to be a more visible part of the model:

Technology transfer and insertion should be the primary job of someone in the PI. There is no one who is
rewarded for such efforts. In the original statement of the program model, this was the joint responsibility
of the demonstration developer, the technology integrator and the technology providers. Transfer into a
demonstration effort is difficult and resource intensive, e.g., the demonstration environments select
hardware and software platforms which are not available to the rest of the PI because they are selected
well after most projects have had to commit, and, commercial software is not available to the research
projects.

Recommendation(s): Commit some program funds for supplemental demonstration/transfer efforts which
can be applied to fill this gap. Or, encourage the submission of options for technology transfer/insertion
in all proposals. And, measure the IFD developer on the number of technology transfer subcontracts they
let if they have proposed including such optional efforts.

(source: Wes Chu - UCLA; editor and second: Don McKay --Lockheed Martin)

@U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61113
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MS TL-5%

P.0. 30X 243456

SEATTLE WA 98L24-0346

LOCKHEED SOFTWARE TEHNOLOGY CENTER
ATTN:T MR HENSON GRAVES

ORG. 96-L0 BLDG 254E

3251 HANOVER STREETY

PALG ALTO CA 94304-LLSL

TEXAS A &€ M UNIVERSITY

ATTN: DR PAULA MAYER

KNOWLEDGE BASED SYSTEMS LABORATORY
DEPT OF INDUSTRIAL ENGINEEZRING
COLLEGE STATION TX 77843

KESTREL DEVELOPMENT CORPORATION
ATTN: DR RICHARD JULLIG

3260 HILLVIEW AVENUE

PALD ALTO CA 94304

ARPA/SISTO

ATTN: DR KIRSTIE BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

LOCKHESD 0/36-10 B7254E
ATTN: JACKY COMBS
3251 HANOVER 3TREETY
PALO ALT2 CA 34304-1191

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULBERT

MAIL CODE PT4

HOUSTON TX 77058
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SAIC
ATTN: LANCE MILLER
MS T1-5-3

PO 80X 1303 (0OR 1710 6GOODDRIDGE DR)
MCLEAN VA 22102

STERLING IMD INC.

KSZ DPERATIONS

ATTN: MARK MAGINN

BEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 134490

NAVAL POSTGRADUATE SCHOGL
ATTN: BALA RAMESH

CODE AS/RS

ADMINISTRATIVE SCIENCES DEPT
MONTEREY CA 93943

HUYGHES ATRCRAFT COMPANY
ATTN: GERRY 3ARKSDALE
P. 0. BOX 3310

BLDG 518 MS F215
FULLERTON CA 92634

SCHLUMRERGER LABDRATORY FDR
COMPUTER SCIENCE

ATTN: DR. GUILLERMO ARANGTD

8311 NORTH FM620

AUSTIN, TX 78720

MOTORGLA, INC.

ATTN: MR, ARNDLD PITTLER
3701 ALGONQUIN ROAD, SUTE 601
ROLLING MEADOWS, IL 60002

DECISION SYSTEMS DEPARTMENT

ATTN: PROF WALT SCACCHI

SCHOOL OF BUSIMESS

UNIVERSITY DOF SOQUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

SOUTHWEST RESEARCH INSTITUTE
ATTN: BRUCE REYNOLDS

5220 CULESRA ROAD

SAN ANTONIO, TX 78228~0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN2 CHRIS DABROWSKI

ROOM A266, BLDG 225

GAITHSBURG MD 20899
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EXPERT SYSTEMS LABORATORY
ATTN: STEVEN He SCHWARTI
NYNEX SCIENCE & TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLANS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT BREAUX/LODRE 252
12350 RESEARCH PARKWAY
DRLANDO FL 32826-3224

CENTER FOR EXCELLENCE IN COMPUTER-
AIDED SYSTEMS ENGINEERING

ATTN: PERRY ALEXANDER

2291 IRVING HILL RDAD

LAWRENCE K3 66049

SOFTWARE TECHNOLOGY SUPPORT CENTER
ATTN: MAJ ALAN K. MILLER

OGDEN ALLC/TISC

BLDG 100, BAY §

HILL AFB, UTAH B4056

DR JAMES ALLEN

COMPUTER SCIENCE DEPT/BLDG RM 732
UNIV OF ROCHESTER

WILSON BLVD

"ROCHESTER NY 14627

DR YIGAL ARENS

uUsc-1IsI

4676 ADMIRALTY WAY
MARINA DFL RAY CA 90292

DR RAY BAREISS

THE INST. FOR LEARNING SCIENCES
NORTHWESTERN UNIVY

1890 MAPLE AVE

EVANSTON IL 60201

DR MARIE A. BIENKOWSKI
SRI INTERNATIUNAL

333 RAVENSWOOD AVE/ZEK 337
MENLO PRK CA 94025

QR PIERD P. BONISSONE

GE CORPORATE RESEARCH & DEVELOPMENT
31LD6 K1-RM 5C-32A

P. 0. ROX 8

SCHENECTADY NY 12301
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MR. DAVID BROWN

MITRE

EAGLE CENTER 3, SUITE 8
O'FALLON IL 62269

DR MARX BURSTEIN

ABN SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02133

DR GREGG COLLINS

INST FOR LEARNING SCIENCES
1890 MAPLE AVE

EVANSTON IL 60201

DR STEPHEN E. CROSS
SCHOOL 0F COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

DR THOMAS CHEATHAM
HARVARD UNIVERSITY

DIV OF APPLIED SCIENCE
AIKEN, RM 104
CAMBRIDGE MA 021338

MS. LAURA DAVIS

CODE 55190

NAVY (TR FOR APPLIED RES IN AI
NAVAL RESEARCH LAZDRATORY

WASH DC 20375-5337

DR THOMAS L. DEAN

BROWN UNTVERSITY

DEPY 3F COMPUTER SCIENCE
P.0. B3X 1910 '
PROVIODANCE RI 02912

DR WESLEY LCHY
COMPUTER SCIENCE DEPT
UNIV OF CALIFORNIA
L3S ANGELES LA 90024

DR PAUL R. COHEN

UNTIV OF MASSACHUSETTS
COINS DEPT

LEDERLE GRC

AMHMERST MA 01003
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DR JON DOYLE

LABORATORY FOR COMPUTER SCIE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

DR. BRIAN DRASBBLE
AI APPLICATIONS INSTITUTE

NCE

UNIV OF EDINBURGH/B0 S. BRIDGE

EDINBURGH EH1 LHN
UNITED KINGDOM

MR. SCOTT FOUSE

ISX CORPORATION

4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

MR. STU DRAPER

MITRE

EAGLE CEMTER 3, SUITE 8
O*FALLON IL 62269

DR MARK FOX

DEPT OF INDUSTRIAL ENG
UNIV OF TORONTD

4 TADDLE CREEK ROAD
TORQONTO, ONTARIO, CANADA

MR. GARY EDWARDS

ISX CORPORATION

2000 § 15TH ST, SUITE 1000
ARLINGTON, YA 22201

MR. RUSS FREW

GENERAL ELECTRIC

MODRESTOWN CORPORATE CENTER
BLDG ATK 145-2

MOORESTOWN NJ 08057

DR MICHAEL FEHLIN®
STANFORD UNIVERSITY
ENGINEERING ECD SYSTEMS
STANFORD CA 94305

RICK HAYES-ROTH
CIMFLEX-TEKNOWLEDGE
1810 £MBARCADERGO RD
PALO ALTD CA 94303
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DR JIM HENDLER

UNIV OF MARYLAND

DEPT OF COMPUTER SCIENCE
COLLEGE PARK MD 20742

MS. YOLANDA GIL

USC/1ISI

4676 ADMIRALTY WAY
MARINA DEL RAY CA 90232

MR. MORTON A. HIRSCHBERG, DIRECTOR
US ARMY RESEARCH LABORATORY

ATTNS AMSRL-CI-CB

ABERDEEN PROVING GROUND MD
21005-50656

MR. MARK A. HOFFMAN

ISX CORPORATION

1155 NORTHCHASE PARKWAY
MARIETTA GA 35057

DR RON LARSEN

NAVAL CMD, CONTROL & OCEAN SUR CTR
RESEARCH, DEVELOP, TEST & EVAL DIV
CUDE 444

SAN DIEGD CA 92152-5000

DR CRAIG KNOBLDCK
USC-ISI

4675 ADMIRALTY MWAY
MARINA DEL RAY CA 90292

MR. RICHARD LOWE (AP-10)
SRA CUORPORATION

2000 15TH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRAL :

BBN SYSTEMS & TECHNOLOGIES
4015 HANCOCK STREET, SUITE 101
SAN DISGO CA 92110

DR JOHN LOWRENCE

SRI INTERNATIONAL

ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSWODD AVE

MENLO PARK (A 94025
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DR. ALAN MEYROWITL 1
NAVAL RESEARCH LABORATORY/ZLODE 5510

4555 OVERLOOX AVE

WASH DC 20375

ALICE MULVEHILL o1
88N

10 MDULTON STREETY

CAMBRIDGE MA 02238

DR ROBERT MACGREGOR 1
USC/IST

45676 ADMIRALTY WAY

MARINA DEL REY CA 90232

DR DREW MCDERMOTY 1
YALE COMPUTER SCIENCE DEPT

P.J. 80X 2158, YALE STATION

51 PROPSPELT STREET

MEW HAVEN CT 06520

DR DOUGLAS SMITH 1
KESTREL INSTITUTE

3260 HILLVIEW RVE

PALO ALTO CA 94304

DR. AUSTIN TATE 1
AI APPLICATIONS INSTITUTE

UNIV OF EDINBURGH

80 SOUTH BRIDGE

EDINBURGH EH1 1HN - SCOTLAND

DIRECTOR : 1
DARPA/ZITD

3701 Ne FAIRFAX DR.s 7TH FL

ARLINGTON VA 22209-1T714

DR STEPHEN F. SMITH 1
RGBOTILCS INSTITUTE/ZLMU

SCHENLEY PRX

PITTSBURGH PA 15213

OR. ABRAMWAM WAKSMAN 1
AFOSR/NM

110 DUNCAN AVE., SUITE B115

B83LLING AFB DC 20331-0001
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DR JONATHAN P. STILLMAN
GENERAL ELECTRIC (RO

1 RIVER RDs RM K1-5C311
P. 0. B0X B8

SCHENECTADY NY 12345

DR EDWARD C.T. WALKER

38BN SYSTEMS & TECHNOLOGIES
10 MDULTON STREET
CAMBRIDGE MA 021338

DR BILL SWARTOUT
USC/1IST

45676 ADMIRALTY MWAY
MARINA DEL RAY CA 90292

GI0 WIEDERHOLD

STANFDRD UNIVERSITY

DEPT OF COMPUTER SCIENCE
438 MARGARET JACKS HALL
STANFORD CA 94305-2140

DR KATIA SYCARA/THE RUOBDTICS INST
SCHOOL DF COMPUTER SCIENCE
CARNEGTIE MELLON UNIV

DOHERTY HALL RM 3325

PITTSB8URGH PA 15213

DR DAVID E. WILKINS

SRI INTERNATIONAL

ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSNOOD avVe

MENLO PARK CA 94025

DR. PATRICK WINSTON

MASS INSTIVUTE OF TECHNOLOGY
RM NE&43-317

545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

DR JOHN P. SCHILL
BRPA/ISO

3701 N FAIRFAX ORIVE
ARLINGTON VA 22203-1714

DR STEVE RDTH

CENTER FOR INTEGRATED MANUFACTURING

THE ROSOTICS INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 15213-383¢
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DR YDAV SHOHAM
STANFORD UNIVERSITY
COMPUTER SCIENCE DEPT
STANFORD LA 934305

MR. MIKE ROUSE

AFSC

7800 HAMPTON RD
NORFOLK VA 23511-56097

DR LARRY BIRNBAUM
NORTHWESTERN UNIVERSITY
ILS

1890 MAPLE AVE

EVANSTON IL 60201

MR, LES ERMAN
CIMFLEX TECKNOWLEDGE
1810 EMBARCARDERD RD
PALO ALTO CA 94303

DR MATTHEW L. GINSBERG
CIRL, 125653

UNIVERSITY OF OREGON
EUGENE OR 97403

MR IRA GOLDSTEIN

OPEN SW FOUNDATION RESEARCH INST

ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR JEFF GROSSMAN, CO
NCCOSC RDTE DIV 44

5370 SILVERGATE AVE, ROCM 1405

SAN DIEGD CA 92152-5146

JAN GUNTHER

ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 380
CAMBRIDGE MA 02139

DR LYNETTE HIRSCHMAN
MITRE CORPORATION
202 RURLINGTON RD
BEDFORD MA 01730

DL-15




DR ADELE E£. HOWE

COMPUTER SCIENCE DEPT
COLORADD STATE UNIVERSITY
FORT COLLINS CD 80523

DR LESLIE PACK KAELBLING
COMPUTER SCIENCE DEPY
SROWN UNIVERSITY
PROVIDENCE RI 02912

DR SUB3ARAD KAMBHAMPATI
DEPT OF COMPUTER SCIENCE
ARIZIONA STATE UNIVERSITY
TEMPE Al 85287-5405

MR THOMAS E. KAZMIERCZAK
SRA CORPORATION

331 SALEM PLACE, SUITE 200
FAIRVIEW HEIGHTS IL 62208

DR CARLA GOMES

ROME LABORATQRY/C3CA
525 BRDOGKXS RD

ROME NY 13441-4505

DR MARK T. MAYSURY

ASSOCIATE DIRECTOR OF AI CENTER
ADVANCED INFO SYSTEMS TECH 6041
MITRE CORP, BURLINGTON RO, MS K-329
BEDFORD MA 01730

MR DONALD P. MCKAY
PARAMAX/UNISYS

P 0 BOX 517

PAOJLYI PA 19301

DR KAREN MYERS

AI CENTER

SRT INTERNTIONAL
333 RAVENSWOOD
MENLDO PARK CA 94025

DR MARTHA F PQOLLACK
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTS3URGH PA 15250
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DR RAJ REDDY

SCHOOL OF LOMPUTER SCIENCE
CARNEGTIE MELLON UNIVERSITY
PITTSBURGH PA 15213

DR EDWINA RISSLAND

DEPT OF CUMPUTER & INFO SCIENCE
UNIVERSITY OF MASSACHUSETTS
AMHERST MA 01003

DR MANUELA VELDSO

CARNEGTIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

DR DAN WELD

DEPT OF COMPUTER SCIENCE K ENG
MATL STOP FR-35

UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

MR JOE ROBERTS

ISX CORPORATION

4301 N FAIRFAX DRIVE, SUITE 301
ARLINGTON VA 22203

DR TOM GARVEY

ARPA/ZISD

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR JOAN M, ENTIMINGER, JR.
ARPA/DIRD

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-171%

DIRECTOR
ARPA/ISD
3701 NORYH FAIRFAX DRIVE
ARLINGYON YA 22203-1714

OFFICE OF THAE CHIEF OF NAVAL RSCH
ATTN: MR PAUL QUINN

CODE 311 |

300 Ne QUINCY STREET

ARLINGTON VA 22217
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DR JOHN SALASIN
DARPA/ITD

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR HOWIE SHROSBE
DARPA/ITO

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR HOWARD FRANK
DARPA/ITO

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR BARRY BOEHM

DIRy USL CENTER FOR SW ENGINEERING
COMPUTER SCIENCE DEPT

UNIV OF SOUTHERN CALIFOIRMIA

LOS ANGELES CA 90089-0781

DR STEVE CROSS

CARNEGYE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTS3URGH PA 15213-3891

DK MARK MAYBURY

MITRE CORPORATION

ADVANCED INFG SYS TECHS G041
BURLINTON ROAD, M/S K-329
3ZDFORD MA 01720

MR SCOTT FOUSE

ISX

4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE C 91351

MR GARY TDWARDS

I5X

433 PARK TEZRRACE DRIVE
WESTLAXE VILLAGE A 91351

DR ED WALKER

33N SYSTEMS £ TECH CORPORATION
10 MDULTIN STREET

CAMBRIDGE MA 02238
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DR EDWARD FEIGENBAUM
KOWLEDGE SYSTEMS LAB
STANFORD UNIVERSITY

701 WELCH ROAD, BUILDING C
PALD ALTO CA 94304

LEE ERMAN

CIMFLEX TEKNOWLEDGE
1810 SMBACADERO ROAD
P.D. BOX 10119

PALD ALTDZ CA 96303

DR OREN ETZIONI
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

DR GEQORGE FERGUSON

UNIVERSITY OF ROCHESTER
COMPUTER STUDIES BLDG, RM 732
WILSON BLVD

ROCHESTER NY 164627

DR STEVE HANKS

DEPT OF COMPUTER SCIENCE & ENG"
UNIVERSITY OF WASHINGTON

SEATTLE WA 98135

MR DODN MORROW

B8N SYSTEMS & TECHOLOGIES
101 MOONGLOW DR
BELLEVILLE IL 62221

DR CHRISTOPHER OWENS

38N SYSTEMS & TECHNOLOGIES
10 MOULTON ST

CAMBRIDGE MA (2133

DR ADNAN DARWILHE

INFORMATION £ DECISION SCIENCES
ROCKWELL INT*L SCIENCE CENTER
1049 CAMINO DOS RIOS

THOUSAND OAKS CA 91360

DR JAIME CARBONNEL

THE ROJOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
DOHERTY HALL, RODOM 3325
PITTSBURSGH PA 15213

bL-19




OR NORMAN SADEH

THE ROBOTICS INSTIYUTE
CARNEGIE MELLON UNIVERSITY
DOHERTY HALL, RDOM 3315
PITTSBURGH PA 15213

DR JAMES CRAWFORD
CIRLy 1259
UNIVERSITY OF OREGON
EUGENE OR 974063

DR TAIEB INATI
UNIVERSITY OF PITTSBURGH
DEPT OF COMPUTER SCIENCE
PITTSBURGH PR 15250

DR MARIE DEJARDINS
SRI INTERINATIGNAL

333 RAVENSWOOD AVENUE
MENLO PARK CA 94025

ROZERT J. KRUCHTEN

HQ AMC/sCA

203 W LOSEY ST, SUITE 1016
SCOTY AFB  IL 62225-5223

DR. DAVE GUNNING
DARPA/ISG

3701 NORTH FAIRFAX DRIVE
ARLINMGTON VA 22203-1714

MS. LEAH WONG

NCCOSC RDTZ DIVISIION
53560 HULL STREET

SAN DIEGO CA 92152-5001

3+ MCMURREY

NCCOSC RDTEE DIVISION
CODE 421

53560 HULL STREET

SAN DIEGD CA 95152-5001

GINNY ALBERT

LOGICON ITS

2100 WASHINGTON BLVD
ARLINGTON VA 22204




DAVID HESS

SAIC ATLANTYIC PROGRAMS

DNE ENTERPRISE PARKWAY, SUITE 370
HAMPTON VA 23656

COL ROBERT PLEBANEK
DARPA/ISO

3701 N FAIRFAX DR
ARLINGTON VA 22203

ADAM PEASE
TECKNOWLEDGE

1810 EMSARCADERO RD
PALO ALTG CA 94303

JIM SHOQP

ISX CGORPORATION

4353 PARK TERRACE DR
WESTLAKE VILLAGE CA 913561

DR ROBERT NECHES
DARPA/ISD

3701 N FAIRFAX DR
ARLINGTON VA 22203

DAVID SWANSON

NRAD

53118 GATCHELL RD
44207 B3LDG 600 RM 422C
SAN DIZG60 CA 92152

| DR STEPHEN WESTFODLD

| KESTREL INSTITUTE
3260 HILLVIEW AVE
PALO ALTO CA 94304

MAJ TOMMY LANCASTER
USTRANSCOM/TLIS-S5C

508 SCOTY DR

SCATT AFR IL 52225-5357

JAMES APPLEGATE

MITRE

EAGLE LENTER 3, SUITE 8
O*FALLON IL 62269

bL-21




SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVE

PITTS3URGH PA 15213

OIRNSA

R599

3800 SAVAGE RD

FT MEADE MD 20755-6000

NSA/CSS
K1
FT MEADE MD 20755-6000

DCMAD/WICHITA/GKEP
SUITE 83-34%

401 N MARKET ST
WICHITA X5 67202-2095

PHILLIPS LABNRATORY

PL/TL (LIBRARY)

5 WRIGHT STREET

HANSCOM AFB MA 01731-3004

THE MITRE CORPORATION
ATTN: £ LADURE

D450

202 BURLINGTON RD
BEDFORD MA 01732

QUSD (P)/8T5A/DUTD

ATTN: PATRICK G. SULLIVAN, JR
400 ARMY NAVY DR

SUITE 309

ARLINGYON VA 22202

DR« RDBERT PARKER
DARPA/ZITO

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1T714

DR. GARY KOOSR

DARPA/ITO

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714
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DR. RODBERT LUCAS
DARPA/ITO

3701 NORTH FAIRFAX ORIVE
ARLINGTON VA 22203-1714

DR. DAVID GUNNING

DARPA/ITO '
3701 NDRTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

AFIT ACADEMIC LIBRARY/LODEE

2350 P STREET

AREA By BLDG 542

WRIGHT-PATTERSON AFB OH 65433-7765

US ARMY STRATEGIC DEFENSE COMMAND
CSSD-IM-PA

P.0s B3X 130D

HUNTSVILLE AL 35807-3301

NAVAL AIR WARFARE CENTER
6000 E. 2157 3STREET
INDIANAPOLIS IN  45215-2189

COMMANDER, TECHNICAL LIBRARY
4747000,7C0223
NAVAIRWARCENWPNDIV

1 ADMINISTRATION CIRCLE
CHINA LAXKE CA 93555-6001

CDOR, US ARMY MISSILE COMMAND
RSIC, 3LDG. 4484

AMSMI-RD-CS5-Ry DOCS

REDSTONE ARSENAL AL 35893-5241

REPORT COLLECTION, CIC-14
MS P364

L3S ALAMOS NATIONAL LIBRARY
LOS ALAMOS NM 87545

AIR WEATHER SERVICE TECHNICAL
LISRARY (FL 4414)

859 SUCHANAN STREET

SCOTT AFB IL 62225-511%2
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AFIWC/MSO
102 HALL BLVD, STE 315
SAN ANTONIZ TX 78243-6015

PHILLIPS LABDRATORY

PL/TL (LIBRARY)

5 WRIGHY STREET

HANSCOM AF3 MA 01731-3004

AEDC LIBRARY

TECHNICAL REPORTS FILE

100 KINDEL DRIVE, SUSITE C211
ARNOLU AFT TN 37389-3211

SPACE & NAVAL WARFARE SYSTEMS
COMMAND (PMd 178-1)

2451 CRYSTAL DRIVE

ARLINGTON VA 22245-5200
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,

Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and

computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,

Photonics and Reliability Sciences.




