AFRL-IF-RS-TR-1998-200
Final Technical Report
October 1998

&

-

PLANWARE -- DOMAIN-SPECIFIC SYNTHESIS OF
HIGH-PERFORMANCE SCHEDULERS

Kestrel Institute

Lee Blaine, Limei Gilham, Jumbo Liu, Douglas R. Smith, and Stephen Westfold

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

L00 64218601



This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-200 has been reviewed and is approved for publication.

APPROVED: / %))// //é' ty

ROBERT J. PARAGI
Project Engineer

A o

NORTHRUP FOWLER III, Technical Advisor
Information Technology Division
Information Directorate

FOR THE DIRECTOR:

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.




) ' Form Approved
REPORT DOCUMENTATION PAGE OMBE No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and pleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

. AGENCY USE ONLY {Leave blank] | 2. REPORT DATE | 3. REPORT TYPE AND DATES COVERED
October 1998 Final Jan 95 - Jun 97
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PLANWARE -- DOMAIN-SPECIFIC SYNTHESIS OF HIGH-PERFORMANCE C - F30602-95-C-0036

SCHEDULERS » PE - 62702F
6. AUTHOR(S) PR -5581
3 . 3 . 3 . v TA - 27
Lee Blaine, Limei Gilham, Jumbo Liu, Douglas R. Smith, and Stephen Westfold WU - 85
7. PERFORMING ORGANIZATION NAVIE(S) AND ADDRESSIES] 8. PERFORMING ORGANIZATION
REPORT NUMBER
Kestrel Institute
3260 Hillview Ave N/A
Palo Alto CA 94304
5. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING |
AGENCY REPORT NUMBER
AFRL/IFTD
525 Brooks Road AFRL-IF-RS-TR-1998-200

Rome NY 13441-4505

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert J. Paragi/IFTD/(315) 330-3547

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words]

The technology aggregated in Planware represents part of a significant long-term investment in knowledge-based software
engineering formulated and guided by AFRL/IFTD. It includes search theories from artificial and methodology for
rigorous statement and formally-verified manipulation of specifications from the formal methods area with the goal of
achieving a software engineering paradigm that supports the economic, life-long evolution of complex systems. Planware
is a domain-specific generator of high-performance scheduling software, currently being developed at Kestrel Institute.
Architecturally, Planware is an extension of the Specware system with domain-independent and domain-dependent parts.
The domain-independent part includes a general algorithm design facility (including mechanisms to synthesize
global-search and constraint propagation algorithms), as well as support for theorem-proving and witness finding. The
domain-dependent part includes scheduling domain knowledge and architecture representations, and other domain-specific
refinement knowledge that relates the scheduling domain to general algorithm design and data type refinement. Using
Planware, the user interactively specifies a problem and then the system automatically generates a formal specification and
refines it. Various transportation schedulers have been generated, and with satisfactory performance.

14, SUBJECT TERMIS 15. NUMBER OF PAGES |
20
Program synthesis, formal specification, planning, scheduling, domain-specific software 16. PRICE CODE

synthesis, domain modeling

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

§tandard Form 298 gRev. 2-89) (EG)
Prescribed by ANSI Std. 233.18
Designed using Perform Pro, WHS/DIOR, Oct 94



PLANWARE - DOMAIN-SPECIFIC SYNTHESIS
OF HIGH-PERFORMANCE SCHEDULERS

Abstract _
Planware is a domain-specific generator of high-performance scheduling software, currently
being developed at Kestrel Institute. Architecturally, Planware is an extension of the Specware
system with domain-independent and domain-dependent parts. The domain-independent part
includes a general algorithm design facility (including mechanisms to synthesize global-search
and constraint propagation algorithms), as well as support for theorem-proving and witness
finding. The domain-dependent part includes scheduling domain knowledge and architecture
representations, and other domain-specific refinement knowledge that relates the scheduling
domain to general algorithm design and data type refinement.

Using Planware, the user interactively specifies a problem and then the system automatically
generates a formal specification and refines it. Various transportation schedulers have been
generated, and with satisfactory performance.

1. Introduction

This paper presents an overview of Planware, a generator of high-performance scheduling algo-
rithms, currently being developed at Kestrel Institute. Our aim is to convey a sense of the rationale
for Planware, the design process that it supports, the architecture of the current Planware system,
and our results to date. The reader may find more detail in the references.

Architecturally, Planware is an extension of the Specware system [SJ95], a system for developing
formal specifications and refinements based on concepts from higher-order logic and category
theory. Planware and Specware embody theoretical developments stemming from Kestrel's expe-
rience with previous systems, such as KIDS [Smith90a] and DTRE [BG91].

The goal of Planware is to allow experts in planning and scheduling to assemble quickly a specifi-
cation of a scheduling problem, and to generate automatically a high-performance scheduler from
it. The user's interactions with the system are designed to be entirely in the scheduling domain --
the user does not need to read or write formal specifications, nor to understand the logical and cat-
egory-theoretic foundations of the system. We have invested substantial effort in automating the
construction of scheduling domain theories.

To assemble a requirement specification and underlying domain theory, Planware requires very
little information from the user:

* to select from a menu various attributes that specify the tasks that need to be
scheduled, and

* to select from a taxonomy of resource theories the particular kind of resource
against which to schedule the tasks.



From this minimal amount of information, Planware can automatically

- generate a formal specification of the scheduling problem (plus the relevant
background concepts that comprise a domain theory),

- reformulate the specification using datatype refinements to build some of the
problem constraints directly into the schedule datatype, allowing a dramatic
simplification of the specification,

- apply domain-independent knowledge about designing global search algo-
rithms with constraint propagation, :

- apply datatype refinements and optimization techniques, and finally

- generate Common Lisp code.

For example, after design and refinement, the specification of transportation scheduling domains
comprises about 10,000 lines of text of which about 3000 lines are the scheduling algorithm (the
remainder consists of axioms and datatype operations that are not needed by the scheduler).

A key point here is that the high level of automation in Planware is achieved by applying domain-
specific control (via a hand-built tactic) (1) to construct a problem specification and domain the-
ory, and (2) to apply a series of domain-independent design theories and code-generation rules.
The result is a fast, correct, executable scheduler automatically constructed from the user's

description of a scheduling problem.

In the next section, we provide a brief introduction to the specification and refinement formalisms
in Specware. In Section 3, we describe Planware by stepping through its design process, illustrat-
ing each step via the construction of a transportation scheduler.

2. Specware

Specware supports the modular construction of formal specifications and the stepwise and com-
ponentwise refinement of such specifications into executable code. Specware may be viewed as a
visual interface to an abstract data type providing a suite of composition and transformation oper-
ators for building specifications, refinements, code modules, etc. This view has been realized in
the system by directly implementing the formal foundations of Specware; category theory, sheaf
theory, algebraic specification and general logics. The language of category theory results in a
highly parameterized, robust, and extensible architecture that can scale to system-level software
construction. A more detailed description of Specware may be found in[SJ95].

2.1. Specware concepts

A specification (or simply a spec or theory) defines a language and constrains its possible mean-
ings via (higher-order) axioms and inference rules. A basic specification consists of a list of sorts,
operations and axioms. For instance, the theory of partial orders can be presented as an abstract
sort with a binary operation that satisfies the following properties: reflexivity, transitivity and anti-
symmetry. A Specware spec for this theory is:




spec PARTIAL-ORDER is
sortE
op leq: E, E -> boolean
axiom transitivity-axiom is
leq(x, y) & leq(y, z) => leq(x, z)
axiom reflexivity-axiom is
fa(x: E) leq(x, x)
axiom anti-symmetry-axiom is
leq(x, y) & leq(y, x) =>x =y
end-spec

Another example is a specification for a simple problem theory (DRO-SPEC) that consists of
input domain, output range and a predicate that relates input to output.

spec DRO-SPEC is
sortD, R
op O: D, R -> boolean
end-spec

Specifications can be used to express many kinds of software-related artifacts, including applica-
tion domain theories, formal software requirements, abstract data types, abstract algorithms, and
programming languages.

A specification morphism (or simply a spec-morphism or morphism) consists of two specs and
one mapping, which maps the source spec to target spec via sorts and operations maps such that
sorts map is compatible with operations map, and moreover, axioms in the source spec are theo-
rems in the target spec. For instance, a spec-morphism from the partial-order theory to integer can
be represented as:

spec-morphism INTEGER-IS-PARTIAL-ORDER:
PARTIAL-ORDER -> INTEGER is
{E-> integer, leq -> <=}

Assuming that there is a spec SORTING-SPEC for the problem of sorting sequences of integers, a
spec-morphism from DRO-SPEC to SORTING-SPEC can be expressed as:

spec-morphism DRO-to-SORTING: DRO-SPEC -> SORTING-SPEC is
{D -> set-of-integer, R -> sequence-of-integer, O -> sorting-pred}

where we assume that the sorting specification SORTING-SPEC has a predicate sorting-pred to
specify sorting requirements. '

Specification morphisms underlie several aspects of software development, including the binding
of parameters in parameterized specifications, specification refinement and implementation,
datatype refinement, and algorithm design [Smith90b].




An interpretation is a pair of spec-morphisms that essentially enables mapping an item to a term,
which is what we need to express a refinement (or implementation) from one spec to another.
Returning to our previous spec-morphism example with SORTING-SPEC, suppose that we do not
have a predicate for sorting-predicate, then it is impossible to map O to any predicate symbol in
SORTING-SPEC. However, we can map it to a term of SORTING-SPEC by forming a conjunc-
tion of all predicates that specify sorting requirements. This can be expressed via two spec-mor-
phisms as follows: ~

interpretation DRO-to-SORTING: DRO-SPEC => SORTING-SPEC is
mediator SORTING-SPEC-WITH-SORTING-PRED

dom-to-med {D -> set-of-integer, R -> sequence-of-integer, O -> sorting-pred}
cod-to-med import-morphism

Here, we created a new spec SORTING-SPEC-WITH-SORTING-PRED which imports SORT-
ING-SPEC and adds another predicate sorting-pred that is defined from the predicates in SORT-
ING-SPEC. In the scheduling domain, a scheduling spec has normally a list of constraints (some
of them are provided by users, and thus the list is dynamically constructed). To start the refine-
ment process on a scheduling problem spec (DOMAIN-SPECIFIC-SCHEDULING), we need to
construct an interpretation from DRO-SPEC to DOMAIN-SPECIFIC-SCHEDULING, which
will be given in detail in section 3. It is indeed an interpretation since O in DRO-SPEC has to be
mapped to the conjunction of all scheduling constraints present in DOMAIN-SPECIFIC-SCHED-
ULING. More precisely, an interpretation consists of two spec-morphisms: one from source spec
to mediator spec, another from target spec to mediator spec that is required to be a definitional
extension of target spec. In the following, we will use interpretation and refinement interchange-

ably.

Using spec-morphisms, structured specs can be constructed, via renaming and colimit. Colimit is
the most basic way to put specs together. It requires a spec-diagram (a graph with nodes labeled
by specs and arcs by spec-morphisms) called a base spec-diagram (also called a cover of that
colimit/spec), and computes a shared union of that spec-diagram. Colimits are used intensively in
the construction and factorization of the scheduling domain knowledge base in Planware

Given a spec, one refines it to more concrete specs via a sequence of refinements, so we need a
sequential composition of interpretations to put these refinements together. Given a structured
spec, for instance a spec formed via colimit, one only needs to give component interpretations of
the cover, using parallel composition operator, a refinement for colimit object can be constructed
automatically, provided the components interpretation are compatible with each other (this is
where interpretation-morphism is used). Sequential and parallel compositions are used in the var-
ious Planware design tactics that will be described in section 3.

Finally, given an executable spec, code (Lisp or C++ in Specware system) can be generated. This
is expressed via a Spec-to-Lisp interpretation or Spec-to-C++ interpretation. This work is based
on general logics [Meseguer89] and their morphisms, with some modification. Our work in Plan-
ware of extending and applying Specware focuses basically on automating various combination
of sequential and parallel compositions, and knowledge representations.




3. Planware Design Process

Planware aims to provide a framework that is general enough to allow the synthesis of schedulers
in a wide range of domains. The key to achieving this generality was our development of a speci-
fication for a generic scheduling problem that can be refined into a variety of concrete scheduling
problems. Our confidence in this abstract scheduling specification arises from experience with
using the KIDS system to generate schedulers for such domains as transportation, manufacturing,
power plant maintenance, satellite communications, pilot training, and others [SPW96].

Briefly, here is how the Planware design process works. The user is asked to supply information
about a particular scheduling problem. This information is used to refine the abstract scheduling
specification to a specification of the user’s problem. Planware then applies tactics that automati-
cally perform problem reformulation and simplification, algorithm design, datatype refinement,
expression optimization, and finally code generation. The following sections describe the steps in
the Planware design process in more detail.

The most time consuming and novel aspect of this work is the automatic construction of a domain
theory for the particular scheduling problem. In the KIDS system, this construction typically
required weeks or months of time. In Planware this time is reduced to minutes, but for a sharply
restricted domain.

3.1. Abstract Scheduling Problems

Abstractly, we consider a scheduling problem to be a set of reservations, where each reservation
consists of a start-time, tasks to be accomplished and resources allocated. We do not specify the
tasks and resources in detail, since these may vary from one scheduling domain to another. We
specify abstract scheduling problems as a function that takes a set of tasks and a set of resources
as input, and returns a set of reservations (a schedule) that accomplishes all tasks and uses only
provided resources.

In the current system, the abstract scheduling spec is limited to problems of scheduling a single
(class of) resource; e.g. scheduling cargo on aircraft, or scheduling the duty periods of personnel.
Our next challenge is extending the abstract scheduling spec to allow multiple classes of resource,
and the constraints on their interactions.

3.1.1. Abstract Scheduling Specification

The specification of the abstract scheduling problem is structured as a diagram, with component

“specifications as nodes, and morphisms that relate the components as arcs. This structuring buys
us: reusability, extensibility, implementability and evolutionary support of (re-)design. Basically,
Planware’s abstract scheduling specification has the following components:

* Time: a unit that is an instance of total order,

* Capacity: an instance of total order with group structure,

* Pre-Reservation: an abstract base reservation with start-time,

* Pre-Schedule: a set of base abstract reservations,

* Resource: an abstract resource spec,

* Task: abstract task spec,

* Reservation: an abstract reservation with start-time, resource and tasks,




* Pre-Resource-Schedule: an abstract schedule for resource allocation,
* Pre-Task-Scheule: an abstract schedule that accomplishes tasks,

* Scheduling-Base: a set of abstract reservations,
* Scheduling: an abstract scheduler with resource and task constraints, that is, all

tasks are scheduled using only the provided resources.

The above version is, however, a simplified description of the actual spec in the system. For
instance, we actually divide Pre-reservation into Pre-time-reservation and Pre-capacity-reserva-
tion, and put them together (via colimit) to form Pre-reservation. Since they are basic compo-
nents, all other structure will be complicated by this. The following spec-diagram shows their

dependencies.

Capacity

N

Pre—-Resource~Reservation Pre-Schedule Pre-Task—-Reservation

Resource—Seat
Reservation Task-Set

Pre-Resource-Schedule . : )
- Pre—Task-Schedule

Schedullng;Basé

Scheduling

Some of the specifications in this diagram are presented below. Note how the attributes of Task
and Resource are expressed as functions on those sorts (e.g. max-capacity). As new attributes are
added under user guidance, we simply add new function symbols to the spec. Eventually, Plan-
ware refines Task and Resource to tuples and their attributes to projection functions.

spec RESOURCE is

import TIME, CAPACITY

sort Resource

op max-capacity: Resource -> Quantity
end-spec

spec TASK is

import TIME, CAPACITY .

sorts Task

op task-demand: Task -> Quantity
end-spec




spec SCHEDULING is

import SCHEDULING-BASE-EXTENDED

op Only-Available-Resources-Used: Resource-Set, Schedule -> boolean
\. definition of Only-Available-Resources-Used is

axiom Only-Available-Resources-Used is

Only-Available-Resources-Used(resource-set, valid-schedule) <=>
in(a-reservation, valid-schedule) => in(asset(a-reservation), resource-set)
end-definition

op All-Tasks-Scheduled: Task-Set, Schedule -> boolean
definition of All-Tasks-Scheduled is
axiom All-Tasks-Scheduled is
All-Tasks-Scheduled(task-set, valid-schedule) <=>
in(task, task-set) =>

ex(a-reservation: Reservation)

in(a-reservation, valid-schedule) & in(task, tasks(a-reservation))
end-definition

op Scheduler: Task-Set, Resource-Set -> Schedule
axiom CONSTRAINING-SCHEDULER is
Only-Available-Resources-Used(resource-set, Scheduler(task-set, resource-set))
& All-Tasks-Scheduled(task-set, Scheduler(task-set, resource-set))

end-spec , -

* 3.1.2. Refining to a particular scheduling problem

Given the abstract scheduling specification, the very first step of refining to a given scheduling
problem is to get information from the user about how to refine the resource and task components.
For instance, a task in the user’s problem may have a release-date and a due-date; if it is a trans-
portation task then it may have an origin and destination. Currently Planware provides a taxon-
omy of task attribute specs for the user to select from. This taxonomy is straightforward to extend.
Analogously, we have developed a taxonomy of resource theories which the user selects from.
The next step is to obtain constraints ori the scheduler from the user’s choices.

A key goal of Planware is to free the user from the need to read or write formal specifications. To
achieve this, we needed to find a way to lift information about tasks and resources into constraints
on a scheduler. We observed that all of the constraints on tasks that we have dealt with can be
characterized abstractly by means of a partial order. Intuitively, a feasible schedule of reservations
must provide enough resource to meet the demand of the input tasks. This notion of meeting task
demand particularizes to a partial order on each task attribute. For example, a due-date attribute
on a task requires that the finish-time of its reservation be before the task’s due-date (i.e. finish-
time <= due-date). For another example, the sum of the weights of the cargo items in a transporta-
tion reservation must not exceed the max-capacity of the transportation vehicle. Given partial
order information about a task attribute, it is easy to create a constraint over an entire schedule; for
example, returning to due-dates; if schedule is the output of Scheduler(Tasks, Resources) then



fa(a-task: Task, a-reservation: Reservation, valid-schedule: Schedule)
in(a-reservation, valid-schedule) & in(a-task, tasks(a-reservation))
=> finish-time(a-reservation) <= due-date(a-task)

In fact, we require that a task attribute be not only partially ordered, but that it have greatest lower
bounds (i.e. be a meet semi-lattice). This requirement comes from the needs of algorithm design -
- the global search/constraint propagation algorithms perform fixpoint iteration in a semilattice.

By restricting to semi-lattice-structured task attributes, the task of constructing a formal specifica-
tion of a scheduling problem, which is usually tedious and error-prone, is simplified to just asking
the user to input/select whether each attribute is a lower/exact/upper bound. The corresponding
constraints are constructed and asserted as output conditions of the desired scheduler. Additional
work is required to add in the appropriate constructors and other operators for the refined
datatypes of Task, Resource, Reservation, and Schedule. At this stage, Planware also constructs a
slightly weakened version of the reservation and schedule specs, called Partial-reservation and
Partial-schedule. These form the basis for the global search algorithm designed in a subsequent

stage.

3.1.3. Example -- Transportation Scheduling

In a simple transportation scheduling problem, the input tasks are movement requirements, which
are descriptions of cargo that have to be moved. In this simple version a movement requirement
includes information about when the cargo is available to be moved and by when it must arrive.
So a schedule is a set of trips. Each trip has a start time and a manifest -- the set of movement
requirements that it has been assigned to execute.

The first phase of our development is to construct a transportation scheduling specification. Sup-
pose we have enriched our resource taxonomy and task taxonomy to allow us to have basic trans-
portation domain information like release-date and due-date, as well as the origin and destination
of a trip, which are expressed by key words POD and POE, respectively. The following figure
shows user selection interface.

[Choose task items |
RELEASE-DATE
DUE-DATE
POE
POD

{ All ofthe Above |
i1 None of the Above |
: Do It :

Abort

Suppose we have selected transportation resource and all task attributes as shown in the above fig-
ure. Here, the colimit operator is used to put all task attributes together to form a domain-specific
task spec. The parallel composition operator is used to put all domain-specific interpretations




together to form a domain-specific scheduling spec. The constraints present in this selection are
summarized below.

fo e e e T
Parameter | Lower Bound | Exact Value | Upper Bound | . ) .
| I 0 | ! Instantiate scheduling domain
F?t?g\jim 1 Release-Date | Pinish-Tine - Duration | i
n, me | | Start-Time + Duration | Due-Date | d
"ouration | | pivten | Traneiotate | ! {Reselect Resource and Task Attributes
Separation | Duration + Break-Dur | ] i Proceed
fggregate—Pax-Desand | | sun of Pax-Demand | ¥ax-Pax-Capacity |
gpregate-Cargo-Demand | |  sum of Cargo-Demand | Max-Cargo-Capacity |
Trip—Poe | | Poe | |
Trip-Pod | | Pod | | Abort

The next step in the development process, if we choose to go forward, automatically constructs a
transportation scheduling specification via the tactics described above.

3.2. Data-Type Reformulation

The construction process described above produces a scheduling specification for a particular
problem. It is still formulated in terms of the schedule datatype which is a set of reservations. This
formulation is general and supports the initial problem acquisition stage in Planware, but it is a
relatively poor datatype for implementation purposes. In this stage, the Planware design process
applies a datatype refinement that is stored with the resource theory that was chosen from the
resource taxonomy. The effect is to refine Schedule = set(Reservation) into a datatype that is bet-
ter suited to the resource properties. The payoff is that we can then simplify away some of the
problem constraints because they are effectively built into the schedule datatype. After Planware
refines the schedule datatype, it invokes a context-dependent simplification tactic [Smith90a] to
simplify the constraints.

Example -- Transportation Scheduling

refinements is carried out: aElEling complete constructors for transportation schedule data type;
refining set of reservations to a map that maps a resource to its scheduled tasks (in sequence with
increasingly start-time as ordering); etc. :

The transportation scheduling problem uses a transportation resource which is a refinement of a
synchronous resource (i.e. all reservations on a synchronous resource must be synchronized in the
sense that two reservations must be either separated in time by at least some minimal amount or
else simultaneous -- starting and ending at the same time). Planware has refinements from
set(Reservation) to map(Resource, seq(Trip)) which effectively implements a schedule as an itin-
erary -- for each resource we have the sequence of trips that it makes. The characteristic synchro-
nization constraint is then simplified from a complex disjunction to a simple linear check over
adjacent trips. For a typical input of 10,000 movement requirements, the original formulation will
have several hundred millions ground disjuncts for the synchronization constraint, versus about
100,000 in the refined formulation.

3.3. Algorithm Design
A design theory for an algorithmic concept can be represented as a formal specification [SL90].




Any particular instance of that design theory corresponds to an interpretation from it to a specifi-
cation of the particular problem being solved. For instance, various interpretations from divide-
and-conquer theory to a sorting specification correspond to various sorting algorithms, such as
quicksort, mergesort or Batcher's sort. Design theories can be arranged in a refinement hierarchy
with specification morphisms providing the refinement links; e.g. a hierarchy of algorithm theo-
ries is presented in [Smith96]. The concepts and procedures described below are intended to auto-
mate the process of algorithm design by choosing a chain of algorithm design theories for a
particular problem, and construct an interpretation from the chosen design theory to that problem.
Thus, an algorithm for the specific problem is constructed.

The representation of our algorithm design framework can be illustrated by the following dia-
gram, let us call it algorithm design cube, or simply the cube in this paper. The arrows in the cube
represent the relationship between abstract theory and the concrete problem. Technically, the left
square in the cube is a spec-diagram corresponding to the abstract algorithm design knowledge;
the right square in the cube corresponds to the domain-specific problem and program scheme. The
arrows in between are interpretations. Essentially, design tactics described below are based on
sequential and parallel refinement composition operators, as well as others. In the following the
intended meaning of each arrow (and spec) and the way to construct them is described in detail.

____________

Dro-Speg-======~~-<«-~ il ‘hfggb_!e_n!‘—_[)ogl_a!_n_j
LN . 1 .
: S, : T
] - . [ “n
! A __ ! N ___
v Drofr == ===========-" LR ym s m e #»Problem|
' - 1 T
4 ' $ :
] 1 ] 1
] ] ¥ T
1 ] ] 1
[y t ¥ ]
1 1 ' ]
3 t 1 5
Y ¢ \. ¢
PR U P, AR 1
Algorithmb - - - - - - - - SRR LR »-Extended_Problem-Domaini !
» v - - N : * - -~ ~ :
0 .. :
______ A Y oY ____
Algorithm-Program-Scheme = ==~~~ =~~~ wommmeess »Problem-Program,

At the very beginning, we have only the node DRO labeled with the abstract problem domain the-
ory, as it can be seen in the above algorithm design cube. When a concrete (or domain-specific)
problem specification is chosen (along with the main function to be developed), a problem
domain specification can be extracted from it (and it is done via an extract tactic that gives a spec-
morphism as result). So, the upper morphism on the right side of the cube is constructed.

The second arrow construction tactic, the domain-specific interpretation tactic, is a little more
complex. The domain-specific interpretation tactic works as follows, first, use the main function
signature to construct an interpretation from DRO to the problem domain specification. Second,
use DRO and the main function signature, choose a DROF spec from the possible solu-
tions specifications, e.g. all solutions spec, one solution spec and optimal solution spec, and

10



maybe other kind of solution specs if exist. Third, compute the colimit of the spec-diagram that
include DRO, the domain-specific problem domain specification and DROF, which gives, among
others, an interpretation from DROF to the colimit object. Finally, we check that the computed
colimit is isormorphic to the domain-specific problem specification. In doing so, we have con-
structed and constructively proved that the base diagram of the computed colimit, namely, DRO,
DROF and the problem domain specification is a cover of the domain-specific problem specifica-
tion. Informally speaking, we can use DRO, DRFO, and the problem domain specification to con-
struct a program scheme, and that will be a program scheme for our specific problem too.

The third arrow construction tactic is called classification and it involves a process called ladder
construction (see [Smith96] for details). Here, we only give a brief description of it in the context
of algorithm design. Basically, this tactic consists of two steps: (1) selecting an appropriate design
theory from a refinement hierarchy of design theories, and (2) constructing an interpretation. The
first step is in general interactive, but can be automatic in certain domains (e.g. scheduling
domains). The second step is accomplished via the ladder construction process as described
below.

The process of incrementally constructing an interpretation is illus-

ppy =Ry 5
] T" trated in the ladder construction diagram to the left. The left-hand
L side of the ladder is a path in a refinement hierarchy of design theo-
DT} == Specy . . . .
; J ] ries starting at the root. The ladder is constructed a rung at a time
TN from the top down. The initial interpretation from problem theory to
| ] SpecO may be simple to construct. Subsequent rungs of the ladder
: are constructed by a constraint solving process that involves user
oL, s Spee, choices, the propagation of consistencyf cor}strain_ts, calculation of
Ladder Comtracton colimits, and constructive theorem proving like witness finding and

unskolemization as described in detail in [Smith93] [Smith96].

The result of the classification and ladder construction tactic is a concrete algorithm design theory
and its program scheme, and an interpretation from algorithm design theory to the problem
domain.

The last tactic, the program scheme instantiation tactic, computes a colimit of the diagram that
consists of algorithm design theory, its program scheme and the extended problem domain. The
colimit object is domain-specific program scheme. Last but not the least, there must be a specifi-
cation morphism from domain-specific problem spec to the constructed program. This is con-
structed and constructively proved to always exist by universal property of colimits. .

With these four tactics, given a concrete problem, we can semi-automatically construct a program
theory for that problem based on the selected and successfully interpreted algorithm design the-
ory. Normally, further steps are needed to make it executable or more efficient.

The first design theory used in Planware is global-search theory and its extension with cutting
constraints. Since this decision is fixed it is applied with no need for further interaction. Another
algorithm design tactic used is constraint propagation. This amounts to generating basic constraint
propagation procedures given a kind of scheduling problem domain, and synthesizing domain-

11




specific constraint propagation procedures after the instantiation phase. Basically, that amounts to
generating constraint propagation for a set of upper bounds, exact bounds and lower bounds of
domain-specific constraints. Technically, this is related to data type refinement to get the right
constructors for each data type used in the constraints; and to the instantiation of corresponding
semi-lattice structures. After getting all the constraints propagation procedures, they are com-
posed together and a flat semi-lattice is constructed that consists of a tuple of all component semi-
lattice. Notice that this can only be done dynamically, since the constraint structure varies from

one domain to another.

Example -- Transportation Scheduling
The result of algorithm design is shown in the following diagram, the bottom right node is the

program scheme for transportation scheduling problem.

& Alewrithin Design for Spec DUMAIN-SPECIFIC- SCHEBCLING

Dro-Spes =t Domain-Specifie-Scheduling-Base

Clobal-Search-Theory—+—>Gs-As-Sched-Problea-Base

f

- Fit-Cuttng- Constratats =+ G-As-Sebod-Problem-Bass

The constraints present in this scheduling problem are cargo and pax capacity constraints, release
and due date constraints, and trip origin and destination constraints, as well as trip separation con-

straints.

3.4. Expression Optimization

This stage will apply various expression optimization refinements, such as context-dependent
simplification, common-subexpression elimination, finite differencing, partial evaluation, and so
on. These are not currently applied in Planware.

3.5. Automatic Code Generation
We have developed a code-generation tactic that automatically generates code for a structured
spec, provided the structure is (recursively) of the following form:

* directly implementable,

* definitional extension or a translation of an implementable spec,

* colimit, each component of which is implementable (recursively),
* instantiation of implementable specs,

* can be interpreted to an implementable spec.




If there are multiple choices, we use a heuristic to decide which way to go. In the Planware con-
text, given the scheduling system architecture, we can generate code for it if each instantiated
component is implementable, and we further specialize the code-generation tactic by a specific
implementation order imposed by the dependencies of the scheduling systems architecture.

4. Concluding Remarks and Future Work

We have presented our Planware system for generating domain-specific high-performance sched-
uling software in a highly automatic way. Planware is an extension of the Specware formal devel-
opment environment. Scheduling domain knowledge has been represented abstractly and
structurally to enable user problems to be solved with minimal interaction. In particular, the
resource and task taxonomies which specify general/domain-specific scheduling knowledge have
been developed as well as their architectural relationship with the scheduling system architecture.
For synthesizing domain-specific schedulers, a set of design tactics for instantiation to the con-
cerned problem, data-type refinement, algorithm design with constraints propagation and auto-
matic code-generation have been developed and successfully applied. We have experimented with
the transportation scheduling domain and developed various schedulers there with satisfactory
performance.

We believe that Planware is a new paradigm for domain-specific software generators. Planware
differs from other domain-specific software generators in that it is built on a foundation of
domain-independent general-purpose software specification and synthesis capabilities (Specware/
Designware). In particular, Planware relies on (1) the Specware capabilities for composing speci-
fications, refining them and translating to code; and (2) the Designware libraries of domain-inde-
pendent design knowledge about algorithms, datatype refinements, and expression optimization
techniques (and their application tactics) to construct refinements. The domain-specificity of Plan-
ware comes in the form of (1) specifications of domain knowledge in the form of the abstract
scheduling specification, the taxonomies of task and resource theories, etc. and (2) scheduling-
specific tactics for controlling the Planware design process; e.g. tactics for lifting properties of
tasks to constraints on the scheduler, tactics for lifting resource constraints to scheduling con-
straints, tactics for constructing the constructors and other datatype operations needed by the
refined Task, Resource, Reservation, and Schedule specs, tactics for generating a global search
theory for the problem at hand, etc. The background of domain-independent design knowledge
allows a user to derive software even when the requirements fall outside the domain-specific
scope of the system. The user then gets less automation, and must supply more guidance in the
construction process.

There are many things to be done before Planware can be deployed. One crucial extension is
allowing the user more flexibility in supplying task information. The spreadsheet-like display in
Section 3 is a first prototype of our next interface. The user's choice of resource theory informs the
parameter list and the plausible options for lower/exact/upper bounds on parameters. We are
working to let the user choose and modify arbitrary entries. As before the user only interacts with
the system in domain-specific terms. Another vital extension is to generalize the abstract schedul-
ing spec to multiple resource classes. Another extension that is underway is to extend Planware to
allow the synthesis of scheduling systems, including visual displays, editors, GUI, database medi-
ators, and so on.

13




Acknowledgment
We would like to thank Cordell Green, Jim Mcdonald, T.C. Wang, David Espinosa, Richard Jullig

and Y.V, Srinivas for discussions and suggestions during various stages of the Planware project.
This project has been mainly supported by DARPA/Rome Lab under Contract F30602-95-C-0247
and by Rome Lab under Contract F30602-95-C-0036.

5. References

[BG91] Blaine, L., and Goldberg, A. DTRE - a semi-automatic transformation system. In
Constructing Programs from Specifications, B. Moeller, Ed. North-Holland, Amsterdam,
1991, pp. 165-204.

[Meseguer89] Meseguer, J. General Logics, In Logic Colloquium 87, H.D. Ebbinghaus et al,
Ed. North Holland, Amsterdam, 1989.

[Smith90a] Smith, D. R. KIDS - a semi-automatic program development system. IEEE Trans-
actions on Software Engineering Special Issue on Formal Methods in Software Engineering

16, 9 (September 1990), 1024-1043.

[Smith90b] Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. In Pro-
ceedings of the International Conference on Mathematics of Program Construction, LNCS
375, L. van de Snepscheut, Ed. Springer-Verlag, Berlin, 1989, pp. 379-398. (reprinted in Sci-
ence of Computer Programming, 14(2-3), October 1990, pp. 305-321).

[Smith93] Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-
tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571-606.

[Smith96] Smith, D. R. Toward a Classification Approach to Design, in Proceedings of the
Fifth International Conference on Algebraic Methodology and Software Technology,
AMAST'96, LNCS 1101, Springer-Verlag, 1996, 62-84.

[SPW96] Douglas R. Smith, Eduardo A. Parra, and Stephen J. Westfold, Synthesis of Plan-
ning and Scheduling Software, in Advanced Planning Technology, (Ed. A. Tate), AAAI Press,
Menlo Park, California, 1996, 226-234.

[SJ95] Srinivas, Y. V., and Juellig, R. Specware™: formal support for composing software. In
Proceedings of the Conference on Mathematics of Program Construction, B. Moeller, Ed.
Springer-Verlag, Berlin, 1995. Lecture Notes in Computer Science, Vol. 947.

®U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-81056

14




MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

technologies.




