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ABSTRACT

The Kansas Department of Transportation (KDOT) currently monitors up to 19 parameters
for the Superpave mixtures under its Quality Control/Quality Assurance (QC/QA) Program.
Data from 12 recently-built Superpave projects of KDOT was analyzed in this study to
evaluate significant effects of different Superpave mixture volumetric and aggregate
parameters (predictors) monitored in the QC/QA program on four output/response
parameters, namely air voids at Ny, (Va), voids in mineral aggregates (VMA), in-place
pavement density and moisture sensitivity (in terms of tensile strength ratio, TSR).

Principal component analysis (PCA) and multiple correlation analysis (MCA) were
conducted to identify the statistically significant variables and to develop quantitative
relationships between the predictor and the response variables. The PCA indicétes that the
predictor variables can be selected from eight “subgroups” of correlated variables. Very good
predictive equations were found using the predictors isolated in this study for the Va and
VMA, but not for the in-place pavement density and TSR. Sensitivity analysis was
performed to evaluate the effects of changes in the input variables on the response variables
based on the predictive equations found in MCA.

Multiple property optimization (MPO) results show that the most desirable 19 mm
nominal maximum size mixture would have Va close to 4%, VMA between 13% and 14%,
dust proportion equal to 0.9%, and other factors in the ranges specified by KDOT Superpave

mixture specifications.
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1.0 INTRODUCTION

1.1 Problem Statement

One of the final products of the Asphalt Research Program of the Strategic Highway
Research Program (SHRP) is a new system called Superpave, short for Superior Performing
Asphalt Pavements. Superpave represents an improved system for specifying asphalt binders
and mineral aggregates, developing asphalt mixture design, and analyzing and establishing
pavement performance prediction. It incorporates performance-based asphalt material
characterization with the design environmental conditions to improve performance by
controlling rutting, low temperature cracking and fatigue cracking (McGennis et al. 1994).
The Superpave binder specification and mix design system include various test equipment,
test methods and criteria.

Superpave mix design and analysis is performed at one of three increasingly rigorous
levels, depending upon design truck traffic volume, with higher levels providing more
information about the mixture’s performance capabilities than lower levels. Superpave
volumetric mix design (formerly known as Level 1) is an improved material selection and
volumetric mix design process. The volumetric mix design involves selecting asphalt and
aggregate materials that meet the Superpave specifications, and then conducting a volumetric
analysis of hot mix asphalt specimens compacted with a Superpave gyratory compactor.

The majority of routes on the state highway system in Kansas serve low traffic
volumes. Therefore, most of the Superpave mix designs that are currently being used, as well

as those that will be used in the future, are expected to fall under the Superpave volumetric



mixture design category. Current Superpave volumetric mixture design requirements consist
of (McGennis et al. 1 994):

a) mixture volumetric parameters,

b) dust proportion and degree of compactibility,

¢) moisture sensitivity.

The Kansas Department of Transportation (KDOT) is actively pursuing a new Quality
Control/Quality Assurance (QC/QA) program for the Superpave mixtures. For the purpose
of pilot (change order) Superpave projects, the QC/QA program was developed by drawing
upon historical hot mix asphalt project experience as well as guidelines of other agencies.
It isb, therefore, desirable to have detailed statistical analysis of the QC/QA test data obtained
from the mixtures on the pilot projects and the projects that have been let and completed thus

far, so that the QC/QA program can be improved.

1.2 Objective
| This research focused on mixtures that were designed using the Superpave mix design
system, and constructed on 12 recently built projects on the State, US and Interstate routes
in Kansas. QC/QA data on mixture components and volumetric properties were collected
from these projects.

The primary objective of this study was to investigate the effect of changes in the
input variables on the response variables. The input variables were:

» asphalt binder content (Pb);
and N

* percent of densification (%G,,) at N

mm. maximum minimums?



» aggregate sizes (percent material retained on the 19 mm, 12.5 mm, 9.5 mm sieves
and so on); and
« dust proportion (DP), sand equivalent (SE), fine aggregate angularity (FAA), and
coarse aggregate angularity (CAA).
The response variables were:
* air voids at Ng,.(Va);
« voids in mineral aggregate (VMA);
* in-place pavement density, and

e moisture sensitivity in terms of tensile strength ratio (TSR).

1.3 Data Analysis Approach
To achieve the objective mentioned earlier, a four-step modeling approach was used:

1. Principal Components Analysis (PCA): PCA is a statistical technique used to
screen out the less important predictor variables and retain the more important ones. In this
study, data for all Superpave mixture parameters from all 12 projects was used in the PCA.
PCA transforms a set of correlated variables into a smaller set of uncorrelated variables
called principal components (Johnson 1998). PCA results along with engineering
judgement were used to group predictor variables into subgroups of similar type.

2. Model Formulation and Calibration: After identifying the key predictor variables
resulting from PCA, a series of linear relationships were formulated and calibrated using a
multi-regression analysis software, MC (MC 1991 ). Most recently, the MC software has

been used in a pooled-fund study to identify the factors responsible for premature concrete



pavement deterioration in the Federal Highway Administration (FHWA) Region 7 (Midwest)
(Jennings et al. 1997). In mc;del formulation, the form of the model was developed on the
basis of multiple correlation analysis results and engineering judgement. In model
calibration, model constants were evaluated so that the best fit between the formulated model
and the collected data was achieved.

3. Sensitivity Analysis: After obtaining final correlation equations, a sensitivity
analysis of the dependent variables was performed. The effects of changes in the input
parameters on the response variables were plotted and discussed.

4. Multiple Property Optimization (MPQO): At this point, the MPO is done for each
type of mixture in the let projects. The final correlation equations for each type of mixture
were used as input into a software called MPO (MPO 1991), to determine how a process
should be run in order to achieve an optimum combination of the independent variables
which would result in Va, VMA, in-place pavement density, and TSR, as close to their target

values as possible.

1.4  Synopsis

This report is divided into seven chapters. Chapter 1 is the introduction to the study. Chapter
2 is a literature review of the previous work. Chapter 3 describes the project selection and
data collection. Chapter 4 describes the principal components analysis that was completed
on 19 Superpave mixture parameters being monitored under the KDOT QC/QA program.
PCA was used to partition 15 parameters (excluding four dependent variables) into

subgroups so that the variables within a subgroup are highly correlated, but there is no



significant correlation of variables between the subgroups. One variable from each subgroup
was selected as an independent variable in the multiple correlation analysis. Chapter 5
describes a multiple correlation analysis that was performed to obtain the relationships
between dependent variables (Va, VMA, in-place pavement density, and TSR) and the
independent variables obtained from PCA results for each type of mixture. Sensitivity
analysis performed for each equation is also presented. Chapter 6 presents the methodologies
of multiple properties optimization, and its application in this study to obtain the optimum
combination of the independent variables. This analysis resulted in Va and VMA being as
close to their respective targets as possible. Finally, Chapter 7 summarizes the conclusions

and recommendations of this study.



2.0 LITERATURE REVIEW

Asphalt concrete pavement covers more than 90% of the paved roads in the United States
(Huang 1993). Before the introduction of the Superpave mix design system, asphalt mixtures
were typically designed using empirical laboratory design procedures, and field experience
was necessary to determine if the laboratory analysis correlated with the pavement
performance (The Asphalt Institute 1995). During the past 20 years or so, asphalt pavement
life has been significantly shortened by increased traffic, heavier trucks, and higher-pressure
tires, even with proper adherence to the specified mix design criteria and procedures. In
1987, the Strategic Highway Research Program (SHRP) initiated a study to develop a new
system for specifying asphalt materials. The final product of this SHRP asphalt research is
a new system called Superpave, short for Superior Performing Asphalt Pavements (The
Asphalt Institute 1995).

The resulting Superpave system gives highway engineers and contractors a new set
~ oftools for designing asphalt pavements that will perform better at extreme temperatures and
under heavy loads (Lucas 1997). The Superpave system predominately addresses three
principal types of pavement distress to be considered for flexible pavement design: rutting
(permanent deformation or rut depth along the wheelpath), which is caused by inadequate
shear strength in the asphalt mix; fatigue cracking, which results from the tensile strain in
the asphalt layer due to repeated loads; and low-temperature cracking, which results when

the thermal stress in the pavement due to a low-temperature event exceeds the fracture



strength of the asphalt concrete (Huang 1993). The system is built around three major
components: an asphalt binder specification, a volumetric mix design and analysis system,
and a performance prediction system (The Asphalt Institute 1995).

A primary objective of the state highway agencies (SHAs) and contractors is to
achieve a quality hot-mix asphalt (HMA) pavement. Over the past several years, interest in
the Superpave performance-based mix design and analysis is rapidly growing throughout the
nation. SHAs have been working with the construction industry to implement quality
control/quality assurance (QC/QA) specifications to improve the quality of HMA
construction. Movement away from method-based specifications toward QC/QA
specifications and warranty specifications has decreased agency involvement in design and
gonstruction phases of a project (Schmitt et al. 1998). The American Association of State
Highway and Transportation Officials (AASHTO) developed the Implementation Manual
for Quality Assurance to provide agencies with the structure and guidelines for implementing
a Quality Assurance (QA) program (AASHTO 1994a). Determining the extent of variation
in the materials and testing is an important element within the specification. Pay factors are
suggested to be set to encourage quality and be related to the expected loss or gain in service
life of the product. Incentive payments should be granted to the contractors for achieving
proper control of the construction process and expected increase in pavement life. AASHTO
Quality Assurance Guide Specification (AASHTO 1994b) provided definitions, methods, and
procedures for assuring highway construction quality. Once a commitment has been made
to implement a QA program, this AASHTO guide provides detailed specifications for
assuring highway construction quality using statistics and other quantitative methods.

7



Frequencies for contractor testing and inspection are set as needed to control operations,
while agencies determine théir own individual testing and inspection frequencies. Methods
for testing and evaluating mixture properties and in-place pavement density are provided, and
tolerances have been established for the mixture properties which include aggregate
gradation and asphalt binder content. The tolerances are applied to the pertinent mix design

variable values from the Job Mix Formula (JMF).

2.1 Superpave Mixture Design Specifications

The Superpave mix shall be designed with the Superpave mix design method to obtain a
Laboratory Trial Mix Formula (LTMF) based on the following criteria: (Cominsky et al.
1998)

Control points and restricted zone: The Superpave mix design resulting inthe LTMF
shall provide for the selection of aggregate gradation for the paving mix by means of control
points and a restricted zone. The control points and restricted zone are plotted on the
FHWA's grading chart on which the percent of aggregate passing a sieve size is plotted
against the sieve opening size raised to the 0.45 power. Table 2.1 identifies the control points
for gradations with nominal maximum sizes of 19.0, 12.5, and 9.5 mm, respectively.

Coarse aggregate angularity (CAA): The LTMF shall be based on the design traffic
levels associated with the coarse aggregate angularity with the values shown in Table 2.2
being the minimum.

Fine aggregate angularity (FAA): The LTMF shall be based on a design traffic level
associated with the fine angularity with the value shown in Table 2.3 being the minimum.

8



Dust proportion (DP): The dust proportion or dust-to-effective asphalt ratio shall be
between 0.6 and 1.2 for all design traffic levels.

Air voids (Va): The design air voids for the LTMF shall be 4% for all traffic levels.

Voids in mineral aggregate (VMA): The acceptable values for VMA for the LTMF
at 4% air voids, based on the nominal maximum size aggregate, are shown in Table 2.4.

Gyratory compaction: The number of initial (Niya), design (Nigesign)> and maximum
(N, aximum) gyrations shall be based on the design traffic level and the average design high air
temperature. Density shall be evaluated as a percent of the maximum theoretical specific
gravity of the loose mixture at the initial number of gyrations (N mitial)> the design number of
gyrations (Nyigr), and the maximum number of gyrations (N aximum)-

Compaction requirements: The gyratory-compacted specimens for the LTMF shall
meet the density requirements specified in Table 2.5.

Moisture sensitivity: The compacted specimens of the LTMF shall exhibit a

minimum tensile strength ratio (TSR) of 80 percent as determined by AASHTO T283.

2.2 QC/QA Specifications

Schmitt et al. (1998) conducted a study on the QC/QA specifications which are in use in 40
states. Many of the specifications are dated 1996 and are either initial drafts or revisions. The
information from these specifications was divided into two categories: acceptance testing,

including mixture properties and in-place pavement density, and pay adjustments.



Table 2.1 Superpave Aggregate Gradation Control Points

(a) 19.0 mm Nominal Maximum Size

Sieve Size Control Point (Percent Retaining)
Maximum Minimum
0.075 mm 98 92
2.36 mm 77 51
12.5 mm -- 10
Nominal Maximum (19.0 mm) 10 0
Maximum (25.0 mm) 0 _ -

(b) 12.5 mm Nominal Maximum Size

Sieve Size Control Point (Percent Retaining)
Maximum Minimum
0.075 mm 98 90
2.36 mm 72 42
9.5 mm -- 10
Nominal Maximum (12.5 mm) 10 0
Maximum (19.0 mm) 0 --

(c) 9.5 mm Nominal Maximum Size

Sieve Size - Control Point (Percent Retaining)
Maximum Minimum

0.075 mm 98 90

2.36 mm 68 33

4.75 mm -~ 10

Nominal Maximum (9.5 mm) 10 0

Maximum (12.5 mm) 0 | —

10



Table 2.2 Superpave Coarse Aggregate Angularity Requirements
Traffic(ESALs) Depth from Surface

<100 mm >100 mm
<3*10° 55/-- --/--
<1%*10° 65/-- ~=/--
<3 *10° 75/-- 50/--
<1*10 85-80 60/--
<3*10 95/90 80/75
<1*108 100/100 95/90
>1*108 100/100 100/100

Table 2.3 Superpave Fine Aggregate Angularity Requirements
Traffic(ESALSs) Depth from Surface

<100 mm >100 mm
<3*10° - -
<1*10° 40 -
<3*10° 40 40
<3*10’ 45 40
<1*108 45 45
>1*10° 45 45

11




Table 2.4 Superpave VMA Requirements

Nominal Maximum size Minimum Voids in
Mineral Aggregate (%)

9.5 mm 15.0

12.5 mm 14.0

19.0 mm 13.0

Table 2.5 Superpave Compaction Requirements
Compaction Level Required Density

Ninitial < 89.0% of G
Ndesign = 96.0% Of Gmm

Nmaximu_m < 98.0% Of Gmm

A review of the specifications consistently found three fundamental measures for
acceptance testing: mix properties, in-place pavement density, and smoothness. These
measures described overall pavement quality by measuringvthe HMA material composition
(mixture properties), the densification of the material to withstand repetitive loads from
traffic (in-place pavement density), and the ride quality experienced by the traveling public
(smoothness). Whether viewed independently or collectively, these measures typically
describe the quality level achieved during construction.

Five different statistical measures were found to be used to determine specification
compliance: average, average.absolute deviation, moving average, range, and quality level
analysis. Table 2.6 tabulates the characteristics of these compliance measures along with

supporting equations. Each of these measures has unique statistical characteristics, and how

12



variation is managed by each method must be given careful consideration when determining

testing levels and product acceptance in the QC/QA specifications.

2.2.1 Mix Properties
The survey found that there were three primary groups of variables for evaluating mixture
properties: (1) aggregate gradation; (2) asphalt binder content; and (3) mixture volumetrics
(air voids, voids in mineral aggregate, and so forth). A majority of states were using tonnage
to define sublot and lot sizes. Sublot sizes range from one test per 454 tonnes (500 tons) to
as high as one test per 1,814 tonnes (2,000 tons). Asphalt binder content was evaluated more
than aggregate gradation and mix volumetrics for both sublots and lots. KDOT and its
contractors are using the ignition oven to determine the asphalt binder content and aggregate
gradation because it is faster and more precise than other methods.

Quality level analysis is the most frequently specified compliance measure for the
three primary mix properties. Absolute average deviation followed closely by moving

average are the next most common methods for measuring specification compliance.

2.2.2 In-place Pavement Density

A large number of states are using tonnage for sublots and lots similar to the plant-produced
mixtures. Sublot sizes ranged from one test per 73 tonnes (80 tons) to one test per 1,361
tonnes (1,500 tons). Other specified sublot and lot sizes were length, time, and area. Time
for sublots and lots ranged from one to five per day. Five per day is used by KDOT for in-

place pavement density measurements.

13



tests.

Compares the range of values to
specification limits, but does not
compute the distribution of this
range.

Table 2.6 Description of Compliance Measures
Compliance Characteristics Equation
Measure 2 3)
(1
Average Arithmetic average of tests ol
Variation must be known since it CL= zg/2 —
determines how accurately the n
average can be estimated from a where
given sample size. C.I. = Confidence Interval of mean;
A confidence interval should be Zg/72 = standardized statistic;
constructed to describe the interval . .
o = known variance; and
of the mean that can be found at a n = number of tests
specified probability level. - )
Quality Estimates Percent Within Limits (USL-X)
Level (PWL) using the sample mean and Qu= s
Analysis standard deviation.
Using the interrelationship of the T
mean and standard deviation to Q.= M)—
estimate PWL develops a s
distribution of the process.
Quality indices for the upper (Qu) where o
and lower (Qu) specification limits | USL = Upper Specification Limit;
are first calculated, then applied to | LSL = Lower Specification Limit;
statistical tables to determine the X = sample mean; and
estimated PWL. s = sample standard deviation.
Absolute Average of absolute deviations from clx -1vl)
Average a target value, typically the JMF A= —_";'_"'
Deviation design value. where
Specifications are currently o
A = average absolute deviation;
structured to allow greater P
. o X = individual test resuit;
cumulative deviations from the
. TV = Target value; and
target for smaller sample sizes.
n = number of tests.
Moving Measures the arithmetic moving X = (ZX)
Average average of several consecutive tests. T n
Evaluates changes or trends in the where
moving average relative to target 3
values or specification limits X = sample mean;
) X = individual test resuilt; and
n = number of tests.
Range Measures the arithmetic range of Range = (Max - Min)

where )
Max = Maximum test value: and
Min = Minimum test value.
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Methods to sample pavement density include core samples, nuclear density readings,
and correcting the nuclear density readings to the core densities, with the number of
correction tests ranging from 3 to 12. ASTM D2950-91, "Standard Test Method for Density
of Bituminous Concrete in Place by Nuclear Methods," recommends that at least seven core
densities and seven nuclear densities be used to establish a conversion factor (4STM 1992).
It is recommended that a new conversion factor be established any time a change was made
in the paving mixture or in the construction process. In-place pavement density was
referenced by several procedures, including theoretical maximum density (TMD), laboratory
maximum density (LMD), test strip, and roadway voids. It is expected that more states would
use TMD because Superpave testing protocols use this in mix volumetric analysis. Similar
to the plant-produced mixture properties, quality level analysis was the most common
compliance measure for density (20 states). The average method was next most common
(eight states), followed by range (four states), absolute average deviation (three states), and

moving average (three states).

2.2.3 Pay Adjustments

Pay adjustments have bedome an integral part of nearly every QC/QA specifications. The
survey found that 95 percent of the states have some type of pay adjustment applied to the
level of quality measured by the test results (Schmitt et al. 1998). In theory, pay adjustment
is the difference between the planned life-cycle costs from the design and expected life-cycle
costs from the as-built construction quality.

There are many attributes to be considered when making pay adjustments. Pay
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adjustments have been developed for plant-produced mixture properties (aggregate
gradation, asphalt binder content, and mixture volumetrics) and construction tests (in-place
pavement density and smoothness). |

There were two primary methods for selecting a pay adjustment: a factor (or
multiplier) and a fixed rate. The factor method was the most common, aﬁd it applied a
predetermined pay percentage to the measured test results, usually in the form of a pay table.
Other states used a fixed rate adjustment that varied with the measured quality level but did
not use a percentage to adjust payment.

The most common aggregate sieve size used for pay adjustment was 0.075 mm. The
next most commonly specified sieve sizes were 4.75 and 2.36 mm, where thése sieves
defined the particle size between the coarse and the fine aggregates. Many states specified
both sieve sizes in their specifications. Percent of TMD was used primarily for payment of
in-place pavement density, agreeing with an earlier finding in the specifications where most
states used TMD as a density reference value.

A majority of the states were using weighted values to determine the pay factor for
a lot, where weights that sum to 1.0 are multiplied by individual pay components, and then
added. However, there was variation in the coefficients assigned and no consensus regarding
the individual equation components. AASHTO refers to these weighted-type pay adjustments

as “composite pay factors” (AASHTO 1994b).

2.3 KDOT Quality Control/Quality Assurance (QC/QA) Program

KDOT is considering full implementation of the Superpave mixture design by the year 2000.
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As Superpave itselfis a perf(_)rmance-based system, the QC/QA program of KDOT will be
developed as part of the statistical performance-based specifications. KDOT has drafted
additional requirements for Superpave mixtures, which are partially in the form of
performance-based specifications. These along with existing KDOT Standard Specifications
were adopted as the specifications for the Superpave projects in Kansas.

KDOT specifications include quality control (QC) tests to ensure conformance of up
to 19 important aggregate and Superpave mixture parameters. Because of the
interrelationships among some parameters, continual control of all mix properties may not
be necessary. Out of 19 parameters, KDOT has specified working ranges (limits) to monitor
the 11 mixture parameters shown in Table 2.7 along with the compacted pavement density
(in-place pavement density) under quality control operations using control charts (Hossain
et al. 1997). The specification working ranges shown in Table 2.7 have been set by KDOT
based on historical experience and engineering judgement and refer to the mixture design
requirements in Table 2.8. Bonus or deduct payments in the specifications are based on the
air void percentage and in-place pavement density only (Hossain et al. 1997). For
specification limits, KDOT uses single point test values for five parameters and applies
additional dual criteria of four-point moving averages for the other parameters. If two
consecutive single point test results or any one four-point moving average value fails to fall
within the respective established limits, KDOT will require suspension of mixture production

until appropriate corrective measures are adopted (Hossain et al. 1997).

13
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Table 2.7
Mixtures

Specification Working Ranges (QC/QA) of the Kansas Superpave

Mix Characteristic Tolerance from JMF Tolerance from JMF
Single Test Value (4 Point Moving
Average Value)
Binder Content (Pb) +/- 0.6% +/- 0.3%

Mix Characteristic

Tolerance from
Specification Limits

Tolerance from
Specification Limits -

Single Test Value 4 Point Moving
Gradation :-
All applicable sieves NA zero tolerance
Air Voids (Va) +/-2.0 % NA
Voids in Mineral Agg. 1.0% below min. zero tolerance
(VMA)
Voids Filled with Asphalt NA zero tolerance
(VFA)
Coarse Agg. Angularity zero tolerance NA
(CAA)
Sand Equivalent (SE) zero tolerance NA
Fine Agg. Uncompacted zero tolerance NA
Voids (FAA)
Tensile Strength Ratio (TSR) zero tolerance NA

Density (%Gm) NA zero tolerance
at N, and N,
Dust/Binder Ratio (DP) NA zero tolerance
18
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KDOT has collected data from the plant-produced Superpave mixtures over the last
three construction seasons. This study was initiated to understand the significance of
different parameters monitored in the QC/QA program for four output parameters, namely
air voids at Ny, voids in mineral aggregates, in-place pavement density, and moisture

sensitivity.

2.4  Sensitivity of Superpave Mixture Tests to Changes in Mixture Components
2.4.1 NCHRP Project 9-7
Cominsky et al. (1998) conducted a study titled ““ Sensitivity of Superpave Mixture Tests to
Changes in Mixture Components” as part of the National Cooperative Highway Research
Program (NCHRP) project 9-7 “Field Procedures and Equipment to Implement SHRP
Asphalt Specifications.” The research focused on mixtures that were designed and
constructed using the Superpave mix design system on 11 projects in Kentucky, Mississippi,
Virginia, Florida, Texas, Kansas, Maryland, and Alabama. The purpose of the research was
to analyze whether laboratory changes in mixture components will result in significant
mixture property (volumetric and mechanical) changes.

The experiment was designed to investigate changes in the following input variables:

» asphalt binder content;

» change in coarse aggregate gradation (material retained on the 4.75 mm sieve),

* change in intermediate aggregate gradation (material passing the 4.75 mm sieve and

retained on the 0.3 mm sieve),

* change in fine aggregate gradation (material passing the 0.3 mm sieve);

20




» change in ratio of natural and crushed sands.

The effects of changeé in the input variables on the following response variables were
investigated:

« percent of densification (%G,,) or air voids, at Neesgns

» percent of densification (%Gim) at Nipiia @1d Ninayimums

» densification slope (%G, as a function of number of gyrations).

2.4.2 Experimental Design

The experiment was designed as a quarter factorial of a 23 design; a 2y, fractional factorial
with a center point (control). A full factorial 2° design would have required a total of 256
compacted specimens (32 cells, plus one center point, with a minimum of eight compacted
specimens per cell). The 2;,*? fractional factorial design reduced the number of compacted
specimens to 72. Table 2.9 indicates the experimental design. Table 2.10 describes the
experimental design with alias structure. If all third-order and higher interactions are
considered negligible, then the 2;;,>? experimental design provides data on main effects

aliased with second-order interactions involving variable A (asphalt content).
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Table 2.9 Experimental Matrix

D, E,
E,
D, E,
E,

Where: A, is the low level of variable A, B, is the high level of variable B, etc. B3 is
Blend 3, etc.

Variable A is asphalt binder content.

Variable B is fine aggregate gradation.

Variable C is coarse aggregate gradation.
Variable D is intermediate aggregate gradation.
Variable E is ratio of natural and crushed sands.

Table 2.10  Experimental Design and Alias Structure

Variable
A|B C | D=AB | E=AC | Treatment | Blend | Effect
L|IL]|L H H (1) (de) 2 -
HIL|L L L a 3 {, = A+BD+CE+ABCDE
LiH}|L L H b (¢) 4 I, =B+AD+CDE+ABCE
H|{H|L H L ab (d) 5 1, = AB+D+BCE+ACDE
LIL|H H L c(d) 6 l. = C+AE+BDE+ABCD
H|L|H L H ac (¢) 7 lc = AC+E+BCD+ABDE
LiH|H L L be 8 lge = BC+DE+ACD+ABE
H|H|H H H abc (de) 9 l,5c = BE+CD+ABC+ADE

The alias structure is determined from the defining relation I = ABD = ACE = BCDE:

A=BD =CE =ABCDE
B=AD =ABCE =CDE
C=ABCD =AE =BDE
D=AB =ACDE =BCE
E=ABDE =AC =BCD

BC=ACD =ABE =DE

BE=ADE =ABC =CD
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2.4.3 Some Conclusions

The conclusions of this study pertain to the specific combination of materials used in the
experiment. It was initially thought that different aggregates and gradations would have
different sensitivities to changes in material components. For instance, a 9.5 mm gravel
mixture may have a different sensitivity to changes in intermediate gradation than the study
mixture.

In all cases, the blend with higher asphalt content resulted in higher percent G, at

N

design ad lower air voids. The differences between the complementary pairs were consistent
with the expectations from the Superpave mixture design equations. Superpave equations
relate one percent change in asphalt content to two and one-half percent change in air voids.
Initial analysis of percent G, at Ny, indicated that the main effects of asphalt
content, fine gradation, and coarse gradation, as well as the interaction of asphalt content and
fine gradation, had significant effects on the percent G, at N, (percent of air voids).

The main effects of intermediate gradation and ratio of natural and crushed sand

appeared to have an insignificant effect on the percent G, at Ny, (percent of air voids).

'However, comparison of identical blends (ignoring the intermediate gradation and ratio of

natural and crushed sand as variables) indicated a difference in air voids of three to six
percent. These differences indicated that either the intermediate gradation and ratio of natural
and crushed sand had an effect on the percent G, at Ny, (percent of air voids), although
not as significant as other variables, or the third-order interactions aliased with these
variables had an effect.

The analysis of percent G, at N, indicated the following significant effects: the
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interaction of asphalt content and fine gradation aliased with the fourth-order interaction of
asphalt content, coarse grad;tion, intermediate gradation, and ratio of natural and crushed
sand; coarse gradation aliased with the third-order interaction of fine gradation, intermediate
gradation, ratio of natural and crushed sand; asphalt content aliased with the fifth-order
interaction of all five variables; the interaction of asphalt content and coarse gradation aliased
with the fourth-order interaction of asphalt content, fine gradation, intermediate gradation,
and ratio of natural and crushed sand; and fine gradation aliased with the third-order
interaction of coarse gradation, intermediate gradation, and ratio of natural and crushed sand.

The analysis of percent G, at N indicated the following significant effects: the

maximum
interaction of asphalt content and fine gradation aliased with the fourth-order interaction of
asphalt content, coarse gradation, intermediate gradation, and ratio of natural and crushed
sand; fine gradation aliased with the third-order interaction of coarse gradation, intermediate
gradation, ratio of natural and crushed sand; asphalt content aliased with the fifth-order
interaction of all five variables; and coarse gradation aliased with the third-order interaction
of fine gradation, intermediate gradation, and ratio of natural and crushed sand.

The interaction of asphalt content and fine gradation appeared to have the most
significant effect on all volumetric énd densification properties. Blends with high levels of
asphalt content and fine gradation had higher densification (percent G, at Nijia Noesigns and

N ) and lower air voids than blends with low levels of asphalt content and fine

maximum

gradation.
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2.4.4 Some Comments

'Although some meaningful conclusions have been drawn from this research, the conclusions

are only based on laboratory-mixed materials. Also, there are other mixture properties, in
addition to the variables used in this study, that are known to affect the volumetric properties
of the mixtures. Examples are the sand equivalent, fine aggregate angularity, coarse
aggregate anguiarity, and dust proportion. Also, the relationships investigated in the NCHRP
9-7 study were qualitative. A series of quantitative relationships would be a valuable tool for
engineers to make decisions on the working ranges of the mixture parameters from existing

data on the plant-produced Superpave mixtures (Chen et al. 1999).
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3.0 PROJECT SELECTION AND DATA COLLECTION

3.1 Project Selection
The projects for this research were subdivided based on the contract type (change order or
let). Some of the Superpave projects in Kansas were designated as pilot projects (change
order) in KDOT’s QC/QA program. In change order projects, the QC/QA program was
\ designed by drawing upon historical hot mix asphalt project experience as well as by using
guidelines of other agencies. These projects were negotiated to be built as Superpave
pavements under a change order. The other projects had been let and completed under
specifications set by KDOT’s QC/QA program (Hossain et al. 1997). In total, 12 recently-
built Superpave projects in Kansas were selected in this study. Table 3.1 lists the locations
and mixture types of the projects in this study. A pavement section was defined as a
pavement constructed by one contractor with a specific asphalt binder content and
aggregate mixture design. The sections varied in lengths from about 6 km to 24 km
on the State, US and Interstate routes in Kansas. The geographical locations of these projects
are shown on the Kansas map in Figure 3.1. Almost all projects are located in central and

northeast Kansas, except two, Sections 8 and 9, on US-83, are in northwest Kansas.
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Table 3.1 List of Superpave Projects in this Study
ISection Projects Number| Route | County Length 'Mixture Contract | Contractor
(km) | Type | Type
1 |254-08-K5060-02{K-254* | Butler | 7.66 |[SM-2C Let Shears
SM-1T
2 |254-87-K5058-02|K-254* [Sedgwick| 8.96 [SM-2C Let Shears .
SM-1T
3 24-75-K3325-02 | US-24 | Riley | 14.64 |SM-1T | Change Shilling
SM-2A | Order
4 [177-81-K3245-02| K-177 | Riley | 12.66 [SR-2C | Change
SM-1T | Order Shilling
SM-2C
5 75-70-K4690-02 | US-75 | Osage | 9.04 |SM-2C Let Hamm
6 70-27-K5982-01 | I-70 |Ellsworth| 23.27 | SR-2C Let US Asphalt
7 70-85-K2610-01 | I-70 Saline | 12.84 | SR-2C | Change Venture
SM-2C| Order
8 83-55-K5388-01 | US-83 | Logan | 24.01 |SM-2C Let Ritchie
9 83-20-K6480-01 | US-83 | Decatur | 20.00 |SM-2A | Change Allied
Order
10 |281-76-K5390-01{US-281| Pratt 11.07 |SM-2C Let Venture
11 [ 96-87-K4459-01 | K-96 |Sedgwick| 6.24 [SM-1T | Change Ritchie
Order
12 [96-78-K4458-01 | K-96 | Reno 6.70 |SM-1T | Change Ritchie
Order

* these projects are on the same stretch of the highway K-254 but were let separately
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3.2  Data Collection

Data collection was one of the major tasks in this study, and this data served as the
foundation for all results obtained by the statistical analysis. However, numerous obstacles,
such as, lack of complete and properly maintained records, made this task difficult.

As mentioned earlier, KDOT currently monitors up to 19 mix parameters for
Superpave mixtures under its QC/QA testing program. The test results generated in the
QC/QA program over last three construction seasons were collected either directly from the
contractors or from the responsible KDOT offices. All data was entered into a Microsoft
Excel spreadsheet, and for each spreadsheet, 19 mix parameters were listed in columns and
lot and sublot numbers were listed in rows. Some of these parameter were selected as
independent variables (input variables) and some as dependent variables (response variables)
as shown in Table 3.2. Table 3.3 shows the availability of the mix parameter data for each
project. The "X" mark in each cell means that the data of the parameter (column) is available
for the project (row), and a blank indicates missing data.

One problem encountered here was matching the Va and VMA data with the in-place
pavement density data because the lot and sublot sizes of Va and VMA are based on a
different‘system than in-place pavement density. KDOT has defined a standard mixture
production lot size on a tonnage basis as 2,721 tonnes (3,000 tons). The sample size specified
is four, resulting in four sublots of 680 tonnes (750 tons) in each lot for VA and VMA.
However, for the in-place pavement density determination, lot size is defined on a time basis
as one day’s production. This is subject to a minimum of 1,000 tons daily production

(quantitative basis). Each lot is divided into five sublots with two tests per sublot
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Table 3.2 List of Selected Dependent and Independent Variables

Dependent Variables Independent Variables
Air Void (%) Asphalt Binder Content (%)
VMA (%) %Gmm @ Nmaxirnum

In-place Pavement Density (%)

%Gmm @ Ninitia]

Moisture Sensitivity (TSR) (%)

% Retained on 19 mm sieve

% Retained on 12.5 mm sieve

% Retained on 9.5 mm sieve

% Retained on 2.36 mm sieve

% Retained on 1.18 mm sieve

% Retained on 0.6 m sieve

% Retained on 0.3 m sieve

% Retained on 0.075 m sieve

Sand Equivalent (%)

Fine Aggregate Angularity (%)

Coarse Aggregate Angularity (%)

Dust Proportion
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(Hossain et al. 1997). Due to the fact that the date of each Va and VMA test is available for

all projects, it was decided that in-place pavement density data would match the Va and
VMA data on a time basis. The average value of each day (lot size of in-place pavement
density) was used as the sublot value on a tonnage basis for Va and VMA, because the in-

place pavement density tests were conducted at random spots.
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4.0 PRINCIPAL COMPONENTS ANALYSIS

4.1 Background

Principal components analysis (PCA) is a statistical technique used in data reduction or in
detecting the principal constructs of a system (Johnson 1998). When a moderate to large
number of predictor variables (say 15 to 40) are gathered to predict some dependent
variables, PCA may be used to screen out the less important predictor variables and retain
the more important ones. PCA is also used to detect structure in the relationships between
variables, that is, to classify variables (Stevens 1986).

PCA is a mathematical procedure that transforms a set of correlated variables into
a smaller set of uncorrelated variables called principal components. The technique is useful
in understanding the dependencies among variables of a set and also in determining whether
subsets of variables cluster, or go with one another. Analyses of principal components are
more of a means to an end rather than an end in themselves, because they frequently serve
as intermediate steps in much larger investigations. For example, principal components may
be inputs to a multiple regression or cluster analysis (Johnson 1998; Stevens 1986).

The basic idea of PCA can be explained as follows: assume that two variables are
linearly correlated. A regression line can then be fitted that represents the "best" summary
of the linear relationship between the variables. If a variable can be defined that would
approximate the regression line in such a plot, then that variable would capture most of the

"essence” of the two items. Single scores on that new factor, represented by the regression
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line, could then be used in future data analyses to present that essence of the two items
(Stevens 1986). In doing so, the two variables have been reduced to one factor, which is a
linear combination of the two variables. (Details about computational aspects of PCA can
be found elsewhere (Johnson 1998; Stevens 1986).) Basically, the extraction of principal
components amounts to a variance maximization rotation of the original variable space. The
rotation is to maximize the variance of the new variable (factor) while minimizing the

variance around the factor (Johnson 1998; Stevens 1986).

4.2  Reasons for Using Principal Components Analysis
There are several reasons for using the PCA technique (Johnson 1998):

1. Data Screening: Principal components analysis is perhaps most useful for
screening multivariate data. For almost all data analysis situations, PCA can be
recommended as a first step. It can and should be performed on a set of data prior to
performing any other kinds of multivariate analyses. Follow-up analyses on the principal
components are useful for checking assumptions that a researcher might make about a set
of multivariate data and for identifying and locating possible outliers in the data. If other
abnormalities occur in a multivariate data set, PCA can help reveal them.

2. Clustering: Principal components analysis is also helpful whenever a researcher
wants to group experimental units into subgroups of similar types. It can be used to help
cluster experimental units into subgroups or for verifying the results of clustering programs.

3. Discriminate Analysis: Discriminate analysis programs require that an estimate
of the variance-covariance matrix be inverted to develop a discrimination rule. If only a small
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sample of experimental units from each candidate population is available, less than the
number of response variables being measured, the estimated variance-covariance matrix
cannot be inverted, and discriminate analysis programs will fail. A PCA revealed that a few
principal components contained almost all the information that was available in the original
variables. Values for the principal components were obtained for each experimental unit, and
these new variables were used as input variables to a discriminate analysis program. The
estimated variance-covariance matrix of the new variables could be inverted, and the
discriminate analysis program was able to produce a discrimination rule for classifying
observations.

4. Regression: It is well known that multiple regression can be misleading when
predictor variables are highly correlated in some fashion. This has been referred to as
fnulticollinearity among the predictor variables. Principal component analysis can help
determine whether multicollinearity occurs among the predicator variables. PCA in this study

was carried out for data screening and regression analysis.

4.3 PCA Analysis Results

In this study, PCA was used to select a group of Superpave mixture constituent parameters
that may be used to predict the value of VA, VMA, in-place pavement density, and TSR.
PCA was carried out by the Statistical Analysis System (SAS) software (S4S 1989). It should
be noted that the PCA results would not be the only basis to select the key factors, because
this study of Superpave volumetric properties is not a purely mathematical problem.

Engineering judgement should also be used in the process.
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In the first step, the bivariate correlation coefficients were computed for each pair of

variables. The studied variables were separated into subgroups so that variables within a

subgroup are highly correlated with each other.

The correlation coefficient between two variables is a measure of the degree of linear
association between the two variables. If the observations of t;?VO random variables are fitted
with the least squares method, the ratio of explained variance to the total variance is called
the coefficient of determination (R2). This represents the fraction of the total variation that
is explained by the estimated linear relationship. The correlation coefficient (7) is the square
root of the coefficient of determination. R? values always lie between 0 and 1. The higher the
R? value is, the stronger the statistical relationship. An R’ of 1 indicates a perfect correlation
between a pair of variables.

Figure 4.1 shows the correlation matrix based on all observations of the independent
variables from all projects. Table 4.1 tabulates the variable symbols and names. In total, 207
data sets out of 709 were included in this study due to the missing data mentioned earlier.
All correlation coefficients that were 0.5 or greater in magnitude have been underlined. In
this way, it is easier to form the first subgroup by finding two variables that are most highly
correlated with each other. The correlation coefficient between percent retained on the 2.36
mm (#8) sieve and percent retained on the 1.18 mm (#16) sieve was 0.98. Again, the

correlation coefficient between percent retained on the 1.18 mm (#16) sieve and percent
retained on the 0.6 mm (#30) sieve was 0.97. Also, the correlation coefficient between
percent retained on the 2.36 mm (#8) sieve and percent retained on the 0.6 mm (#30) sieve
was 0.93. These three variables should definitely be in the same group because all three are
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PB NMAX NMIN R34 R12 R38
DB 1.0000 0.4466  0.0572 -.6005 -.4652 -.5397
NMAX  0.4466 1.0000 0.2814 -.2665 -.0984 -.1882
MMIN  0.0572 0.2814 1.0000 -.0386 -.3012 -.4113
R34 -.6005 - .2665 -.0386 1.0000 0.5394 0.6048
R12 - .4652 -.0984 -.3012 0.5394 1.0000 0.9396
R38 -.5397 -.1882 -.4113 0.6048 0.9396 1.0000
RS -.4372 -.3133 -.7888 0.4438 0.5125 0.6932
R16 -.4155 -.2946 -.7640 0.4665 0.5792 0.7469
R30 -.4512 -.2730 -.6663 0.5353 0.6995 0.8409
R50 -.4583 -.2406 -.5722 0.5598 0.7605 0.8778
R200 -.6723 -.2838 0.1159 0.6525 0.4196 0.5252
SE -.4530 -.1745 -.2541 0.5501 0.7586 0.8029
FAA 0.5302 0.1546 -.4970 -.5692 -.3070 - .3462
CAA 0.4733 0.3046 0.0068 -.3762 0.2134 0.0173
DP 0.5090 0.1743 -.2159 -.5521 -.2938 -.3964
R8 R16 R30 R50 R200 TSR
PB -.4372 -.4155 -.4512 -.4583 -.6723 -.3774
NMAX -.3133 -.2946 -.2730 -.2406 -.2838 -.1387
MMIN  -.7888 -.7640 -.6663 -.5722 0.1159 -.1294
R34 0.4438 0.4665 0.5353 0.5598 0.6525 0.2116
R12 0.5125 0.5792 0.6995 0.7605 0.4196 0.2945
R38 0.6932 0.7469 0.8409 0.8778 0.5252 0.3035
R8 1.0000 0.9841 0.9254 0.8490 0.3900 0.2630
R16 0.9841 1.0000 0.9710 0.9127 0.4138 0.2472
R30 0.9254 0.9710 1.0000 0.9761 0.4946 0.2420
R50 0.8490 0.9127 0.9761 1.0000 0.5384 0.2328
R200 0.3900 0.4138 0.4946 0.5384 1.0000 0.2641
SE 0.5655 0.6530 0.7805 0.8212 0.5454 0.2150
FAA -.0009 -.0581 -.2005 -.2777 -.7576 -.1146
CAR -.4005 -.3277 -.2218 -.1387 -.5007 -.1536
DP -.2757 -.2995 -.3778 -.4224 -.9410 -.2170
SE FAR CAA DP

PB -.4530 0.5302 0.4733 0.5090

NMAX ~ -.1745 0.1546 0.3046 0.1743

MMIN  -.2541 -.4970 0.0068 -.2159

R34 0.5501 -.5692 -.3762 -.5521

R12 0.7586 -.3070 0.2134 -.2938

R38 0.8029 -.3462 0.0173 -.3964

R8 0.5655 -.0009 -.4005 -.2757

R16 0.6530 -.0581 -.3277 -.2995

R30 0.7805 -.2005 -.2218 -.3778

R50 0.8212 -.2777 -.1387 -.4224

R200 0.5454 -.7576 -.5007 -.9410

SE 1.0000 -.4922 0.0027 -.4725

FAA -.4922 1.0000 0.3182 0.7265

CAR 0.0027 0.3182 1.0000 0.4541

DP -.4725 0.7265 0.4541 1.0000

Figure 4.1  Correlation Matrix from SAS
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Table 4.1 Variable Symbols and Names

Variable Symbol | Name

PB Asphalt Binder Content (%)
NMAX %0Gmm @ Ny

NMIN %Gumm @ Nini

R34 % Retained on 19 mm sieve
R12 % Retained on 12.5 mm sieve
R38 % Retained on 9.5 mm sieve
RS % Retained on 2.36 mm sieve
R167 % Retained on 1.18 mm sieve
R30 % Retained on 0.6 m sieve
R50 % Retained on 0.3 m sieve
R200 % Retained on 0.075 m sieve
SE Sand Equivalent (%)

FAA Fine Aggregate Angularity (%)
CAA Coarse Aggregate Angularity (%)
DP Dust Proportion

highly correlated with one another. It is to be noted that the percent retained on the 0.3 mm
(#50) sieve should also be included in this subgroup since it had correlation coefficients of
0.85, 0.91, 0.97 with percent retained on the 2.36 mm (#8) sieve, percent retained on the 1.18
mm (#16) sieve and percent retained on the 0.6 mm (#30) sieve, respectively. Further

examination of the correlation matrix revealed that none of the other variables appeared to

belong to this first group of variables.

A second group of variables was formed with the variables percent retained on the
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0.075 mm (#200) sieve, fine aggregate angularity, and dust proportion. The correlation
coefficients between successive pairs of these variables were 0.76, 0.94, and 0.73,
respectively. No other variable appeared to belong to this subgroup.

A third group of variables was formed by including percent retained on the 19 mm
(3/4") sieve, percent retained on the 12.5 mm (1/2") sieve, and percent retained on the 9.5
mm (3/8") sieve. The correlation coefficients between successive pairs of these variables
were 0.54, 0.60, and 0.94, respectively. Another important reason that these three variables
should be included in a subgroup was that these three sieve sizes are normally used to define
the maximum and the nominal maximum sieve sizes for the Superpave mixtures included
in this study.

Sand equivalent value was somewhat correlated with many ofthe variables in Groups
i and 3. It could not be assigned to Group 1 since the correlation coefficients with many of
the variables in Group 1 were much lower than the correlation coefficients among the other
variables that had previously been assigned to Group 1. Also, it does not have any physical
relationship to the variables in Group 3. Thus, it was decided keep the sand equivalent value
independent of the two groups, and it was placed in a group by itself.

Asphalt binder content also had some correlation with two of the variables in Group
3: correlation coefficients of 0.60 and 0.54 with percent retained on the 19 mm (3/4") sieve
and percent retained on the 9.5 mm (3/8") sieve, respectively, but only 0.47 with percent
retained on the 12.5 mm (1/2") sieve. Thus, it was not included in Group 2 and was used to
form a group by itself.

Out of the variables studied for the Superpave mixtures, every variable had been
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assigned to a subgroup except for %G, @ Nypox NMAX), %Gy @ Nipi(NMIN), and coarse

aggregate angularity (CAA). None of these variables were highly correlated with any other
variable, and hence, each was placed into a group by itself.

To summarize, the final grouping of the variables were:

Group 1: % retained on the 2.36 mm (#8) sieve, % retained on the 1.18 mm (#16)
sieve, % retained on the 0.6 mm (#30) sieve, and % retained on the 0.3 mm
(#50) sieve

Group 2: 9% retained on the 0.075 mm (#200) sieve, fine aggregate angularity, and dust
proportion

Group 3: % retained on the 19 mm (3/4") sieve, % retained on the 12.5 mm (1/2")

sieve, and % retained on the 9.5 mm (3/8") sieve

Group 4: Sand equivalent
Group 5: Asphalt binder content
Group 6: %Gmm @ Niax
Group 7: %Gim @ Nini
Group 8: Coarse aggregate angularity

Table 4.2 shows the eigenvalues from the PCA results. The eigenvalues of a p*p
matrix A are the solutions to the following determinant equation: |A - AI| =0, in which, I
is the identity matrix of order p. The table consists of four columns. The first column gives
the eigenvalues. The second column lists the difference between successive eigenvalues. This
difference has limited use. The third and fourth columns give the proportion of the total
variation, which is accounted for by successive principal components, and the cumulative
proportion of the total variation, which is accounted for by that principal component, and all
of the previous ones, respectively. As mentioned earlier, a principal component/factor in
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Table4.2 Significant Eigenvalues of the Correlation Matrix (Extraction: Principal
Component-Analysis)

Factor Eigenvalue Difference % Total % Cumulative
Eigenvalue Variance Variance
1 7.90366 4.87644 0.493979 0.49398
2 3.02722 1.33949 0.189201 0.68318
3 1.68773 0.70587 0.105483 0.78866
4 0.98186 0.15878 0.061366 0.85003

PCA is a linear combination of all variables.

According to Kaiser’s rule of thumb, factors with eigenvalues greater than or close
to 1 are significant. Results in Table 4.2 indicate that four principle components (or factors)
are signiﬁcant. A plot of these eigenvalues is shown in Figure 4.2. From the plot, it is noted
when the plot tends to level off, those eigenvalues are usually close enough to zero that they
can be ignored. At the very least, the smaller ones are probably measuring nothing but the
random noise which is very difficult to interpret. The plot also shows that the first four
factors have eigenvalues greater than or close to 1.0. The first factor explained 49 percent of
the variation on the system. The second, third, and fourth factors accounted for 18.9 percent,
10.5 percent, and 6.1 percent of the variation, respectively. The four factors together
accounted for 85 percent of the total variance, so it appears that the observation data tend to
fall within a 4-dimensional subspace of the 15-dimensional space. After consultation with
statisticians and KDOT engineers, it was decided that an 8-dimensional subspace obtained
from the correlation matrix analysis would be used for future study instead of the 4-

dimensional subspace based on the analysis of eigenvalues. This was felt necessary to keep

41



Value

& o & & P o
0 T I T T 1 T T T i T h hd v v A4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of Eigenvalues

Figure 4.2  Plot of Eigenvalues

the independent variables selected for the study in the multiple correlation analysis (MCA),
and also because MCA can also be used to eliminate the less important variables based on
the significance analysis.

There is no obvious interpretation for the first four factors in the PCA. Any such
interpretation must come ffom an examination of the factor loadings in Table 4.3. The factor
loadings are normalized to have length 1, which indicates that the sum of the squares of each
factor must be equal to 1. The variables with the larger factor loadings (absolute value) have
stronger relationships. The variables in this study, which tend to have strong relationships
with the first factor, are percent retained on the 2.36 mm (#8) sieve, percent retained on the

1.18 mm (#16) sieve, percent retained on the 0.6 mm (#30) sieve, and percent retained on
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Table 4.3 Factor Loadings from Principal Components
Variable Factor
Symbol 1 2 3 4
PB -.244312 0.214634 0.151666 -.308586
NMAX -.130860 0.030720 0.386782 -273532
NMIN -.156954 -.469696 0.222184 -.003674
R34 0.257537 -.193965 0.020310 -.026896
R12 0.272223 0.084491 0.405708 0.185222
R38 0.316614 0.088311 0.263040 0.084084
R8 0.295760 0.239707 -.235536 -.110637
R16 0.308572 0.237048 -.152445 -.140462
R30 0.328847 0.187410 -.010814 -.139291
R50 0.330276 0.147324 0.087908 -.131070
R200 0.260201 -.343347 -.046778 -.098387
SE 0.293224 0.005918 0.287427 -.070860
FAA -.119862 0.223545 0.585895 0.166266
CAA -.119862 0.223545 0.585895 0.166266
DP -.214975 0.369949 0.020750 0.178497
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the 0.3 mm (#50) sieve. The _variables that have strong relationships with the second factor
are percent retained on the 0.075 mm (#200) sieve, fine aggregate angularity, and dust
proportion. The variable with relationship with the third factor is the coarse aggregate
angularity. The fourth factor is strongly related to the asphalt binder content. It is interesting
to note that these four groups of variables are similar to the groups of variables obtained from

the correlation analysis.

4.4 Re-analysis (without SM-2A)

A new PCA was carried out because two projects, Projects 3 and 9, in the Table 3.1
containing SM-2A, did not have good quality data. When the data from these two projects
was excluded, only 136 data sets were used, compared to 207 with SM-2A. The correlation

matrix of PCA is shown in Figure 4.3. The variable groups using the same method as earlier

are:

Group 1: percent retained on the 0.6 mm (#30) sieve, and percent retained on the 0.3
mm (#50) sieve, percent retained on the 0.075 mm (#200) sieve, dust
proportion, sand equivalent, fine aggregate angularity, and coarse aggregate
angularity

Group 2: Asphalt binder content, percent retained on the 19 mm (3/4") sieve, and
percent retained on the 12.5 mm (1/2") sieve

Group 3: percent retained on the 2.36 mm (#8) sieve, and percent retained on the 1.18
mm (#16) sieve

Group 4: percent retained on the 9.5 mm (3/8") sieve

Group 5: %Gmm @ Niyax

Group 6: %Gmm @ Nipi
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. Using engineering judgement, it is not an improvement to subdivide th¢ independent
variables as above because variables with no physical connection were categorized in the
same subgroup. Additional data would improve the results from the PCA analysis as long
as the data was from the field tests, even though the quality of the mixture was poor. The
more data that is used, the more results would be reasonably obtained both from statistical

and an engineering standpoint.
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5.0 MULTIPLE CORRELATION ANALYSIS

5.1 Background

Multiple correlation analysis (MCA) provides a great deal of important information. It
isolates the key variables which have the most significant effect on the system. It also reports
the statistical certainty and relative weight of each of these variables. The major advantage
of MCA, however, is the ability to deal with a large amount of data containing a large set of
variables.

The basic premise of MCA is finding a correlation between a dependent variable and
one or more independent variables. In its simplest form, a positive correlation between two
yariables means that as one variable is increased, the other tends to increase. If the data is
affected by more than one independent variable, multiple correlation (also known as multiple
regression) analysis determines the effects of these independent variables, and also the
effects of any interactions among them. The result is an equation, which can be called a
model, and describes the effects of the independent variables on the dependent variable.

In order to quantify the effect of the key predictor variables obtained from PCA on
each of the four responses variables: i.e. Va, VMA, in-place pavement density, and TSR; the
assumption was made that each response variable, or “Y” satisfied the following functional
relationship:

Y = F {Binder Content, Aggregate gradation, Sand Equivalent, ...... } ..(5.1)

although the explicit form of this function was unknown. Using Taylor’s theorem from
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Calculus, the function F has partial derivatives with respect to the variables in the argument.
This function is estimated using an expression which is linear in the coefficients. The model
then takes the following form: (Schwenke 1998)

Y =aX, +bX, +cX5t. s (5.2)
where Y is the dependent variable, X, X, and X; are the independent variables, and a, b, and
c are the correlation coefficients.

In some cases, two or more independent variables will have some sort of interaction
in the system being studied. An interaction is said to exist between two independent variables
if the effect of one depends on the effect of the other. For example, X, may have a more
significant effect at a high level of X, than at a low level of X,. In order to account for this
effect, it is possible to create new variables that are combinations of the original set of
independent variables. Interaction between two variables is often crucial in multiple
correlation analysis. The most common form of an interaction is the product of two variables.
These can then be added to the model, when appropriate, creating an equation of the
following form (Schwenke 1998):

Y =aX, +bX, HIoX Xyt Xy e (5.3)
where I, represents the correlation coefficient of the interaction between the variables X,
and X,. Since there is virtually a large number of possible interéctions, the present analysis

includes the interactions between two variables only.

5.2  MC Software Program
Multiple Correlation (MC ) is a powerful commercial software (MC 1991). MC can be used
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to determine the relationship_between a dependent variable (Y) and one or more independent |
variables (X's) and their interactions so that Y can be predicted from the X's (MC 1991).MC
is intended to extract the maximum information from a set of data and can:
« distinguish independent variables which significantly affect the dependent variable
from those that do not (superfluous variables)
« establish a functional relationship which quantifies how the significant independent
variables affect the dependent variable
« permit predictions of the dependent variable from a functional relationship instead
of guessing and/or continually running experiments with different variables
« indicate prediction accuracy
« ascertain if all the variability in the dependent variable has been explained, and if
it has not been, determine what to do next
« reveal optimum operating conditions

» reduce testing.

53 Criteria to Build A Model
Every model is built on the framework of statistical information. Using multiple correlation
analysis (MCA), the arguments were determined via least squares theory that were
statistically significantly based on the following four statistics (MC 1991):

1. Correlation Coefficient : The correlation coefficient reflects the magnitude and
sign of the effect of a variable. A positive sign of a correlation coefficient predicts an
increase in the dependent variable as the independent variable is increased.
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2. t-Value: The t-value represents the relative certainty that a given independent
variable has an effect on the dependent variable. Specifically, it is the magnitude of the
correlation coefficient divided by the standard deviation of the variable to which it pertains.

The t-value for the ith variable is given by:

t b (5.4)
S(bl ) .............................................................................
where t = indicator of the significance of the ith independent variable,
b, = coefficient for the ith independent variable, and

S(b,)= standard deviation of the ith independent variable.

In general, a t-value with an absolute value greater than or equal to two (2),
corresponding to a 90% certainty, is considered to be statistically significant. It is important
té note that the sign of the t-value relates only to the sign of the effect, not the certainty
involved with a given variable. Also, a variable with a t-value of less than 2 is not considered
to be significant. The goal of MCA was to have a correlation model with all variables in the
model having absolute t-values greater than or equal to 2.

3. R* Value: Therevare two types of R? calculations. Both range from zero (0) to one
(1). The first is the R? for the model. This is also known as the coefficient of multiple
determination. This R? value reflects the amount of the total variation of the data which is
described by the model. A value of one would occur if all of the variation is explained by a
given model, while a value of zero indicates none of the variation is explained. Any variation
that is not explained could be the result of the effects of variables not included in the model,

errors in the data, or any number of uncontrolled and uncontrollable effects (sometimes
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referred to as noise in the data). It is calculated by:

, (= p-1S,)
) (l’l - 1)(Stota1)2

where: n = number of rows in the data set,

p = number of terms in the model,

S, x = standard deviation of the dependent variable, and

S,.ra = total variation of the model.

R? is the only criteria in determining how good a model is. The model selected is
usually the one with the largest R2 However, R?is also a random variable based on sampled
information, and the model associated with the absolute maximum R? may not always be the
most relevant model (Wesolowsky 1976). Besides, R? is always increased by including
additional variables even when the new variable has very little predictive power. Therefore,
it is also necessary to look at the Mean Square Error (MSE) when determining the quality of
a model.

The second type of R? is calculated for each independent variable. As a model is
built, the analysis software (MC) also provides an R? value for each independent variable in
the model. This value is a measure of how well a particular variable correlates with other
variables currently in the model. It is used to help decide which of two variables with the
same t-value should be included in the model.

4. Mean Square Error (MSE): Every linear model has an associated MSE estimating
variance (02). MSE is used to construct all confidence intervals and test statistics. The
smallest MSE will result in the narrowest confidence intervals and largest test statistics. The
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model with the smallest MSE involving the least number of independent variables can be
considered as the best model. However, the model with the absolute smallest MSE may not
provide the best intuitive or explainable model. A model providing a slightly larger MSE,

but with terms included in the model that are more relevant to the problem, may be more

desirable (Ot 1993).

5.4  Building the Model

There are several possible strategies for building the model. A forward selection procedure,
available in MC, was used to determine which independent variables are closely related to
the air voids, voids in mineral aggregate, in-place pavement density, and moisture sensitivity
(TSR).

The strategy selected in this study was to start with no variables in the regression
equation or model. The first independent variable considered for the model was the most
significant one with the highest absolute t-value, provided its presence in the model would
be physically meaningful. At this point, the remaining variables were individually
reevaluated to determine what their t-values would be if they were included in the model.
The variable with the highest t-value was then added to the model, if it was physically
plausible, and this process was repeated until all variables not in the model had t-values
lower than 2. This approach made it possible to evaluate the effects of a very large number
of possible significant variables individually, and to find the ones that were the most
significant.

After statistically significant variables were determined, first-order interactions were
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included in the model as additional independent variables. Then MC was to used to evaluate
each member of this extendc%d set of variables to determine what interaction term should be
included in the models based on the t-value, while keeping all the selected independent
variables. However, some of the independent variables then had t-values of lower than two
because of added interaction terms. There were exceptions to this process under the
following circumstances:

(i) Variables with high t-values might have little physical relevance or the sign of

their correlation was opposite to the accepted understanding of the engineering

concept, and

(ii) Too many variables were included in the model to preserve a reasonable degree

of freedom. In other words, it was important not to overspecify the model variables.

5.5 MCA Results
Based on the PCA results and by consultation with KDOT engineers, eight parameters were
selected from the subgroups as independent variables: percent retained on the 0.6 mm (#30)
sieve, dust proportion, one sieve size smaller than nominal maximum size of the analyzed
mixture, sand equivalent, asphalt binder content, %Gm @ Nyax » %0Gim @ Niyin » and coarse
aggregate angularity. The final regression equations with the statistical information (for air
void, void in mineral aggregate, in-place pavement density, and moisture sensitivity) are as
below:
Change Order Projects:

e Tables 5.1 to 5.4: 9.5 mm nominal maximum size mixture (SM-1T)
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e Tables 5.5 to 5.8: 12.5 mm nominal maximum size mixture (SM-2A)

e Tables 5.9 to 5.12: 19 mm nominal maximum size mixture without Reclaimed

Asphaltic Pavement (RAP) (SM-2C)

e Tables 5.13 to 5.16: 19 mm nominal maximum size mixture with RAP (SR-2C)
Let Projects:

*» Tables 5.17 to 5.19: 19 mm nominal maximum size mixture without RAP (SM-2C)

« Tables 5.20 to 5.22: 19 mm nominal maximum size mixture with RAP (SR-2C)
The symbols in parenthesis are the mixture symbols used by KDOT.

Table 5.23 summarizes R? values from all regression equations. It indicates that very
good predictive equations can be found using the predictors isolated in this study for the air
voids at N and VMA, but not for the in-place pavement density and TSR. R? values for
air void in all cases are greater than 0.70 and R? values for VMA vary from 0.67 to 0.90. No
statistically significant equations were obtained for the in-place pavement density with R?
values ranging from 0.43 to 0.44 for the smaller-size mixtures (9.5 mm and 12.5 mm) and
~ 0.05 to 0.36 for the large-size (19 mm) mixtures. This is somewhat expected since the
in-place pavement density also depends upon the mixture temperature, compactive effort,
etc., in addition to the mixture constituents. The difference in R? values between smaller-size
and large-size mixtures also indicates that the compaction of large-size mixtures is different
from the compaction of smaller-size mixtures. This is obvious in the field when the large-
size Superpave mixtures tend to cool off fast due to lack of sandy materials. The regression
equations for TSR have R? values of 0.52 for the smaller-size mixtures and 0.76 to 0.80 for
the larger-size mixtures. The difference of R? values between these mixtures implies that
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Table 5.1 Multiple Regression Equation Information for Va of SM-1T (Change

Order)
Variable Coeff. t p R?
Intercept 1767.57 3.62 0.001
Pb -0.804 -2.76 0.009 0.42
%G mm@Niax -1.137 -5.25 0.0001 0.39
%Retained on 0.6 mm -18.445 -3.34 0.002 1.00
Sand Equivalent 20.409 -3.50 0.001 1.00
Dust Proportion 2.024 1.54 0.13 0.90
Sand Equivalent*%Retained on 0.6 mm | 0.229 3.40 0.002 1.00
Model Statistics: R =0.74 MSE=0.21 F=16.04 p=0.0001 N =39

Table5.2 Multiple Regression Equation Information for VMA of SM-1T (Change

Order)
Variable Coeff. t p R’
Intercept 2251.48 2.84 0.008
Pb 0.968 4.37 0.0001 0.44
%G mm@Nax -15.959 -2.01 0.053 1.00
%Retained on 0.6 mm -25.000 -2.67 0.012 1.00
Sand Equivalent -8.578 -2.04 0.005 1.00
Dust Proportion -0.523 -0.55 0.587 0.91
%G @Npay ¥ Y0Retained on 0.6 mm 0.180 1.90 0.066 1.00
Sand Equivalent*%Retained on 0.6 mm | 0.094 1.92 0.063 1.00
Model Statistics: R?=0.90 MSE=0.11 F=39.18 p=0.0001 N=39

55



Table 5.3

Multiple Regression Equation Information for In-place Pavement
Density of SM-1T (Change Order)

Variable Coeff. t p R’
Intercept 134.03 16.77 0.0001
Sand Equivalent -0.535 -5.54 0.0001 0.0

Model Statistics: R?=0.44 MSE =0.81 F=30.64 p=0.0001 N=39

Table 5.4 Multiple Regression Equation Information for TSR of SM-1T (Change
Order)
Variable Coeff. t p R?
Intercept -60.53 -2.25 0.031
%G m@Nmin 0.351 1.93 0.061 0.06
%Retained on 0.6 mm -0.715 -3.30 0.002 0.73
Sand Equivalent 2.145 5.60 0.0001 0.73

Model Statistics: R* =0.52

MSE =3.45 F=13.04 p=0.0001 N=39

56



Table 5.5 Multiple Regression Equation Information for Va of SM-2A (Change

Order)
Variable Coeff. t p R?
Intercept 100.42 30.306 0.0001
Pb -0.569 -4.28 0.0004 0.43
% Gmm@Nipax -0.387 -4.53 0.0002 0.88
%Gpm@Nuin -0.580 -6.13 0.0001 0.87
%Retained on 0.6 mm -0.055 -2.88 0.0093 0.40
Model Statistics: R2=0.98 MSE =0.01 F=286.99 p=0.0001 N=24

Table5.6 Multiple Regression Equation Information for VMA of SM-2A (Change

Order)
Variable Coeff. t p R?
Intercept 56.41 7.95 0.0001
Pb 1.051 3.61 0.0016 0.47
%0 Grm@N i -0.530 -6.04 0.0001 0.35
%Retained on 9.5 mm -0.038 | -1.85 0.0079 0.25
Model Statistics: R?=0.72 MSE=0.11 F=17.72 p=0.0001 N=24
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Table 5.7 Multiple Regression Equation Information for In-place Pavement
Density of SM-2A (Change Order)

Variable Coeff. t p R’
Intercept 115.01 19.44 0.0001
Sand Equivalent -0.292 -4.02 0.0006 0.16
Dust Proportion 3.191 230 | 0.032 0.16
Model Statistics: R? =0.43 MSE =0.34 F=8.34 p=0.002 N=24

Table 5.8 Multiple Regression Equation Information for TSR of SM-2A (Change

Order)
Variable Coeff. t p R?
Intercept 692.32 8.38 0.0001
%G mm@Ninax -7.420 -3.73 0.0012 0.84
%G @Npin 4.408 1.94 0.066 0.84
Sand Equivalent -3.812 -15.72 0.0001 0.03
Model Statistics: R2=0.52 MSE =4.38 F=92.88 p=0.0001 N=24
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Table 5.9 Multiple Regression Equation Information for Va of SM-2C (Change

Order)
Variable Coeff. t p R?
Intercept 25.99 2.68 0.009
% Gmm@Nimax -0.639 -5.49 0.0001 0.66
%Gy @N i -0.098 -1.00 0.322 0.67
%Retained on 12.5 mm -0.047 -3.36 0.001 0.09
%Retained on 0.6 mm 0.549 10.34 0.0001 0.12
Model Statistics: R*=0.75 MSE=0.22 F=74.62 p=0.0001 N=106

Table5.10  Multiple Regression Equation Information for VMA of SM-2C (Change

Order)
Variable Coeff. t p R?
Intercept 65.88 10.52 0.0001
%G mm@Nin -0.555 -7.72 0.0001 0.00
Dust Proportion -4.547 -12.00 0.0001 0.00
Model Statistics: R*=0.67 MSE =0.35 F=106.61 p=0.0001 N=106
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Table 5.11  Multiple Regression Equation Information for In-place Pavement
Density of SM-2C (Change Order)

Variable Coeff. t p R?
Intercept 76.35 4.30 0.0001
%G nm@Noin 0.474 3.60 0.0005 0.09
%Retained on 0.6 mm -0.277 -2.39 0.019 0.09
Model Statistics: R2=0.20 MSE = 1.09F=13.25 p=0.0001 N=106

Table5.12  Multiple Regression Equation Information for TSR of SM-2C (Change

Order)
Variable Coeff. t p R?
Intercept 10269 1.78 0.078
% Gmm@N ax 286.876 4.71 0.0001 1.00
%G mm@N i -176.162 -2.66 0.0091 1.00
%Retained on 0.6 mm -140.983 -5.25 0.0001 1.00
Sand Equivalent -233.233 -4.23 0.0001 1.00
Dust Proportion 1008.936 -5.82 0.0001 1.00
%Retained on 0.6 mm*Sand Equivalent| 1.710 5.29 0.0001 1.00
%G mm@N,a ¥ Sand Equivalent -2.363 -4.19 0.0001 1.00
%G amm@N o™ %0 G @Niin -1.071 -2.38 0.019 1.00
Sand Equivalent*%G,,,,@N,, 3.413 5.20 0.0001 1.00
Sand Equivalent*Dust Proportion 12.216 5.85 0.0001 1.00
Model Statistics: R?=0.80 MSE=8.06 F=37.94 p=0.00021 N=106
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Table 5.13  Multiple Regression Equation Information for Va of SR-2C (Change

Order)
Variable Coeff. t p R’
Intercept 1390.49 1.97 0.056
%G m@Nin -16.891 -2.07 0.045 1.00
%Retained on 0.6 mm -16.050 -2.00 0.052 1.00
Dust Proportion 2.041 5.16 0.0001 0.32
%G @Nin*%Retained on 0.6 mm 0.195 2.10 0.042 1.00

Model Statistics: R?=0.82 MSE =0.23

F=47.62 p=0.0001 N=45

Table5.14  Multiple Regression Equation Information for VMA of SR-2C (Change
Order)
Variable Coeff. t p R?
Intercept 1375.80 2.40 0.021

Asphalt Binder Content -0.575 3.08 0.004 0.53
%G mm@Nmin -16.266 -2.46 0.018 1.00
%Retained on 0.6 mm -15.803 -2.43 0.020 1.00
Sand Equivalent 0.011 1.96 0.058 0.41
%G ym@Npin *%0Retained on 0.6 mm 0.188 2.50 0.017 1.00

Model Statistics: R?=0.81 MSE =0.13 F=34.88 p=0.0001 N=45
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Table 5.15  Multiple Regression Equation Information for In-piace Pavement
Density of SR-2C (Change Order)
Variable Coeff. t p R’
Intercept 146.13 13.45 0.0001
%Retained on 0.6 mm -0.606 -4.96 0.0001 0.00
Model Statistics: R? =0.36 MSE =1.08 F=24.61 p=0.0001 N=45

Table 5.16  Multiple Regression Equation Information for TSR of SR-2C (Change
Order)
Variable Coeff. t p R?
Intercept -3603.93 -2.04 0.048
Asphalt Binder Content 813.631 2.62 0.012 1.00
%G mm@Nin 46.279 2.26 0.029 1.00
%Retained on 0.6 mm -2.619 -4.13 0.002 0.39
Sand Equivalent -0.223 -3.26 0.0023 0.42
Asphalt Binder Content*%G,,,,@N i -9.546 -2.65 0.011 1.00
Model Statistics: R*=0.76 MSE =17.85 F=25.97 p=0.0001 N=45
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Table 5.17  Multiple Regression Equation Information for Va of SM-2C (Let)

Variable Coeff. t p R?
Intercept -73.47 -0.74 0.46
Pb -0.279 -1.93 0.057 0.70
%G mm@Nmax 8.455 8.60 0.0001 1.00
%G nm@Noin -8.658 -8.13 0.0001 1.00
%Retained on 12.5 mm -0.002 -0.21 0.837 0.91
%Retained on 0.6 mm 2.558 1.87 0.065 1.00
Sand Equivalent -0.835 -1.74 0.086 1.00
%G m@N,yin ¥ YoRetained on 0.6 mm 0.083 5.43 0.0001 1.00
%Gmm@Nmax*%Retained on 0.6 mm -0.100 -8.68 0.0001 1.00
%G m@N,yin ¥Sand Equivalent 0.010 1.73 0.087 1.00

Model Statistics: R* = 0.94 MSE =0.03 F=169.46 p=0.0001 N=104
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Table 5.18  Multiple Regression Equation Information for VMA of SM-2C (Let)

Variable Coeff. t p R?
Intercept -67.16 -0.48 0.636

Pb 7.952 0.72 0.476 1.00
%G m@N 9.551 5.53 0.0001 1.00
%G @N i -9.887 -7.20 0.0001 1.00
%Retained on 12.5 mm -0.016 -1.94 0.055 0.90
%Retained on 0.6 mm 1.177 1.00 0.322 1.00
Dust Proportion -1.295 -4.91 0.0001 0.71
%G, @N,,;,,¥*%Retained on 0.6 mm 0.084 7.51 0.0001 1.00
%G, @N,,,.. ¥ %Retained on 0.6 mm -0.086 -6.42 0.0001 1.00
%G, @N,,;i, ¥Pb 0.424 3.69 0.0004 1.00
%G, @N . *Pb -0.447 2.96 0.004 1.00

Model Statistics: R*=0.90 MSE =0.03 F=83.92 p=0.0001 N=104

Table 5.19
Density of SM-2C (Let)

Multiple Regression Equation Information for In-place Pavement

Variable Coeff. t p R?
Intercept 85.48 24.12 0.0001
%Retained on 0.6 mm 0.088 2.20 0.030 0.00

Model Statistics: R*=0.05 MSE=1.06 F=4.835 p=0.03 N=104
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Table 5.20  Multiple Regression Equation Information for Va of SR-2C (Let)

Variable Coeff. t p R?
Intercept 86.17 4.68 0.0001
Pb 1.045 1.96 0.054 0.99
%G mm@N -1.920 -10.70 0.0001 0.99
%G mm@N i 1.027 10.45 0.0001 0.99
%Retained on 0.6 mm -0.017 -0.95 0.346 0.84
Sand Equivalent 0.180 3.78 0.0003 0.99
Dust Propbrtion 19.183 1.25 0.214 1.00
%Gy @Nin*Dust Proportion -1.307 -14.71 0.0001 1.00
%G @N e ¥Dust Proportion 0.883 6.42 0.0001 1.00
Sand Equivalent*Dust Proportion -0.154 -3.69 0.0004 1.00
Pb*Dust Proportion -0.974 -2.00 0.049 1.00
Model Statistics: R>=0.99 MSE=0.01 F=552.15 p=0.0001 N=83
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Table 5.21  Multiple Regression Equation Information for VMA of SR-2C (Let)

Variable Coeff. t p R?
Intercept -821.55 -2.67 0.009
Pb 0.762 5.51 0.0001 0.32
%G rm@Niax -0.395 -5.78 0.0001 0.57
% Gimm@Nin 6.780 2.81 0.006 1.00
%Retained on 0.6 mm 3.368 2.18 0.032 1.00
Sand Equivalent 11.692 3.01 0.004 1.00
Dust Proportion -2.147 -6.45 0.0001 0.78
%G m@N,in ¥ Sand Equivalent -0.092 -3.02 0.003 1.00
%Retained on 0.6 mm*Sand Equivalent| -0.044 -2.29 0.025 1.00
Model Statistics: R2=0.89 MSE=0.04 F=78.48 p=0.0001 N=88

Table 5.22 Multiple Regression Equation Information for In-place Pavement

Density of SR-2C (Let)
Variable Coeff. t p R’
Intercept 80.50 2.24 0.028
%G mm@Npax 0.519 2.16 0.033 0.17
%Retained on 0.6 mm -0.384 -1.83 0.070 0.76
Dust Proportion -5.212 -3.52 0.001 0.74
Model Statistics: R2=0.22 MSE=1.01 F=8.08 p=0.0001 N=88
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Table 5.23 Summary of R? Values for All Regression Equations

9.5 and 12.5 mm mixtures 19 mm mixtures
Va 0.74 to 0.98 0.75 t0 0.99
VMA 0.72 t0 0.90 0.67 to 0.90
Density (in-place) 0.43 to0 0.44 0.05 to 0.36
TSR 0.52 to 0.52 0.76 to 0.80
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volumetric properties monitored by KDOT have only casual, not decisive effect on TSR.
This conclusion can be supported by practical experience: some mixtures had a perfect
volumetric design (which means that the volumetric parameters satisfied all requirements set
by KDOT and other agencies), but failed the TSR test. The moisture sensitivity of the
Superpave mixtures may be more related to the properties of the asphalt binder than to the
asphalt binder content and other factors. It is also important to note that the coarse aggregate
angularity does not appear in any of predictive equations presumably due to the fact that all

coarse aggregates used on the Superpave projects in Kansas were entirely crushed materials.

5.6  Sensitivity Analysis

Based on the R? value analysis in the previous section, only correlation equations for Va and
VMA were selected in the sensitivity analysis. In this analysis, the predicted values (air voids
at Ny and VMA) were plotted against different values of the independent variables
obtained from the corresponding equations. The predicted value changes with the levels of
acertain independent variable. Three levels of each independent variable, minimum, median,
and maximum, from the data set used to formulate these equations were used. All other

independent variables were kept fixed.

5.6.1 SM-IT: 9.5 mm Nominal Maximum-Size Mixture (Change Order)
Tables 5.1 and 5.2 indicate that the binder content, percent G, at N, , percent material
retained on the 0.6 mm (#30) sieve, sand equivalent value, dust proportion and the

interaction between the sand equivalent and percent material retained on the 0.6 mm (#30)
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sieve significantly affect the air voids obtained at Ny, and VMA. For VMA, the interaction
between percent G, at N,,;and percent material retained on the 0.6 mm (#30) sieve is also
significant. These variables should be controlled very precisely in plant production to
produce a 9.5 mm (3/8") Superpave mixture with consistent air void and VMA.

Figures 5.1 and 5.2 are the plots showing the predicted values (air VOidS at Nesign and
VMA) against different values of the independent variables shown in Tables 5.1 and 5.2.
Figure 5.1 indicates that with all other factors fixed, the air voids at Ny, is most sensitive
to the changes in percent G, at N, , percent material retained on the 0.6 mm (#30) sieve
and sand equivalent value. A five percent change in the percent material retained on the 0.6
mm (#30) sieve increases the air voids by almost 3%. Very high %Gy, at N values are
also detrimental for the air voids. The air void is not as sensitive to the changes in the binder
content as conventional thinking would indicate. This might be because of higher binder
contents (6.1 to 7.1%) used on these projects.

The figure also indicates that the increase in dust proportion will increase the air
voids. This is also contrary to common beliefs. However, it should be noted that the data
used in this analysis was “skewed;” i.e., all air void values were below the 4% target value
required in all projects. This probably indicates the benefit of having more dust when the air
void is below 4%; some bag house fines could be introduced into the mixture when the
binder content is kept unchanged.

Figure 5.2 illustrates that when all other factors are kept constant, VMA is most
sensitive to changes in percent material retained on the 0.6 mm (#30) sieve and sand
equivalent value. A 5% change in the percent of material retained on the 0.6 mm (#30) sieve
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increases VMA by about 1.5%. The KDOT requirement for VMA for the 9.5 mm (3/8 in.)
mix on a single test is minifnum 14% (= 15% -1%). To achieve this, at least 84% of the
materials should be retained on the 0.6 mm (#30) sieve. However, KDOT currently requires
at least 76% be retained on this sieve size. This may need further study. In fact, the 0.6 mm
(#30) sieve seems to be a very critical sieve for the Superpave mixtures currently being
produced in Kansas.

VMA also does not appear to be as sensitive to the changes in the binder content as
conventional thinking would indicate. This again might be due to the higher binder contents
(6.1 to 7.1%) used on these projects. The figure also shows that the VMA values are fairly
insensitive to the dust proportion values, which is not unusual since the dust proportion was
tightly controlled on all Kansas Superpave projects. Production was once suspended on the

I-70 U.S. Asphalt project because of failure to control dust proportion.

5.6.2 SM-2A4: 12.5 mm Nominal Maximum Size Mixture (Change Order)
Table 5.5 indicates that the air void at Ny, for the 12.5 mm Superpave mixture is

significantly affected by the asphalt binder content, %G, @N,,..» %G @N.

min?

and percent
material retained on the 0.6 mm (#30) sieve. The statistical information for the VMA
correlation equation in Table 5.6 shows that the VMA correlates with the asphalt binder
content, %G, @N,, , and percent material retained on the 9.5 mm (3/8") sieve. Figure 5.3
shows that %G, (@N,; significantly affects the air void-a five percent change in
%G, @N_ ., will decrease the air void by 2%. Air void is not very sensitive to the changes

in the other three factors: asphalt binder content, %G, @N, ... , and percent material retained
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on the 0.6 mm (#30) sieve. Figure 5.4 also shows that VMA is most sensitive to the changes

in %G, @N,,, - A 5% change in %G,,,@N,,, will decrease the VMA by 2%.

5.6.3 SM-2C: 19 mm Nominal Maximum Size Mixture without RAP (Change Order)

Table 5.9 indicates that the air void at Ny, for the 19 mm Superpave mixture without
recycled asphalt pavement (RAP) is significantly affected by %G,,n@N s Y9G m@Npin
percent material retained on the 12.5 mm (1/2") sieve and percent material retained on the
0.6 mm (#30) sieve. Table 5.10 shows that the VMA correlates with the %G,,,@N,;, and
dust proportion. Figure 5.5 shows that percent material retained on the 0.6 mm (#30) sieve
significantly affects the air void. A 5% change in the percent of material retained on the 0.6
mm (#30) sieve will result in almost 3% air void decrease. Air void is not very sensitive to
the changes in the other two factors: %G,,,@N,,;, , and percent material retained on 12.5 mm
(1/2") sieve. Figure 5.6 also shows that the VMA is very sensitive to the changes in both

%G, @N._;, and dust proportion. Higher values of these variables would significantly lower

the VMA.

5.6.4 SR-2C: 19 mm Nominal Maximum Size Mixture with RAP (Change Order)

Table 5.13 indicates that the air voids at N, for the 19 mm Superpave mixture with RAP
is significantly affected by the %G,,,@N,,, , percent retained on the 0.6 mm (#30) sieve, and
dust proportion. The interaction between the %G,,,@N,;, and the percent of material
retained on the 0.6 mm (#30) sieve is also significant. Table 5.14 indicates that the VMA

is significantly affected by the asphalt binder content, %G, @N,,,, percent retained on the
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0.6 mm (#30) sieve, Sand Equivalent value, and interaction between the %Gmm@Nmi; and
the percent material retained on the 0.6 mm (#30) sieve. Figure 5.7 shows that air void is
most sensitive to the changes in %G,,,@N,,,. From Figure 5.8, it appears that all factors
affect the VMA equally if they are in the ranges required by the KDOT QC/QA program. It
1s interesting to note that all factors individually are positively correlated with the Va and
VMA even though some coefficients in the equation are negative. This is due to the
interaction terms in the equations, and it can be concluded that some factors will not affect
the Va and VMA independently. This implies that controlling only one factor sometimes
will not control the Va and VMA. The combination effects (interactions) could be dominant

in controlling the Va and VMA.

5. 6.5 SM-2C: 19 mm Nominal deimum-Size Mixture without RAP (Let)

Table 5.17 indicates that the air void at Ny, for the 19 mm virgin Superpave mixture is
significantly affected by the asphalt binder content, %G,,,@N,.., , %G, @N_.. , percent of
material retained on the 12.5 mm (1/2") sieve, percent of material retained on the 0.6 mm
(#30) sieve and Sand Equivalent and some interactions. The statistical information for the
VMA correlation equationv in Table 5.18 shows that the VMA is correlated with the asphalt
binder content, %G, @N, ... » %G, @N,,;, , percent of material retained on the 12.5 mm
(1/2") sieve, percent of material retained on the 0.6 mm (#30) sieve and dust proportion. The
table indicates that the most dominant factor are G,,, @N,.., , %G, @N,... , and percent of
material retained on the 0.6 mm (#30) sieve which is also supported by the plots in Figures

5.9 and 5.10. Air void is not very sensitive to the changes in three factors: asphalt binder
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content, percent of material retained on the 12.5 mm (1/2") sieve and sand equivalent. VMA
is not very sensitive to the changes in percent of material retained on the 12.5 mm (1/2")

sieve.

5.6.6 SR-2C: 19 mm Nominal Maximum-Size Mixture with RAP (Let)

Table 5.20 indicates that the air void at N, for the 19 mm virgin Superpave mixture with

design
RAP is significantly affected by the asphalt binder content, %G, @N,.., » %G n@N_,;, »
percent of material retained on the 0.6 mm (#30) sieve, sand equivalent and dust proportion.
Table 5.21 shows that the VMA correlates with the same variables as for the air void at

N as well as, the interactions of all other variables and the dust proportion. Figure 5.11

design>
indicates that the most dominant factors for air void are %G,,,@N,.., and %G, @N,.. .
Figure 5.12 shows that VMA is very sensitive to the changes in the asphalt binder content,
%G, @N,.;, and percent of material retained on the 0.6 mm (#30) sieve. Air void is not

sensitive to the changes in four factors: asphalt binder content, percent of material retained

on the 0.6 mm (#30) sieve, sand equivalent and dust proportion.

5.6.7 Comparison between Let Projects and Change Order Projects

Table 5.23 summarizes the factors which significantly affect the air void of the 19 mm
nominal maximum size mixtures with or without RAP. A number of common factors exist
between the mixtures without RAP: %G, @N,,.., %G, @N,,.,, percent of material retained
on the 12.5 mm sieve, and percent of material retained on the 0.6 mm (#30) sieve. The

common factors for the mixtures with RAP are: %G, @N,,;,, percent of material retained
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on the 0.6 mm (#30) sieve, and dust proportion. For VMA of the 19 mm mixture without
RAP, only %G, @N,,;, , and dust proportion were the common factors. But for the mixtures
with RAP, %G,,,@N,,;, , percent of material retained on the 0.6 mm (#30) sieve, and sand

equivalent appear in the predictive equations for mixtures under both change order and let

contracts.
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Table 5.24  Comparisons between Change Order Projects and Let Projects for Va

19 mm mixture without | 19 mm mixture with RAP |
RAP
Factors Change Let Change Let
Order Order

Pb X X

%G mm@N ax X X X

%G pm@N i X X X .X

%Retained on 12.5 mm X X
%~Retained on 0.6 mm X X X X
CAA
Sand Equivalent X X
Dust Proportion X X
Note: “x”” means significant effect
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Table5.25  Comparisons between Change Order Projects and Let Projects for
VMA
19 mm mixture without | 19 mm mixture with RAP |
RAP
Factors Change Let Change Let
Order Order
Pb X X X
%Gmm@Nmax X X
%Gmm@Nmin X X X X
%Retained on 12.5 mm X
%Retained on 0.6 mm X X X
CAA
Sand Equivalent X X
Dust Proportion X X X
Note: “x” means significant effect
88
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6.0 MULTIPLE PROPERTY OPTIMIZATION

6.1 Background

Multiple property optimization (MPO) discussed here is an unconstrained optimization
problem in the mathematical sense of maximization or minimization. The problem involves
choosing values, in the feasible region, for the control variables x,,*,X, , known as decision
variables, so as to maximize a real-valued function f of those variables. Formally, the

structure of this problem may be expressed as: (Beavis et al. 1990)

max f(x,, "X, ) 6.1)

(xp,%n )

where in the current research, f(x;,",X,) is the total goodness of two properties: Va and
VMA. The x,," X, are the variables used to obtain the prediction correlation equations for

the Va and VMA, such as, asphalt binder content, %G ;,n@N;y.x, and so on.

62  Information Needed for MPO
A commercial software called Multiple Property Optimization was used in this study (MPO
1991). The information below should be collected for the MPO analysis:

1. Correlation Equations: These equations quantify how the independent variables
affect the dependent variables. The dependent variables are the properties which are being
optimized. The properties can be adjusted only indirectly by means of adjusting the
independent variables. The analysis done by MPO will be only as good as the correlation

equations on which it is based. Therefore, it is extremely important to obtain good correlation
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equations. The correlatipn equations used in this study were obtained from the MCA results
as discussed in Chapter 5. Due to the fact that good correlation equations can be found for
Va and VMA, but not for the in-place pavement density and TSR, it was decided that only
those two properties will be used in the MPO analysis.

2. Goodness Relationships: A goodness equation is a rating system that describes
the various levels for the properties being optimized. It describes the target and specification
limits for the properties and how much it hurts the goodness for being off target value. A
rating system of zero to ten is usually used, where the most desirable level, or the target
value, is given a rating of ten (10) and any undesirable region is given a rating of zero (0).
Desirable regions between the target and the unacceptable regions are scaled accordingly.

3. Levels of the Independent Variables: These are the levels of the independent
variables studied. The minimum and the maximum are determined for each variable by
referring to the data set used to develop the correlation equations. In addition, several

intermediate levels are selected for the MPO analysis.

6.3  MPO Results

Multiple Property Optimization was performed for only two mixtures from the let projects
because some projects built under the change order did not have optimum mix design. The
objective of the MPO analysis was to find a combination of independent variable levels to
achieve the maximum of total goodness, or in other words, to obtain Va and VMA
simultaneously as close to their target values as possible.

Two mixtures were analyzed: SM-2C, 19 mm nominal maximum size mixture
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without RAP and SR-2C, 19 mm nominal maximum size mixture with RAP. The correlation
equations for the two rﬁixtures used in MPO have been shown in Tables 5. 17 and 5.1 8, and
Tables 5.20 and 5.21, respectively. The Va and VMA of SM-2C correlate with the asphalt
binder content, %G, @N e %0G.um@N,,, percentage of material retained 12.5 mm (Y2 in.),
percentage of material retained on the 0.60 mm (#30) sieve, sand equivalent, and dust
proportion. The Va and VMA of SR-2C correlate with asphalt binder content, %G ,n@N oy
%Gom@N,,  percentage of material retained on the 0.60 mm (#30) sieve, sand equivalent,
and dust proportion.

Based on KDOT QC/QA specifications for the 19 mm nominal maximum size
miXtures, a target value of 4% was used for Va, and it was determined that a Va above 6%
or below 2% is unacceptable. These requirements were converted to a rating system ranging
from 0 (unacceptable) to 10 (target) as shown in Figure 6.1. The target value for VMA of
SM-2C or SR-2C is 13% or greater. VMA below 12% is unacceptable. The rating system for
VMA is presented in Figure 6.2. The levels of the independent variables are the maximum,
minimum and median of each data set.

The total goodness is calculated using the arithmetic sum method as follows:

Grw =W, G+ W, G, +...+W G, (6.1)

where: G = goodness,
| W = weighting factor, and

n = number of properties being optimized.
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Figure 6.1

Figure 6.2
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In our problem, n is equal to two. The default weighting factor for any goodness equation
is one (1). If all the weighting factors are one, then every equation holds equal importance
in the total goodness calculation. The weighting factor can be changed according to the
importance of the evaluated goodness equation compared to others.
The calculation steps are summarized as below:
1. Enter each combination of the process variable levels into the correlation equations
and compute the resulting properties;
2. For each resulting property, determine the corresponding goodness; and
3. Calculate the Gy, using the Equation (6.1).
The optimum combination is the combination of the variables that gives the highest Gy,
The optimization results are shown in Tables 6.1 and 6.2 for SM-2C and SR-2C,
respectively. Since all the values of percent goodness are close to 100%, the best
combination should be based on engineering judgement. The most desirable volumetric
properties are highlighted in Table 6.1 and 6.2, respectively. Inboth cases, the mixtures have
Va close to or equal to 4% which is the target value, and VMA above 13%, but not higher

than 14%, and dust proportion is equal to 0.9%. The other factors are in reasonable ranges.

6.4  Comparisons between KDOT Specified and Suggested Working Ranges
Comparison between the KDOT specified and the suggested working ranges from the MPO

analysis are shown in Tables 6.3 and 6.4. It is noted that the suggested working range for
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asphalt binder content from the MPO analysis is = 0.5%, which is 67% larger than the KDOT
specified range of + 0.3%. I‘t may indicate that KDOT specifications for the asphalt binder
content may be too restrictive to keep the Superpéve mixture quality at the desirable level
in terms of Va and VMA. Further study is suggested to focus on this subject. For some
mixture properties such as %G, @N

%G ,m@N,,.., aggregate gradation, and sand

equivalent, the KDOT specifications only have one required limit for each property, either
maximum or minimum. According to the MPO results (Tables 6.3 and 6.4), these limits
appear to be reasonable to control the quality of the Superpave mixtures. The dust

proportion has similar limits in both suggested and current KDOT-specified working ranges.
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Table 6.3 Comparison of Current KDOT Specified and Suggested Working

Ranges for SM-2C (Let)

KDOT Specification Suggested Range
Volumetric Property Working Range (four- from MPO
point moving average)

Pb +0.3% + 0.5%

%G m@Niyi 89% max 84%-89%

%G m@N ax 98% max 94%-98%
%Retained on 12.5 mm 10% min 16%-30%
%Retained on 0.6 mm 83% min 89%-94%

SE 40% min 76%-92%

DP 0.6-1.2 0.6-1.2

Table 6.4 Comparison of Current KDOT Specified and Suggested Working

Ranges for SR-2C (Let)
KDOT Specification Suggested Range
Volumetric Property Working Range (four- from MPO
point moving average)
Pb + 0.3% + 0.5%
%G ym@Ni 89% max 83%-88%
%G mm@N ax 98% max 97%-98%
%~Retain on 0.6 mm 83% min 83%-90%
SE 40% min 76%-82%
DP 0.6-1.2 0.6-1.2
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7.1

7.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on the analysis of the results from this study, the following conclusions may be drawn:

1

A four-step modeling framework was used to study the relationships among 19
Superpave volumetric properties monitored by the KDOT QC/QC program. Principal
component analysis was used to transform a set of correlated variables into a smaller
set of uncorrelated variables. Multiple correlation analysis was performed to obtain
a series of linear relationships between the predictor variables and the response
variables. Sensitivity analysis was done to quantify the effects of changes in
predictor variables on the response variables. Finally, multiple property optimization
was carried out to achieve the most desirable output properties by adjusting the
levels of independent variables.

PCA resulted in the following subgroups of the predictor variables for the Superpave
mixtures in this study:

Group 1: percent retained on the 2.36 mm (#8) sieve, percent retained on the 1.18
mm (#16) sieve, percent retained on the 0.6 mm (#30) sieve, and percent retained on
the 0.3 mm (#50) sieve;

Group 2: percent retained on the 0.075 mm (#200) sieve, fine aggregate angularity,
and dust proportion;

Group 3: percent retained on the 19 mm (3/4") sieve, percent retained on the 12.5
mm (1/2") sieve, and percent retained on the 9.5 mm (3/8") sieve;

Group 4: sand equivalent;

Group 5: asphalt binder content;

Group 6: %Gm @ Ny

Group 7: %G,,m @ Ny, ; and
Group 8: coarse aggregate angularity.
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The variables within a subgroup are highly correlated among themselves, and the
variables between the subgroups are not significantly correlated. This reduces the 15-
dimension data set to a 8-dimension, uncorrelated subgroup.

Good predictive equations were obtained using the predictors isolated in this study
for the Va and VMA. It appears that the volumetric and aggregate properties are
adequate in estimating Va and VMA.

No statistically significant equations were obtained for the in-place pavement
density. This was somewhat expected since in-place pavement density also depends
upon compactive effort, environmental factors: such as tempefature and wind, etc.,
in addition to, the mixture constituents.

The regression equations for TSR had R? values of 0.52 for the smaller-size mixtures
and 0.76 to 0.80 for the large-size mixtures. The difference in R? value may imply
that volumetric properties have causative, not decisive, effects on the TSR. The
moisture sensitivity of the Superpave mixtures may be more related to the properties
of asphalt binder rather than to the asphalt binder content and other factors.

The coarse aggregate angularity does not appear in any predictive equations
presumably due to the fact that all coarse aggregates used on Superpave projects in
Kansas were entirely crushed materials.

For the 9.5 mm nominal maximum size mixture, the asphalt binder content, %Gy,
at N,,,,, percentage of material retained on the 0.6 mm (#30) sieve, sand equivalent,
dust proportion and the interaction between the sand equivalent and percentage of
material retained on the 0.6 mm (#30) sieve, significantly affect the Va and VMA.
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7.2

For VMA, the interaption between the %G, at N, and the percentage of material
retained on the 0.6 mm (#30) sieve is also significant.

For the 12.5 mm nominal maximum size mixture, Va is significantly affected by the
asphalt binder content, %Gn@Nmaw %Gmn@Ny, and percentage of material
retained on the 0.6 mm (#30) sieve. The VMA correlates with the asphalt binder
content, %G ,m@N,,i, and percentage of material retained on the 9.5 mm (3/8") sieve.
For the 19 mm nominal maximum size mixture, Va is significantly affected by
% Gmm@Nuaxs 70Gmm@Npins percentage of material retained on the 0.6 mm (#30)
sieve, VMA correlates well with the asphalt binder content, %G, @N..:,, percentage
of material retained on the 0.6 mm (#30) sieve and dust proportion.

Multiple Property Optimization results show that the most desirable 19 mm nominal
maximum size mixture is the one with air void close to or equal to 4%, and VMA
above 13%, but not higher than 14%, dust proportion equal to 0.9, and other

properties in the ranges specified by the KDOT QC/QA specification.

Recommendations

The major drawback of this study was limited data. The addition of more projects
and more complete and better quality data on current let projects would significantly
increase the statistical certainty of the results.

Since no reliable correlation equations were found for the in-place pavement density
and TSR, further investigation of other key variables that might affect these two
variables is suggested.
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APPENDIX A: SAS Code, Log File, and Output File of PCA
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Statistical Analysis System (SAS) Codes

options linesize=66 pagesize=60 NODATE;
TITLE 'SUPERPAVE PROJECT-PCA ANALYSIS---For All Raw Data’,
DATA TOTAL;
infile 'total3.pm’;
INPUT VA VMA DENSITY PB NMAX NMIN R34 R12
R38 R8 R16 R30 R50 R200 TSR SE FAA
CAA DP;

CARDS;

PROC PRINT;
RUN; :

PROC PRINCOMP DATA=TOTAL OUT=PCSCORES;
VAR VA VMA DENSITY PB NMAX NMIN R34 R12
R38 R8 R16 R30 R50 R200 TSR SE FAA
CAA DP;
TITLE2 'PC ANALYSIS IS ON ALL RAW DATA SET;
RUN;

PROC PRINT DATA=PCSCORES;

VAR PRIN1-PRIN4;

TITLE2 '"VALUES OF THE FIRST 4 PRINCIPAL COMPONENT SCORES',
RUN;
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The SAS System: Log File

NOTE: Copyright (c) 1989-1996 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.12 TS020
Licensed to KANSAS STATE UNIVERSITY, Site 0003010005.

This message 1s contained in the SAS news file, and is presented upon
initialization. Edit the files "news" in the "misc/base" directory to
display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is Just/local/lic/sas612/autoexec.sas.

NOTE: SAS initialization used:
real time 1.300 seconds
cpu time 0.453 seconds

NOTE: AUTOEXEC processing completed.

options linesize=66 pagesize=60 NODATE;
TITLE 'SUPERPAVE PROJECT-PCA ANALYSIS---For All Raw

DATA TOTAL;

infile 'total3.prn’;

INPUT VA VMA DENSITY PB NMAX NMIN R34 R12
R38 R8 R16 R30 R50 R200 TSR SE FAA
CAA DP;

CARDS;

00 -1 b WM —

NOTE: The infile 'total3.prn' is:
File Name=/home/e/jch8828/superpave/total3.pm,
Owner Name=jch8828,Group Name=other,
Access Permission=rw-r--r--,
File Size (bytes)=163779

NOTE: 709 records were read from the infile 'total3.prn'.
The minimum record length was 230.

The maximum record length was 230.
NOTE: The data set WORK.TOTAL has 709 observations and 19

variables.

NOTE: DATA statement used:
real time 0.880 seconds
cputime  0.401 seconds
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10 PROC PRINT;
11 RUN;

NOTE: The PROCEDURE PRINT printed pages 1-28.
NOTE: PROCEDURE PRINT used:

real time 0.890 seconds

cpu time 0.570 seconds

12 -

13 PROC PRINCOMP DATA=TOTAL OUT=PCSCORES;
14 VAR VA VMA DENSITY PB NMAX NMIN R34 R12
15 R38 R8 R16 R30 R50 R200 TSR SE FAA

16 CAA DP;

17 TITLE2 'PC ANALYSIS IS ON ALL RAW DATA SET;
18 RUN;

WARNING: 502 of 709 observations in data set WORK.TOTAL omitted
. due to missing values.

NOTE: The data set WORK.PCSCORES has 709 observations and 38
variables.

NOTE: The PROCEDURE PRINCOMP printed pages 29-34.

NOTE: PROCEDURE PRINCOMP used:
real time 0.580 seconds
cpu time 0.225 seconds

19

20 PROC PRINT DATA=PCSCORES;

21 VAR PRINI-PRIN4;

22 TITLE2 'VALUES OF THE FIRST 4 PRINCIPAL COMPONENT
SCORES';

23 RUN;

NOTE: The PROCEDURE PRINT printed pages 35-47.
NOTE: PROCEDURE PRINT used:

real time 0.090 seconds

cpu time 0.078 seconds

NOTE: The SAS System used:
real time 4.040 seconds
cpu time 1.796 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA
27513-2414
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The SAS System: OQutput File

SUPERPAVE PROJECT-PCA ANALYSIS---For All Raw Data
PC ANALYSIS IS ON ALL RAW DATA SET

Principal Component Analysis

207 Observations
19 Variables

Mean
StD

Mean
StD

Mean
StD

Mean
StD

Mean
StD

Simple Statistics

VA
3.905990338
0.771524062

NMAX
97.48927536
0.90713887

R38
28.08309179
7.67792537

R50
90.40917874
3.53077494

FAA
45.06328502
1.26738582

VMA
14.46352657
8.92509126

NMIN
86.43405797
1.96134810

R8
70.06859903
8.12683613

R200
95.51429952
0.89639102

CAA
96.42657005
4.74737734

DENSITY
92.35763285
1.36410919

R34
1.210144928
1.207839875

R16
79.80724638
6.68695990

TSR
98.12748792
8.80610553

DP

1.000241546
0.189707080
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PB
5.204927536
0.275451738

R12
15.82850242
5.56763438

R30
86.03188406
5.27725913

SE
80.15555556
5.73446873
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VA
VMA
DENSITY
PB
NMAX
NMIN
R34
R12
R38

R8

R16
R30
RS0
R200
SE
FAA
CAA
DP

VA
VMA
DENSITY
PB
NMAX
NMIN
R34
R12
R38

R8

R16
R30
R50
R200
SE
FAA
CAA
Dp

Correlation Matrix

VA
1.0000
0.0358
0.2321
-.4461
-.6254
- 7237
0.2597
0.3094
0.4177
0.6252
0.6019
0.5683
0.5121
0.2976
0.3088
0.0652
-.1785
-.1484

NMIN
-.72 37
-.0394
-.1132
0.0572
0.2814
1.0000
-.0386
-.3012
-4113
-.7888
-.7640
-.6663
-.5722
0.1159
-.2541
-4970
0.0068
-.2159

VMA DENSITY PB

0.0358
1.0000
0.0652
-.0486
-.0157
-.0394
0.1101
-.0009
0.0126
0.0825
0.0546
0.0314
0.0068
0.0581
0.0185
-.0427
-.1051
-.0959

R34
0.2597
0.1101
0.4361
-.6005
-.2665
-.0386
1.0000
0.5394
0.6048
0.4438
0.4665
0.5353
0.5598
0.6525
0.5501
-.5692
-.3762
-.5521

0.2321
0.0652
1.0000
-.4332
-.1730
-.1132
0.4361
0.2676
0.3855
0.4615
0.4661
0.4839
0.4581
0.5524
0.4079
-.4020
-.4443
-.5248

R12
0.3094
-.0009
0.2676
-.4652
-.0984
-.3012
0.539%4
1.0000
0.9396
0.5125
0.5792
0.6995
0.7605
0.4196
0.7586
-.3070
0.2134

-.2938

-.4461
-.0486
-.4332
1.0000
0.4466
0.0572
-.6005
-.4652
-.5397
-.4372
-4155
-4512
-.4583
-.6723
-4530
0.5302
0.4733
0.5090

R38
0.4177
0.0126
0.3855
-.5397
-.1882
-4113
0.6048
0.9396
1.0000
0.6932
0.7469
0.8409
0.8778
0.5252
0.8029
-.3462
0.0173
-.3964
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NMAX
-.6254
-.0157
-.1730
0.4466
1.0000
0.2814
-.2665
-.0984
-.1882
-3133
-.2946
-.2730
-.2406
-.2838
-.1745
0.1546
0.3046
0.1743

R8
0.6252
0.0825
0.4615
-.4372
-.3133
-.7888
0.4438
0.5125
0.6932
1.0000
0.9841
0.9254
0.8490
0.3900
0.5655
-.0009
-.4005
-.2757



VA
VMA
DENSITY
PB
NMAX
NMIN
R34
R12
R38

R8

R16
R30
R50
R200
SE
FAA
CAA
DP

VA
VMA
DENSITY
PB
NMAX
NMIN
R34
R12
R38

R8

R16
R30
R50
R200
SE
FAA
CAA
DP

Correlation Matrix

R16
0.6019
0.0546
0.4661
-4155
-.2946
-.7640
0.4665
0.5792
0.7469
0.9841
1.0000
0.9710
0.9127
0.4138
0.6530
-.0581
-.3277
-.2995

SE
0.3088
0.0185
0.4079
-4530

-.1745
-.2541

0.5501
0.7586
0.8029
0.5655
0.6530
0.7805
0.8212
0.5454
1.0000
-.4922
0.0027
-4725

R30
0.5683
0.0314
0.4839

-4512

-.2730
-.6663
0.5353
0.6995
0.8409
0.9254
0.9710
1.0000
0.9761
0.4946
0.7805
-.2005
-.2218
-3778

FAA
0.0652
-.0427
-.4020
0.5302
0.1546
-.4970
-.5692
-.3070
-.3462
-.0009
-.0581
-.2005
-2777
- 7576
-.4922
1.0000
0.3182
0.7265

R50
0.5121
0.0068
0.4581
-.4583
-.2406
-.5722
0.5598
0.7605
0.8778
0.8490
0.9127
0.9761
1.0000
0.5384
0.8212
-2777
-.1387
-4224

CAA
-.1785
-.1051
-.4443
0.4733
0.3046

0.0068
-.3762
0.2134
0.0173
-.4005
-.3277
-2218
-.1387
-.5007
0.0027
0.3182
1.0000
0.4541

R200
0.2976
0.0581
0.5524
-.6723

-.2838
0.1159

0.6525
0.4196
0.5252
0.3900
0.4138
0.4946
0.5384
1.0000
0.5454

- 7576

-.5007

-.9410

DP
-.1484
-.0959
-.5248
0.5090
0.1743
-2159
-.5521
-.2938
-.3964
-.2757
-.2995
-.3778
-.4224
-9410
-4725
0.7265
0.4541
1.0000
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TSR
0.1907
0.0217
0.2949

-.3774
-.1387
-.1294
0.2116
0.2945
0.3035
0.2630
0.2472
0.2420
0.2328
0.2641
0.2150
-.1146
-.1536
-2170



Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
PRIN1 8.57812 536693  0.451480 0.45148
PRIN2 3.21119 1.31727  0.169010 0.62049
PRIN3 1.89391 0.77932  0.099680 0.72017
PRIN4 1.11459 0.14694  0.058663 0.77883
PRINS 0.96765 0.02143  0.050929 0.82976
PRIN6 0.94622 0.38591  0.049801 0.87956
PRIN7 0.56031 0.08725  0.029490 0.90905
PRINS 0.47306 0.10574  0.024898 0.93395
PRINY 0.36732 0.03378  0.019333 0.95328
PRIN10 0.33354 0.11683  0.017555 0.97084
PRINI1 0.21671 0.08195  0.011406 0.98224
PRIN12 0.13476 0.04705  0.007093 0.98934
PRIN13 0.08771 0.04157  0.004616 0.99395
PRIN14 0.04614 0.01845  0.002429 0.99638
PRIN15 0.02769 0.00575  0.001457 0.99784
PRIN16 0.02194 0.01058  0.001155 0.99899
PRIN17 0.01136 0.00548  0.000598 0.99959
PRIN18 - 0.00588 0.00401  0.000310 0.99990
PRIN19 0.00188 . 0.000099 1.00000
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APPENDIX B: MC Output for Va of SM-2C (Let)
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Dependent Var.: 1 VA

Sy.x = 0.18311 RSQ=0.9414 Deg Freedom= 95

VARIABLES IN THE EQUATION

Var Coefficient T RSQ
0 -7.34704405E+01

4 -2.78508467E-01 -1.93 0.70
5 8.45505365E+00 8.60 1.00
6 -8.65831560E+00  -8.13 1.00
8 -1.92208202E-03 -0.21 091
12 2.55789953E+00 1.87 1.00
16 -8.35160626E-01 -1.74 1.00
21 8.32486979E-02 543 1.00
27 -9.96487703E-02 -8.68 1.00
31 9.59480444E-03 1.73  1.00
VARIABLES NOT IN THE EQUATION
VAR 22 23 24 25 26
T 144 -1.09 194 145 -2.26
RSQ 1.00 1.00 1.00 1.00 1.00
VAR 30 32 33 34 35
T 148 0.17 0.09 -0.57 -0.84
RSQ 1.00 1.00 1.00 1.00 1.00

ROWS DELETED : None

LABEL
Intercept

PB

GMMMAX
GMMMIN

R12

R30

SE
GMMMIN*R30
R30*GMMMAX
SE*GMMMIN

28 29
0.96 -1.93
1.00 1.00
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