UNIVERSITY OF MINNESOTA PB2000-106655

(e

CENTER & =} 1 RS B e e D . STUDIES

@@@@6‘(’@”C(’?‘("9'“8FC‘C"‘E‘C({"(‘&{?E‘C@OO@@@@@?‘CC

| | § |
4 S,
E E 3N
N 23
4 .
i

E

DEVELOPMENT OF
TRAFFIC SIMULATION LABORATORY
FOR DESIGN PLANNING
AND TRAFFIC OPERATIONS
(PHASE II)

Paul Telega and Panos Michalopoulos
Department of Civil Engineering
University of Minnesota

REPRODUCED BY: NTIS.

U.8, Department of Commerce e
Jational Technical ion Service
Springfield, Virginia 22161

HUMAN-CENTERED TECHNOLOGY TO ENHANCE SAFETY AND MOBILITY

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the information presented herein. This document is
disseminated under the sponsorship of the Department of Transportation, University
Transportation Centers Program, in the interest of information exchange. The U.S.
Government assumes no liability for the contents or use thereof.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

Reproduced from
best availabie copy.

1. Report No. 2.
CTS 00-02

3. Recipient’s Accession No.

4. Title and Subtitle

Development of Traffic Simulation Laboratory for Design Planning and Traffic
Operations (Phase 1I)

5. Report Date

June 2000

7. Author(s)

Paul Telega and Panos Michalopoulos

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Minnesota

Civil Engineering Department
500 Pillsbury Drive SE
Minneapolis, MN 55455

10. Project/Task/Work Unit No.

11. Contract (C) or Grant (G) No.

(€)
(G)

12. Sponsoring Organization Name and Address

Intelligent Transportation Systems Institute of the
Center for Transportation Studies

University of Minnesota

200 Safety and Transportation Building

511 Washington Avenue SE

Minneapolis, MN 55455-0375

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract (Limit: 200 words)

A key elément in improving traffic operations and performing effective real-time traffic management is using simulation to assess the effectiveness of
various alternatives prior to implementation. The research conducted here is Phase II of a three phased project with the ultimate goal of creating and
running traffic simulation experiments in real-time. In the first phase, a set of well-known freeway simulators was evaluated. Major difficulties were a
lack of real data, and the time consuming effort required to prepare data for each simulator. Phase 1 found that developing an integrated traffic analysis
environment, where data processing, simulation and output analysis can be automated as efficiently as possible was of critical importance in improving

traffic management and operations.

In the second phase, the development of an Automated Simulations Tool (AST) was of critical importance. Phase Il was partitioned into four major tasks:
development of a Geometry Data Container (GDC), Creation of a partial Twin Cities Freeway Geometry, development of an AST, and specification of a
real-time AST framework. Each part of this phase was essentially prescribed by the Phase I results.

The GDC would be the design and implementation of a common geometry database that could be shared among different simulators. Initially, only a micro

simulator would be implemented, but later other simulators could be added.

Creation of a partial Twin Cities Freeway Geometry would be the base level common geometry that is entered. All the detail needed for a micro simulation
is entered including freeway sections, detector locations and types, ramp meters, and other fine details. This work needs to be done only once with our
design. Any subnetwork of the original entered network can be selected with a mouse and saved as a new network.

Development of the AST will allow traffic engineers to select a freeway and a time period for simulation and then essentially run a simulation without any
direct manipulation of data. Traffic engineers will not need to now anything about the data formats of either geometry or flow data in order torun a

simulation.

17. Document Analysis/Descriptors

18. Availability Statement

No restrictions. Document available from:
National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page)

Unclassified Unclassified

21. No. of Pages 22. Price

DEVELOPMENT OF TRAFFIC SIMULATION
LABORATORY FOR DESIGN PLANNING AND TRAFFIC
OPERATIONS (PHASE II)

FINAL REPORT

Prepared by

Paul Telega and Panos Michalopoulos
Department of Civil Engineering
University of Minnesota
Minneapolis, MN 55455

June 2000

Published by

Intelligent Transportation Systems Institute of the
Center for Transportation Studies
University of Minnesota
200 Safety and Transportation Building
511 Washington Avenue SE
Minneapolis, MN 55455-0375

This report represents the results of research conducted by the authors and does not necessarily represent the views or
policy of the Center for Transportation Studies. This report does not contain a standard or specified technique.

ACKNOWLEDGEMENTS

This research was supported by the Intelligent Transportation Systems (ITS) Institute in the Center for
Transportation Studies (CTS) at the University of Minnesota and Guidestar. The authors would also like to
thank the following individuals for their contributions to this document.

James Aswegan — Minnesota Department of Transporiation

Lowell A. Benson — Center for Transportation Studies

Ron Dahl — Mn/DOT’s Traffic Management Center

John Hourdakis — University of Minnesota Department of Civil Engineering

Dr. Eil Kwon — Center for Transportation Studies

Table of Contents

TABLE OF CONTENTS 1

TABLE OF FIGURES v

EXECUTIVE SUMMARY

1 INTRODUCTION

1.1 PROBLEM STATEMENT
1.2 RESEARCH OBJECTIVES
1.3 BACKGROUND/ HISTORY/ PAST WORK _
1.4 WWORK SUMMARY cooeceeeereesessemseesssssse e 00 s e
1.5 REPORT ORGANIZATION

2 GEOMETRY DATA CONTAINER

2.1 OBJECTIVES ..covuemerassssssssearmesnsmrss et et e e 0 e e SRSt s st b et snsas s

2.1.1 Centralized site for storing a network and One-time creation of data for each nerwork........
212 Allow data extensibility in the GDC ..o, e
2.1.3 Generic access protocof e eencaraeeeneas e
2.1.4 Data manipul@rion @BIHILY ... et e
2.2 G.LS CONSIDERATIONS o
2.2.1 Capability (lack of) .. ettt ettt are st saeeesannesan
2.2.2 Ease 0f uSeooooeuererirecrcreecncneneens
223 Cost of software
224 Uniformity and availability of G.1.S.
2.3 DESIGN OF THE GDC
231 Relational database model chosen
232 ODBC/SOL chosen to access the database
233 Relationships between tables

2.4 IMPLEMENTATION
2.4.1 GDC Prototype Implementation
2.4.2 BIOCKS o
2.43 Texts
244 Vehicle Classes........
245 Global Messages.......
246 Sections
2.4.7 Nodes
2.48 Controllers.
2.4.9 Centroids, Roguis. and Routes ..
2.4.10 Network..
2.4.11 ODBC Functions

2.5 135W194 TwiN CiTY FREEWAY GEOMETRY

(393

Trace over the Sections i the NEDVOIK ... oot 2
Add additional detail.
Add meters, detectors, and controllers
Save the resulting nexwork
Problems and solutions

— L Wy~

[R N R S
w

NN NENEW

[N

3 SENSOR AUTOMATION DEVELOPMENT 2

¥

I Preceding Page Blank

L7 SO SO VO

wn

Background Image 0f the NeDWOR........occccccwvvvmoeeiiriiiinscnit s sesesnssesens D 2

1 OBJECTIVES 29
2 WHAT WE NEED 29

3.2.1 Determine user input for geometry selection (point and click) and modify traffic editor to
_ save subnetworks 30
322 Modify/augment geometry database to include flows. 37
3.2.3 Define user input for traffic volume selection 32
3.2.4 Design an algorithm to add traffic volume to each entrance section for each simulation state ..
33
33 PUTTING IT ALL TOGETHER 34
3.4 MAKING A SIMULATION RUN 35
4 SENSOR DATA AUTOMATION USE 37
4.1 OBJECTIVES 3
4.1.1 Visually (with a mouse) select the network to be simulated 38
412 Eliminate the need for any manual entry of traffic network geometry (other than a one time
entry). 39 :
4.13 Automatically retrieve traffic volume data for the selected network from the traffic volumes.
41 :
4.1.4 Automatically generate the necessary simulation states using the selected nerwork and the
traffic volumes. 42
4.2 SPECIFICATION OF DATA REQUIREMENTS FOR SIMULATION 42
4.2.1 Geometry selected and SAVEd....onneieeeeeeeneeetereeenne 42
422 Traffic volume database .43
423 User selection network, date, and time periods to simulate 43
424 Control plan for the selected geomerry 44
4.2.5 Simulation states generated by the AST tool Y
5 FRAMEWORK FOR PHASE III WORK 45
5.1 AUTOMATION OF CONTROL PLANS 45
52 AUTOMATION OF RESULTS PRESENTATION 46
5.3 INTEGRATING ANOTHER SIMULATOR WITH THE GDC 46
5.4 REAL-TIME ACCESS TO MNDOT DETECTOR DATA FOR SIMULATION 47
6 CONCLUSIONS AND RECOMMENDATIONS 49
6.1 PROBLEMS THAT WE ENCOUNTERED 49
6.1.1 Problems with the GDC. 49
6.1.2 Problems with the Automated Simulation Tool .33
6.2 THINGS THAT WE LEARNED 54
6.3 WHAT WE WOULD DO DIFFERENT, IF WE HAD TO DO IT AGAIN 33
6.4 MAJOR ACCOMPLISHMENTS 56
6.5 CONCLUSIONS 57
Appendix A: Database Specifications. ... cuueememmrriiiniie e A-l
Appendix B: Relational Database FUNCIIONS.eveerierumierimnimiiriiiinn it e B-1
Appendix C: Sample of Traffic Volumes provided by M/DOT............. . C-1

FIGURE 2-1:
FIGURE 2-2 :
FIGURE 2-3:
FIGURE 2-4:
FIGURE 2-5:
FIGURE 2-6:
FIGURE 2-7:
FIGURE 2-8:
FIGURE 2-9:
FIGURE 3-1:
FIGURE 3-2:

FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 4-4
FIGURE 6-1

Table of Figures

TRAFFIC EDITOR AND SIMULATOR WITH AN API CONNECTING IT TO THE GEOMETRY...occcvirienee 10
SIMPLE BLOCK DRAWN IN THE TRAFFIC EDITOR ...cctiiuiirianransmstesnacansesesnescissistennssisisnssassse s
REPRESENTATION OF THE BLOCK IN FIGURE 2-2 IN ASCII NETWORK FORM
REPRESENTATION OF THE BLOCK IN FIGURE 2-2 IN DATABASE FORM...c.coeiimimiiniiinininrecensnnne
RELATIONAL DATABASE WITH TABLES AND RELATIONSHIPSccoticniiiniiniiiinnnintstssntsiss e
135W FROM 1694—1494 VIEW FROM WITHIN THE TRAFFIC EDITOR ..cooviiiiiiiimiinieneisisinnssienee
BACKGROUND MAP OF TWIN CITIES ROADWAYS (GIS VIEW) ..o
SIMPLIFIED MAP WITH MUCH LESS DETAIL (ESSENTIALLY I35W) oo
CLOVERLEAF VIEW FROM WITHIN THE TRAFFIC EDITORcitiiiirineerescnenmesiisirsststststsssionsssnscesees
VIEW OF THE AST ACCESSING THE NETWORK GEOMETRY
THE AST WITH INPUTS AND THE AST GENERATED SIMULATION STATESocvviimiiiiiiicoesnnneneens
OVERVIEW OF THE AST, THE SIMULATOR, THEIR INPUTS, AND THE RESULTS

135W AT 1494, SUBNETWORK SELECTED IN GRAYoovummmriumnsesissssessssssasssnssessesssssssssssssissssssssssases

. SECTION 717 AT I35W-1494 CLOVERLEAF. SECTION 717 HAS NO DETECTORS INIT. ...oovvcvmninnnn. 40

- FREEWAY SECTION WITH DETECTORS, METERS, AND CONTROLLERSovummuureesensenisssssssnssannes 41

- SOFTWARE ARCHITECTURE FROM THE AST TO THE GDC/ASCII NETWORK ..ccoommrmmnverssisannensnns 50
\Y%

EXECUTIVE SUMMARY

A key element in improving traffic operations and performing effective real-time
traffic management is using simulation to assess the effectiveness of various alternatives
prior to implementation. The research conducted here is Phase II of a three phased
project with the ultimate goal of creating and running traffic simulation experiments in
real-time. In the first phase, a set of well-known freeway simulators was evaluated.
Major difficulties were a lack of real data, and the time consuming effort required to
prepare data for each simulator. Phase I found that developing an integrated traffic
analysis environment, where data processing, simulation and output analysis can be
automated as efficiently as possible was of critical importance in improving traffic
management and operations.

In the second phase, the development of an Automated Simulations Tool (AST)
was of critical importance. Phase II was partitioned into four major tasks: development
of a Geometry Data Container (GDC), Creation of a partial Twin Cities Freeway
Geometry, development of an AST, and specification of a real-time AST framework.
Each part of this phase was essentially prescribed by the Phase I results.

The GDC would be 'the design and implementation of a common geometry
database that could be shared among different simulators. Initially, only a micro
simulator would be implemented, but later other simulators could be added.

Creation of a partial Twin Cities Freeway Geometry would be the base level
common geometry that is entered. All the detail needed for a micro simulation is entered

including freeway sections, detector locations and types, ramp meters, and other fine

details. This work needs to be done only once with our design. Any subnetwork of the
original entered network can be selected with a mouse and saved as a new network.

Development of the AST will allow traffic engineers to select a freeway and a
time period for simulation and then essentially run a simulation without any direct
manipulation of data. Traffic engineers will not need to know anything about the data
formats of either geometry or flow data in order to run a simulation.

Finally, from what we have learned in Phase II we can specify what needs to be
done for a real-time implementation of the AST: Phase IIl. By real-time we mean using

the detector data as soon as it is available from Mn/DOT for simulation.

/- . .

1 Introduction

1.1 Problem Statement

The key element in improving traffic operations and performing real-time
management is the ability to assess the effectiveness of various alternatives prior to
implementation. Simulation methods have long been recognized as the most effective
tool for such analysis, and various simulators have been developed by different agencies
for analyzing freeway and/or arterial networks. However, simulation has not yet become
a suitable tool for practical application. One reason for this is the extensive manual labor
required to input the different kinds of traffic data into most simulation programs, which
points to the need for a simulation tool that provides automatic access to large amounts of
traffic data. The purpose of this research in Phase II, therefore, is to develop an
Automated Simulation Tool (AST) with automatic access to both traffic geometry and
traffic measurement data. The AST will be part of a Laboratory Environment for TRaffic
ANalysis (LETRAN), which will provide easy and efficient access to various kinds of
traffic data for use in simulation, control, incident detection, and other types of traffic

analysis applications to be deployed in a next-generation traffic management center.

1.2 Research Objectives
Our major objective is to develop viable, intelligent, and automated traffic flow

simulation systems. These systems can then be deployed in the next-generation traffic

management center, and can be enabling advanced research as part of the ITS Laboratory
infrastructure.

The ultimate objective of this research (in collaboration with other projects) is to
develop a Laboratory Environment for TRaffic ANalysis (LETRAN) as part of the CTS
ITS Lab. Such an environment would provide an integrated piatform for traffic data
management, model development and deployment, and the investigation of next-
generation traffic management applications. The specific goal of this research is to
develop an Automated Simulation Tool (AST) as an important part of this environment.
This goal can be subdivided into two parts. The first is the creation of a Geometry Data
Container (GDC) which provides a centralized and extensible location to store and
manage traffic geometry data to be used by simulators and other lab analysis tools. The
second is the development of the AST, which uses both the GDC and the Traffic Data
Management System (TDMS) created in the “I-394 Lab” project for automated creation
of simulation experiments.

In Phase II, we divided the project into four major objectives:

e Development of the Geometry Data Container (GDC)
e (Creation of the I35W Freeway Geometry
e Development of an Automated Simulation Tool (AST)

e Specification of a Real-Time AST Framework

1.3 Background/ History/ Past Work

The full Simulation Lab Project is designed to be executed in three major phases:

e Phasel: Freeway simulator testing and evaluation
e PhaseII: Development of the Automated Simulation Tool (AST)

e Phase III: Integration of Simulation Lab and I-394 Lab.

Phase I of this research evaluated a set of well-known freeway simulators,

including AIMSUN, FREFLO, FREQ, FRESIM, INTEGRATION, and KRONOS.

Standard test cases were developed and run on different simulators using real data

collected by the Minnesota Department of Transportation (Mn/DOT). This evaluation
process has already highlighted the difficulties of using current simulation software in a
practical fashion, primarily due to the large amount of effort required to create traffic
geometries and ir;put traffic data. This work has therefore pointed to a need for the
development of an automated traffic simulator where manual data input is minimized and
automated input of data to the simulator is maximized.

An additional concept for improving simulation which was explored in Phase I
was the idea of a Common User-Interface (CUI). A CUI would provide a single interface
through which a user could create geometries, input traffic data, and run multiple
simulation tools. A prototype CUI was developed with the assistance of Dr. Jaime
Barcelo and researchers form the Universitat Politecnica De Catalunya from Barcelona,
Spain which uses the GETRAM interface tlo create simulation input files not only for
AIMSUN (for which it was created), but also for the traffic simulator developed at the

University of Minnesota (KRONOS). This process has helped to determine that the
3

development of a CUI for even a small number of simulators is not a feasible task,
primarily because of the vastly diverse modeling methodologies and approaches that
different simulators possess. Therefore, a more feasible and equally useful goal was
chosen: the development of an Automated Simulation Tool (AST) for making traffic
simulation faster, easier, and more accessible to traffic engineers and managers.

In Phase II, which is discussed in the paper, we developed and implemented an
Automated Simulation Tool that minimizes the tedious data entry, which is required for
microscopic simulation. Traffic data from the Minnesota Department of Transportation
can be automatically prepared for use in simulation.

In Phase I1I, the work that was done in Phase II will be extended so that real-time
traffic data can be used in simulation and integrate this with the 1-394 Lab and

TRACLAB.

1.4 Work Summary

In completing this project, the following major work was completed:
e Creation of a traffic geometry database system
e Creation of a Twin Cities freeway geometry (partial)

e Development of the automated simulation tool

1.5 Report Organization

This report is organized essentially in order of major task.

- OE AN TS aE Ay M NN I SE S AN T AN B By 2 s e

2 Geometry Data Container

2.1 Objectives
The fundamental objectives of designing this Geometric Data Container (GDC)

are to create:

o Centralized site for storing a network

e One-time creation of data for each network
e Allow data extensibility in the GDC

e Generic access protocol

e Data manipulation ability

2.1.1 Centralized site for storing a network and One-time creation of data for
each network
A centralized site for storing all the major networks that are studied will exist at
CTS in the ITS Laboratory. Only a one-time entry of each major network will be
necessary. It will eliminate duplication of effort in the entering of and the updating of
such networks. Researchers can then take advantage of already existing networks and
use them in their work. Extra efforts will be made to keep the central database for each

network up to date.

2.1.2 Allow data extensibility in the GDC

One major feature of database systems is that they allow augmentation of an
existing database without disrupting current applications. That is, additional data fields
and/or tables can be added to the current database to accommodate additional
applications. In our case, additional fields or tables would contain information that allow
other simulators (when suitably modified) to use the same database. This means that
other simulators (once modified) can potentially use the same central geometry database
that is created by our traffic editor for simulation and select only the information that they

need in order to build the simulation model.

2.1.3 Generic access protocol

A generic access protocol to the database was selected called Open DataBase
Connectivity (ODBC). ODBC allows any database system that supports the ODBC
protocol to be used for information retrieval. This means that we do not need to program
database commands for a specific database. All of our programs will be able to use any
database that is ODBC compliant. Currently, Microsoft ACCESS, ORACLE, SYBASE,
and most other major database systems have ODBC drivers. So by writing our programs
using ODBC, we will have the capability to access many different database systems
without reprogramming. For deployment in the field, this means that our system can
more easily adapt to a commercial database that an engineering group already has

without costly reprogramming.

2.1.4 Data manipulation ability

Choosing a database also shifts the burden of data management to the database
system. That is, with a real database system all we need to do in an application is make
store and retrieve requests of the database. The database system will then execute these
commands for us. We don’t need to worry about actually writing these to separate files
or exactly where the data is. Not only will the database execute commands from the TSS,
but any other program can also send commands to the database to retrieve or update
information. The ASCII network file version will not allow data manipulation to be done
without writing specific programs. For example, another program or the database tools

could be used to query the I35W database for the number, type, and age of the detectors.

2.2 Glis Considerations

The Geographical Information Systems (GIS) that were reviewed for this project
were not able to provide enough detail for microscopic simulation. This review of GISs
was completed in Phase I. The following paragraphs describe some of our reasons for

not selecting a GIS at this time.

2.2.1 Capability (lack of)

GISs organize information into layers. For example, a map could be constructed
that has a pavement layer, a soil layer, and a hydrology layer. Each of these layers is
separate and do not interact with the other layers. In the highway systems that we design

and work with a roadway will pass over another roadway and then further down it will

7

then pass under the same roadway. No GIS reviewed can handle this type of situation.
In this case, it cannot be determined in which layer the freeway passing under and over
another freeway belongs. This is a fundamental problem for GIS systems that model
highways.

GISs are based on geometric shapes such as lines, arcs, and polygons, but not
intuitive objects such as a directed roadway with three lanes. It may be possible to
modify a GIS to handle this situation, but it would be cumbersome and non-intuitive to
use. Generally, trying to adapt a program to do something that it was not intended to do

will usually result in frustration and an inadequate representation of the problem itself.

2.2.2 Ease of use

Most GIS’s reviewed were not simple to use. They required special editors that
were not what a traffic engineer would be familiar with, and they provided many more
types of modeling features most of which were not needed for traffic modeling. These

extra modeling features could lead to confusion and frustration.

2.2.3 Cost of software

Finally, the cost of GIS specific software was very high when deployed to the
field. Commercial pricing could be as high as $50,000 or higher. In addition, special

training would be necessary to use it properly.

2.2.4 Uniformity and availability of G.1.S.

Most GIS’s had no standard way of storing data. Each GIS had its own method of
dealing with saved data making it difficult to interface with other programs. In addition,
it was not entirely clear that any of the GISs provided an application programming

interface (API) that could be used to get at the geometric features that it managed.

2.3 Design of the GDC

The Geometry Data Container designed here will be implemented in a relational
database. The database design required analysis of the original structure of the
information written to the ASCII file system, and the development of a set of tables and
relationships between the tables. The relationships between the tables are defined by how
information is used in the original ASCII file design. The GDC contains the geometry,
detector, metering, and variable message sign information.

Changing the underlying structure of the geometry to create the GDC will have no
visual or operational impact on the user of the traffic simulation system. The format of
the geometry data is essentially hidden from the user of the system. It makes no
difference if this information is stored in separate files, a relational database, or an object
database because the application programming interface (API) actually interacts with the
information directly—not the user. In figure 2-1, the GDC in the lower left part is the

new feature being added with major additions and modifications to the APIL.

Il=

ASCII Files

Figure 2-1: Traffic editor and simulator with an API connecting it to the geometry.

2.3.1 Relational database model chosen

Originally our design was to include an object database, but the complexity of
implementing completely object oriented database was too much. The TSS data that was
stored was not directly object oriented, but it behaved somewhat like an object oriented
system. Unfortunately, the API in the TSS was not object oriented and would be very
difficult to convert. Therefore, since a relational database would provide many of the
features we wanted, was much less expensive, and the learning curve was much less, we

decided to use a relational database system.

2.3.2 ODBC/SQL chosen to access the database

Once the database was chosen, we had to make another decision on how to

communicate with it. We again had two choices: pick a particular database and use its

10

proprietary commands, or choose a generic protocol that most databases would be able to
communicate with.

In the first case, we would have fo design functions for a particular database. If
we decided to switch to a different database later, it would cause many of the functions to
be redesigned for a different database. This would be very costly.

In the second case, a generic protocol such as Open Database Connectivity
(ODBC) with embedded Structured Query Language (SQL) would allow most functions
designed to work with many different database systems with little reprogramming. There
is some small cost because generic protocols many run somewhat slower.than native
database functions, but the flexibility of using other databases far outweighs this cost.

Finally since the SQL commands are embedded within the ODBC, additional
functions can be easily written by a non-expert to search the database for specific patterns
or other information of interest to the engineer. Without a database and ODBC/SQL
these types of searches require custom programming which can be very expensive.

In order to build a database from the original format of the geometry data, we had
to do an analysis of the current ASCII Network system of files and define a mapping that
would carry the information from the files to a database. The ASCII Network was
composed of eleven files: network, blocks, texts, vehicle classes, global messages,
sections, nodes, controllers, centroids, roguis, and routes. Each of these files contains
specific information on some part of the geometry.

The simplest file is Blocks. It contains a list of blocks including block points,
which provide a visual background for the user. Each block could represent a building,

while each block point is defines the actual outline of the block. All this information

11

exists in one file. In mapping this to a database, two tables are defined: blocks, and
blockpoints. In figure 2-2, a simple block is drawn in the traffic editor and its
representation in ASCII Network format is in figure 2-3. Finally, figure 2-4 represents

the GDC representation in two tables.

Figure 2-2 : Simple block drawn in the traffic editor

12

|* File of background elements {(blocks) specification
Number of blocks

*®

1"

J* Block

13 8 127 127 127 8
7.63008 28.210060
12.790080 23.41000|
18.67008 22.79000
18.77608 17.53000

14.64008 15.68000
12.99P9680 18.36000
8.350800 16.716000
7.220808 18.67000

Figure 2-3: Representation of the block in Figure 2-2 in ASCII Network form

13

Je

122
10.2€00C1
Jar
ks

0Cl

34

I

0L OV il

Figure 2-4: Representation of the block in Figure 2-2 in database form.

The most complex file is Sections. This file contains all the information about
sections including meterings, detectors, turnings, rights, capacity, speed, elevation, and
other geometry information. Detailed information on the table SECTIONS and other

tables can be found in Appendix A.

2.3.3 Relationships between tables

It is not enough just to define tables. To use a relational database efficiently,
relationships between the tables must be defined. Usually defining these relationships

occurs naturally from the way that the tables were derived.

14

For example, in the Blocks example there is a natural relationship between blocks
and blockpoints. Each block that is displayed to the user is a record in the blocks table
while outline of the block itself is a set of points contained in the table blockpoints with a
field linked to the block table.

Figure 2-5 is a picture with all the database tables defined and all the relationships
between them. The lines between tables indicate a relationship between tables. Each end
of a relationship line has either a 1 or an @ indicating the type of relationship: 1-1, 1-

many, or many-many. These relationships are described in detail in Appendix A.

2o Mo alt Access [Helatan-hars)
e oe 1R yew Reaiorahos Took Weidom Heb
NwaaRv|ines|ur Bx][B%: 0]

Figure 2-5: Relational database with tables and relationships

15

2.4 Implementation

This design of a database required the introduction of approximately 105 low level
functions that will interact with the database during implementation. The functions are
grouped into classes, which are similar to the ASCII network version of these functions.
All the functions will be defined and implemented in the API of the system. They will be
transparent to any user of the system. All the details of the function definitions are
contained in Appendix B. In this section we give a basic overview of the functions and

what they do.

2.4.1 GDC Prototype Implementation

The geometry data container (GDC) is implementation of the original geometry
system done in ASCII Files, but redesigned to make it functional in a relational database
format. This redesign of functions in the input/output portion of the traffic simulation
system (TSS) is not a trivial rewriting of code. Our initial design of the database includes
more than 105 completely new functions at the lowest level. Each function accesses the
relational database system for either retrieval, updating, or saving of geometry or
geometry-like information. These functions can be grouped into functional categories
that operate on specific parts of the geometry. The functional classes correspond to their

analogs in the original ASCII version of the geometry and are defined as follows:

e Blocks: blocks help in visualizing the area being simulated
o Texts: text used to identify objects being viewed
16

e Vehicle Classes: vehicle class definitions such as HOV->TRUCKS+BUSES

e Global Messages: global messages for drivers

e Sections: geometry information on sections of roadways

e Nodes: nodes link sections to form networks

e Controllers: controllers link meters and detectors to nodes/sections
e Centroids: used in origin/destination and route selection

e Roguis: used in origin/destination and route selection

e Routes: used in origin/destination and route selection

e Network: general network characteristics

In order to explain the implementation, it is necessary to understand not only the
overall structure of the classes listed above, but the individual functions that need to be
implemented for the relational database to function. In the following, we will explain
how each category is used in the implémentation and a definition and explanation of each
function that needs to be implemented. More than 105 new functions had to be designed

and implemented to make the GDC fully operational.

2.4.2 Blocks

Blocks are background objects (polygons) used to help visualize the traffic
network. Blocks are polygons that can have shape and color. For example, blocks can be
used visualize physical features such as rivers, buildings, and other like scenes. In figure

1, a block is drawn using high level functions that ultimately call the low level Block

functions described below.

17

Implementing Blocks in the relational database requires defining eight new
functions. In order to understand the implementation, it is necessary to explain each
function, its parameters, and what action that it should perform on the

database—Appendix B defines these functions in detail.

243 Texts

Texts are background texts, which are used to identify parts of the traffic network.

Texts can be used to identify scenes such as rivers, buildings, other scenes, as well as

parts of the traffic network. They are not used directly in simulation.

2.4.4 \Vehicle Classes

Vehicle Classes are groupings of types of vehicles. For example, one might
define an HOV1 (High Occupancy Vehicle) class with taxis and buses, and another,
HOV2, with trucks and large trucks. Now lanes could be reserved in sections just for

HOV1 and HOV?2 type vehicles and no others.

2.4.5 Global Messages

Global Messages are messages that are visible on either variable message signs,
or changeable message signs that are used on modern freeways. Each section can contain
a variable message sign with the potential messages and potential actions by drivers once

the message sign is activated. For example, if freeway traffic is heavy then the sign may

18

be set to read “Congestion Ahead, Use Alternate Routes.” Once the sign is activated then

a potential action would be for 10% of the drivers to take the next exit.

246 Sections

Sections contain the basic geometry of the network. A network itself is composed
of a set of sections linked together by nodes. The sections themselves contain
information about the physical characteristics of each section in the network such as
number of lanes, lane length, lane width, capacity, maximum speed, type of roadway,

slope, and contour.

2.4.7 Nodes

Nodes are the links that form an actual network. Nodes link the sections together
to form networks. In general, there are two type of nodes: junctions, and junctures.
Junctions are links between sections that have driver selectable turnings, and junctures

are links between sections that have no driver selectable turnings—no intersections.

2.4.8 Controllers

Controllers connect detectors and meters for traffic counting and controlled entry.
They provide a way to implement controls plans for a network. Any information that is
received from detectors or sent to meterings and variable message signs is essentially

routed through a controller.

19

2.4.9 Centroids, Roguis, and Routes

Centroids, roguis, and routes are used by the TSS system to help determine traffic

flow given origin/destination matrices.

2.4.10 Network

Network contains the basic information about the network such as type, the
default values for different types of structures. It also includes indices for background

files that can be traced over to produce a network.

2.4.11 ODBC Functions

ODBC functions represent a new set of functions that perform all the
storing/retrieval to and from the relational database. Any of the other functions defined

above must call these functions in order to communicate with the database.

2.5 I35WI94 Twin City Freeway Geometry

In order to test our tools, we chose a forty mile section of I35W from 1694 to 1494
and the intersection of I35W and 194 for about three miles. Figure 2-6 shows the zoomed
out view of this segment of I35W in the traffic editor. This set of sections should be
enough geometry to sufficiently test the simulation modeling, and the tools that we are
building. In addition, building this section of the Twin Cities traffic network should give
us a good way to measure the time and effort that it takes to enter other traffic networks
of similar complexity.

20

The software that we have chosen has a traffic network editor that allows visual
input of the network geometry. This greatly simplifies the entry, and the accuracy of the
data entered. The general plan of attack for entering a new network is: get a background
image of the network, trace over the sections in the network, add additional detail, add
detectors and controllers, and save the resulting network. Finally, we discuss some of the
problems that we encountered and how we solved them. Each of these tasks is quite a bit
more complex than it seems. For example, entering a cloverleaf took much more time to

complete than entering a straight ramp. The following sections describe the effort in

entering a section of freeway.

-~ Tedi v3.0 D:\Demo2\Part2\135_i94_FwWY
?

Figure 2-6: 135W from 1694-1494 view from within the Traffic Editor

21

2.5.1 Background Image of the Network

A background image of the I35W/I94 freeway was provided to our research group by
MN/DOT. The image was done in Microstation, a CAD program that Mn/DOT uses for
keeping track of the freeway system. The image contained much more information than
we needed. The image, figure 2-7, that we received contained the entire network of state
aid roads for the Twin Cities. The size of the file was 54MB and took thirty minutes to
load on a Silicon Graphics Workstation using the traffic network editor. Because the file
contained more than what we needed and because the loading time was so significant we

edited out essentially all the details except for the freeway sections of interest.

S _— R N N
P et Cwot Mvage Gacton Coniol Bewt G0 Mk e R s e

Figure 2-7: Background map of Twin Cities roadways (GIS view)

22

This new file was much smaller, about 3MB and took less than one minute to
load. The background file is only needed for the initial entry of the geometry data
explained in the next step. In figure 2-8, the difference in the number of details is visible.
The background image only provides a centerline drawing of the freeway. Additional
detail, such as number of lanes, turnings, detectors, and controllers, is provided by the
ASB files, which were also provided by Mn/DOT. This background image and the ASB

files are used to essentially trace out a geometry for the network.

Figure 2-8: Simplified Map with much less detail (essentially I35W)

23

2.5.2 Trace over the Sections in the Network

Using the traffic network editor, the background image is opened and registered.
Now we just start from the top and begin drawing freeway sections over the centerline
image and adjust the detail to what the ASB files describe. For example, a section with 4
lanes , no turnings, no detectors, and no controllers. This drawing of sections is very
tedious and time consuming, but it is visually accurate, and only needs to be done once.
Drawing it with other systems would require the entering of coordinates for each
section—this would even be more effort.

Actually, drawing the sections only becomes the most difficult with cloverleaves
because these roadways have very sharp turning curves. The system that we are using
has only straight sections for modeling networks, but sections can be angled where they
meet other sections to produce curves. The result is that a single curve in a cloverleaf
may be composed of 10-20 sections, and a full cloverleaf may contain 40-80 sections.
Figure 2-9 shows a partial cloverleaf that was entered with the traffic editor, the numbers

on the curves are the section identifiers.

24

contrillers]

Figure 2-9: Cloverleaf view from within the traffic editor

Freeway sections need to be entered for each direction vehicles are to travel in

because each section in the network can only provide for traffic flow in one direction.

2.5.3 Add additional detail

Once the basic geometry of the freeway is entered, the other details of the
network geometry are added. This information is available from the ASB files such as
section capacity, maximum speed, type of roadway, level, and slope. All these
parameters help to determine the actual flow in a section based purely on the geometry.
Although the network appears visually, all the detail parameters used here are entered

numerically. They provide information to the simulator so that it can calculate

25

acceleration, deceleration, and speed for vehicles in a section. In addition, they also can

be used to help calculate pollution caused by the vehicles used during simulation.

2.5.4 Add meters, detectors, and controllers

Now that all the geometry has been entered, meters, detectors, and controllers can
be added. Again these devices are attached to each section in the geometry. Meters are
classified by type (green-time, delay, and flow) and are usually connected to a controller.
Detectors are also classified by type (inductance loop, pneumatic tube, coaxial cable, tape
switch, and queue-length). In our example, we used green time for meters, and
inductance loops for detectors. Detectors also had to have the correct identification so
that when volume information is requested from one of the Mn/DOT traffic volume
databases the correct detector volume information is transferred. This correspondence
will be important when using the tool to automatically create the simulation states for a
simulation. Mn/DOT provided the detector location file so that the correct detector

identifiers were correct.

2.5.5 Save the resulting network

Once all the geometry information, along with metering and detector information
is entered, the next step is to name and save the network. Actually, after entering several
sections it's a good idea to save the work. There were times when entering section data

that the system became inoperable and all the work was lost since the last save. So, as in

26

using all software it is prudent to save often and keep multiple versions so that major

system crashes do not cause loss of much data and effort.

2.5.6 Problems and solutions

Generally all the problems that we had could be classified into two types:
underestimating of the scope of work, and deciding how to model freeway characteristics
that are not overtly in the model.

Our original intent was to model the entire Twin Cities freeway network because
with a graphical editor this would be fairly fast—we thought. Entering the freeways with
all the detail that we have took about three hours per mile of freeway. See figure 2-4 for
how complex some freeways can be.

Some freeway sections merged from four lanes into three lanes. This particular
characteristic was not directly available in the model, but our solution was to model two
sections: one with four lanes and the other with three lanes with an intersection
connecting them. The only additional detail that had to be done was to determine the
correct turnings for vehicles moving from one section to the other.

The simulation system that we use has very many primitive structures that can be
used to create complex systems, but this requires a good knowledge of the system in

order to come up with a solution.

27

28

3 Sensor Automation Development

3.1 Objectives

The primary objective is to develop a program that takes as input network
geometry, traffic volume data, and user specified simulation times to generate the
simulation input files. That is, reduce the amount of time it takes to prepare data for a
simulation. In the phase I report, it was found that input file preparation could take
anywhere from one to twenty days, but in most cases it took only one day. The AST tool
described here can reduce that day to a few minutes. This time saving should help make

simulation a process that can be used more often and with much less effort.

3.2 What we need
In order to automate the simulation, the following need to be developed:
¢ Determine user input for geometry selection (point and click)
e Modify traffic editor to save subnetworks
e Modify/augment geometry database to include flows (traffic volumes)
e Define user input for traffic volume selection
e Design an algorithm to add traffic volume to each entrance section for each

simnulation state.

29

3.2.1 Determine user input for geometry selection (point and click) and modify

traffic editor to save subnetworks.

It is assumed that the geometry network is either the complete network to be
simulated or a superset of the network to be simulated. If the entire network is to be
simulated then no modification of the geometry database is necessary.

On the other hand, if the network to be simulated is a subset of the current network
then the user of the traffic editor must somehow select it. How is this to be.
accomplished? Well, the original version of the traffic editor allowed users of it to make
certain views of the whole network. These views showed only the area selected, not the
whole network. Unfortunately, the views still held all the information in memory and did
not give up any space. Views are generally created by using a mouse to draw a polygon
around the subnetwork of interest. We modified the traffic editor so that a view could be
created and then saved as a complete network. In addition, the memory that was not in
the saved view was released making the size of the geometry smaller.

Using the view for selection of a subnetwork and saving this view as a new
network we now have the complete subnetwork (network) to work with. In our design,
the AST tool works with the entire geometry presented to it. Therefore, it is neéessary to
save only that part of the network that is needed for simulation.

In the selection of a subnetwork, it does not matter whether the network is a
relational database or an ASCII network. The AST tool uses the Application
Programming Interface (API) to access the geometry. The API itself actually makes the
connection to the network. Figure 3-1 sho;zvs essentially how the communication to the

geometry is made. If you look closely, it does not matter what form the geometry is

30

stored in. The detail of whether the true underlying data are stored in a database or an
ASCII network is hidden from the user. There is no need for the user to understand all
the details just to do a simulation. A normal user of this system will work at the level of

a traffic engineer and work with objects that he will understand, not fine details that make

the program work.

Database ASCT I
(GDC) Network

AST Tool

Figure 3-1: View of the AST accessing the network geometry

3.2.2 Modify/augment geometry database to include flows.

In order to simulate the network saved in the previous step, the geometry database
had to be augmented because the saved network did not preserve all the detector flow

information. That is, some sections may be entrance (boundary) sections, but they may

31

not be associated with a detector. Since detectors essentially give the flows for this
model, no detector information would be provided to these sections and the simulation
states could not be constructed.

A simple solution to this problem was to determine by hand which upstream
detector(s) provided flow information for each section. This information was then added
to the optional input field for each section header. In entering the flows, there aré two
cases that could exist: only entrance detectors, mixed entrance and exit detectors.
Entrance detectors are handled by encoding the detectors with plus signs between them.
Mixed detectors are encoded with plus or minus signs depending on whether the detector
is at an entrance or exit. Entering this extra informatipn is just a small additional task that

can be completed at the same time the detectors are input into the geometry.

3.2.3 Define user input for traffic volume selection

Provide an input menu for the user to make selections. The selections should
include the traffic database, the date and a range of times for traffic volume data. An
Open DataBase Connectivity (ODBC) compliant database is used to store traffic volume
data collected by Mn/DOT. The traffic volume data to be retrieved will be selected from
this database by detector number, date, and time. The detectors do not discriminate
among the different types of vehicles on the freeway: only a simple vehicle count is
given. Although the simulator being used can handle several different vehicle modalities

(for example, car, truck, bus), currently only a simple vehicle count is used.

32

3.2.4 Design an algorithm to add traffic volume to each entrance section for

each simulation state

The selection of traffic volumes for each entrance section in the selected network 1s
no trivial task. Both the traffic editor and the micro simulator have a very good
application programming interface (API) connecting them to the geometry data. The API
provides the programmer with access to any element that exists in the geometry.

There are API functions that determine which sections are entrance sections to the
selected network. Each time an entrance section is found, then a special field encoded in
the section is read. The information read lists the detectors that determine the flow for
this section. If more than one detector is listed then there must be a ‘+’ or a “-“ between
them indicating whether the value given by the detector is to be added or subtracted from
the flow. A subtraction would occur if there were an exit ramp in this section.

Once the entrance sectivons and the flows are determined, the simulation states can
be defined. Simulation states are the time slices that provide new input for each time
period in the simulation. Producing these simulation states is the main purpose of the
AST program.

In generating simulation states, for each time slice (for example, 5 minute period)
the special encoded field is read from each entrance section (for example, 5+8-10), the
flows are calculated from the detectors listed here, and the net flow is written to this
simulation state section. These steps are repeated for each entrance section in the
network. Now a simulation state file can be saved for this time slice. Next repeat the
same process for the next time slice, and then repeat until all the simulation states have

been computed. All these files created are stored in the same directory. Collectively,

33

they are called the simulation states. The file extension on all the files created is “.stt’,
indicating system states. These files are exactly what the micro simulator needs to
perform a simulation. Without the AST, this complete process would need to be done

manually via the traffic editor interface.

3.3 Putting it all together

Combining the geometry, the traffic volume data, and user specified simulation
times a sequence of simulation state files is generated. These files will be input for the

microsimulator for the traffic network. Figure 3-2, depicts the architecture of the AST

tool.

Traffic User Specified:
Databases,

Time Penod

Volume
Data

AST

Simulation
States

Figure 3-2: The AST with inputs and the AST generated simulation states

34

3.4 Making a Simulation Run

Finally all the information that is needed for simulation is ready. The simulation
states have been generated (and traffic volumes), the geometry is set, a control plan has

been defined. The next section will describe how to use the AST tool and then run an

actual simulation.

35

4 TN ha BN o2 by EE .

36

- ‘ : ; N j : . :

4 Sensor Data Automation Use

In using the Automated Simulation Tool (AST), essentially all manual data entry is
eliminated. The AST takes as input the traffic geometry, a user specified time period,
and the traffic volumes to generate the simulation states (files) needed for simulation.
Figure 4-1 gives a dataflow view of this process. All the real work collecting detector
data, and entering a geometry has already been completed. The only real input required

is the time period for the simulation states to be generated.

Traffic
Volume
Data

User Specified:
Databases,
Time Penod

Control
Plans

Simulation
States

User Interaction
with Simulator

SIMULATOR

Visual
Display of
Simulation

Figure 4-1 Overview of the AST, the Simulator, their inputs, and the results

37

4.1 Objectives

In genefal, our objectives were to automate the simulation process so that a

simulation could be performed within minutes of the selection of an existing geometry.

e Visually (with a mouse) select the (sub)network to be simulated

¢ Eliminate the need for any manual entry of traffic network geometry (other
than a one time entry)

e Automatically retrieve traffic volume data for the selected network from a
traffic volume database

° Automaticaily generate the necessary simulation states using the selected

network and the traffic volumes

4.1.1 Visually (with a mouse) select the network to be simulated.

Once the complete network is entered, we may bé interested in simulating just a
portion or a subnetwork of the original network. The traffic network editor was modified
so that one could use a mouse to outline only that part of the network of interest and save
it as a new network. This new network then has only the subnetwork selected, none of
the other information is saved relating to parts of the original network. This is precisely
why we encoded flows in the optional field in the previous section—so flow information
would not be lost by selecting a subnetwork.

Figure 4-2 shows an original network with one area highlighted (rectangle
around). This rectangle represents the subnetwork that we have defined. Figure 4-3,

shows the view after the subnetwork is saved as a new network. Notice that the optional

38

s . . _

field contains “120+283+284+350.” This list indicates which detectors are needed to

generate the correct flow for section 717.

f .~ Tedi v3.0 D \DemaZ\Pait2\135_194_FWY CEE

Figure 4-2 I135W at 1494, subnetwork selected in gray

4.1.2 Eliminate the need for any manual entry of traffic network geometry (other
than a one time entry).

One of the most time consuming activities is entering the traffic network itself. In
the previous section, we have already created a traffic network that is part of the Twin
Cities freeways so that the only additional pieces of information that are needed for the
geometry are the list of entrance sections and their flows. We can encode this into the
original geometry by determining which detectors give the flow for each section. These

additions need to be done only once for each geometry.

39

In figure 4-4, the detectors in the first section'are numbered 8, 9, and 10. Notice
that the optional field to the right of the section contains “8+9+10.” This is the additional
information that is encoded in section one indicating which detectors determine the flow
for it. It implies that the total flow for this section is completely determined by summing
the flows for detectors 8, 9, and 10.

If we extend this concept to the next section (section two), then the optional field
here will be “8+9+10+11.” Detector eleven is included because there is an entrance ramp
with detector eleven on it. So by extending this idea to all sections, we can select any
subnetwork and be able to determine the flow for each section by viewing the optional

field.

< Tedi v3.0 D:\Demo2\Pait2\35w_494_change

 Figure 4-3: Section 717 at I35W-1494 cloverleaf. Section 717 has no detectors in it.

40

| X Tedi v.i D:ADemo2\Pait1\P2
CPle CEdit Uwout Amonge - Section’ Conbrol - Result - D/O-Matrix

Figure 4-4: Freeway section with detectors, meters, and controllers

4.1.3 Automatically retrieve traffic volume data for the selected network from the
traffic volumes.
Our automated tool is designed to gather all the traffic volumes for a specified
time period for the set of detectors generating entrance flows for the network to be

simulated. The entrance flows are easily determined by making a special call to an API

function and reading a special optional field which was encoded with a list of detectors

that determine the flow for that section (see figure 4-4).

41

4.1.4 Automatically generate the necessary simulation states using the selected
network and the traffic volumes.

For each simulation state, detector information is provided from the traffic
volume database. The data may need to be adjusted to reflect véhicles per hour flows
rather than sampling period flows. The algorithm described in section 3 describes how
the simulation states are generated. For the user, generation of the simulation states is

completely automatic and should not have to worry about any details.

4.2 Specification of data requirements for simulation

In order to do an automated simulation the following components are needed:
e Geometry network selected and saved
e Traffic volume database
e User selection network, date, and time periods to simulate
¢ Control plan for the selected geometry

e Simulation states generated by the AST tool

421 Geometry selected and saved

Simulation of a particular geometry can be done quickly and easily by opening a
previously stored network with the traffic network editor, selecting an area (subnetwork)
for simulation, and then saving this selected area as a new network. If the entire network

is to be used then no subnetwork selection is necessary—just use the entire network.

42

- Nl W N e

- T N N S N S N -

4.2.2 Traffic volume database

The traffic volume database for the time period that simulation is to be done for
must be available. Usually Mn/DOT can provide this information. To use the data it
must b;e imported into an ACCESS (or other ODBC compliant database) with the
following columns as described in Appendix D. The next step is to register the database
with the ODBC32 Administration program in Windows NT/95. The name of the
database should be LOOPDATA. This name can be changed later, but the current
program will look for a database named LOOPDATA.

Once the database is registered then it becomes available for any ODBC
compliant program to retrieve and store data in. That is, any of the simulation tools that

we designed can make use of it.

4.2.3 User selection network, date, and time periods to simulate

The user of the AST program can select any existing network (previously saved)
for the geometry, and the date, start, and end times for detector data. Ahy detector data
that cannot be found is defaulted to some preset value and a message is written to the
user’s screen stating that no detector data was found. In our experience, detector data is
not always available for all the detectors in a particular network so substituting some data
helps to complete the simﬁlation. In the future, this addition of missing data can be made

more intelligent, but a quick fix is just to substitute in a fixed value.

43

4.2.4 Control plan for the selected geometry

The microsimulator that is being used must have a control plan to control the rate
at which vehicles enter the freeway. Otherwise, any vehicle on a ramp enters the freeway
at the average speed without any waiting. This effect is not desirable and therefore a

control plan must be entered.

4.2.5 Simulation states generated by the AST tool

The simulati‘on states (time slices) for each time period for each section are
generated by the AST tool with the information gathered from the user, the geometry and
the detector values. Each state generated is written to a file and contains information on
volumes for the entrance sections. For example, if the traffic engineer wants to simulate
the traffic on the network from 0600 to 0900 with 5-minute data then there will be 12*3
or 36 state files generated for this simulation.

In our simulation, all the simulation state files are saved in a folder (directory)
called a results container. The results container itself can have any name, but it makes
sense to choose a meaningful one. Later when a simulation network is being loaded a

particular results container will need to be specified in order to run the simulation.

44

A G I -l B EE Ey B ..

5 Framework for Phase Ill work

In this phase of the project, we automated the geometry entry and generation of
simulation states. In the next phase, we will automate the control plans and the results
output by the simulator.
e Automate control plans
¢ One time geometry entry: including all ramps, detectors, etc.
e Automatic selection of detector data from a traffic database that is ODBC
“compliant
e Automatic generation of simulation states (more fully integrated)
e Generic/Integrated geometry for both a macro/micro simulator

e Real-time access to Mn/DOT detector data for simulation

5.1 Automation of control plans

Currently control plans are essentially fixed in this version of the simulator. That
is, once a network is opened and a control plan is selected then no other control plan can
be opened for this network. Our plans call for automating control plans so that multiple
control plans can be used during any one simulation. In addition, we would implement
Mn/DOTs control plan so that it could be used in the field.

Automated control plans will allow the simulator to dynamically modify the ramp

control for each simulation state. This process will allow the traffic engineer to build

algorithms based on current traffic flow to control ramp meters, not on metering based on

45

historical data or specific time periods during the day. The development of automated
control plans will be an important step on the way to real-time traffic management for

freeways.

5.2 Automation of results presentation

Once the simulation is completed, it would be good to automatically see the results
of the simulation visually. Not just simple X-Y graphics, but some kind of visualization
that makes traffic congestion easily standout. Currently, the simulation data can be saved
in spreadsheet style files that can later be used by other programs to generate graphs and
perform statistical analyses. None of these graphic views or analyses are integrated with
the simulator. Our goal will be to integrate these features within one graphical user
interface (GUI) so that a traffic engineer could run a simulation and immediately view the
results with just a few menu selections. Some research will need to be done to define

exactly what type of visualization would be helpful to traffic engineers.

5.3 Integrating another simulator with the GDC

Integrating a macroscopic simulator so that it can make use of the GDC. Currently
only a microscopic simulator works with the GDC. Maintaining only one GDC
(geometry) will eliminate the cost of generating a special geometry for a macro simulator.
In addition, more effort can be put into keeping the GDC up to date allowing more
researchers to actually work on traffic simulation and analysis not geometry or data entry.

The ITS Laboratory at the University of Minnesota is continuing to develop the
macro simulator: KRONOS. Since this development is being done in the lab, we have

access to the developers and the source code, so that GDC geometry can be augmented

46

with additional information to generate macro simulator geometries from the macro

geometry currently in the GDC.

5.4 Real-time access to Mn/DOT detector data for simulation

Finally, real-time access to Mn/DOT detector data from their data feed for real-
time simulation. In another project (Activation of the 1394 Lab), a prototype was

built that received real-time data from Mn/DOT and stored it in a file system.

47

N S R AN aE EE .

48

6 Conclusions and Recommendations
6.1 Problems that we encountered

6.1.1 Problems with the GDC

e Debugging the system

e Determining which functions to test first

¢ Finding internal bugs

e Defining a test suite to determine if things are done correctly

e Real-time and deleting an object on the screen will permanently delete it in the

database

e Database cannot translate from relational to ascii.

6.1.1.1 Debugging the system

The system that we designed was difficult to debug because we did not foresee
the system as large and as complex at it was. We had multiple layers of software to
develop and understand. In figure 6-1, the API has at least four levels of software. All
the names in figure with an asterisk (*) were new software that had to be implemented.
At the TDR level there were more than 105 new functions to design and implement. The
TDG functions all had to be modified to make the correct calls to the TDR functions. In
addition, the TDI functions on the right side of the figure were not available for use by
the TDR function on the left side. TDI functions provide the capability to create and

modify internal API objects. They are utility functions.

49

Since these TDI utility functions did not exist for many TDR functions that we
designed, retrieving objects from the GDC was much more difficult. We had to write
some of our own translation functions, and debug them without knowing very much
about the internal structure of objects in the API. In addition, at the lowest level ODBC
was also a problem to work with because the special ‘handles’ required to use it were
difficult to add to the API. In some cases, the macro definitions of the API conflicted
with the macro definitions of Microsoft windows. This conflict resulted in errors during

compilation.

ASCOT
Network

ODBC* File /O

TDI

TDI*¥

API TDR™ TDA

TDG> (Generic)

TD

x—//

Figure 6-1: Software architecture from the AST to the GDC/ASCII Network

50

6.1.1.2 Determining which functions to test first

Since there were so many functions to design and test, the most logical step was
to start with the network object and functions. Unfortunately, this network object while
being one of the more important was not so simple and had many parts to implement
before being able to see any results. Of course, nothing else would work without the
network object first working. Most of this was done by trial and error because we had no
knowledge of the internal working of this environment. In fact, a variable in the ODBC
database was named ‘level,” which conflicted with some function calls. This was a very
difficult error to find, but easy to correct. The name was changed from ‘level’ to ‘levelb.’

Once the network object was finished, the block object was next. Unfortunately,
the same problem was encountered here with the name ‘level’ as in the network object.
Basically, there are conflicts in names between what ODBC will accept in calls to the

database.

6.1.1.3 Finding internal bugs

In addition to general debugging problems, the software that we were using had
additional internal bugs related to the modifications made to call the new TDR functions.
These types of errors required much contact with the developers of the simulation suite in

order solve these problems. In some cases, solutions were not found.

6.1.1.4 Defining a test suite to determine if things are done correctly
Since the system we were developing was so complex and so many changeé were

made to the software, it was difficult to come up with a simple plan to test the pieces of

51

the system we were building. Initially, we thought that we could do end to end testing.
That is, use the traffic network editor to make a drawing, which is saved as a database,

and also as an ASCII network.

6.1.1.5 Real-time and deleting an object on the screen will permanently delete it in the
database

An unintended side effect of the implementation of the GDC was the dynamic
nature of an object delete. For example, if an object was open in the GDC and being
viewed with the network traffic editor, then any change to that object.would immediately
be a directed change to the GDC. Since the GDC was changed in this operation even
closing the network traffic editor without saving it will not preserve or bring back the
original object. This could be a significant problem for any user of the system. With the
current design this problem cannot be easily fixed. This is also inconsistent with the
ASCII network implementation of the system. A user of the system should be able to
perform the same operations with the same results independent of the whether the system
is to be saved in a GDC or an ASCII network. This feature is a design fault and will be

fixed in the next phase of the project.

6.1.1.6 Implementation cannot translate from GCD to ASCII network.

The design of the GDC system would allow automatic translation from GDC to
ASCII network and vice versa. Unfortunately, the implementation of the GDC could
only translate from GDC to ASCII network, not ASCII network to GDC. Since the

software is very complex, it was not possible to completely test the design before

52

implementation. Consequently, there were some internal errors and mismatches that
should have been caught earlier, but were not. Part of this problem is related to the
number of layers that had to be modified in the software. Refer to figure 6-1 to see the

layers of software that were modified.

6.1.2 Problems with the Automated Simulation Tool

Although we were successful in building the AST, we did encounter problems along
the way. The following is a list of the major problems that we encountered in designing
the tool.

e Many detectors have missing data or do not work

e Sometimes the system fails to find a detector that exists

e Not all flows were computed accurately if turnings exist

6.1.2.1 Many detectors have missing data or do not work

In running the AST to generate the system flows, many times the detector
information was missing or invalid. In order to correct for potential missing detectors,
we automatically entered a default flow for any missing or invalid detector. Substituting
a default value was a good idea, but a default value for a cietector cannot be generalized
across the whole network. The solution is to get complete and reliable data from the

detectors or systems that translate detector information. This is not a job for the AST to

complete.

53

6.1.2.2 Sometimes the system fails to find a detector that exists

In several of our test runs of the AST, some detectors could not be found in the
database even though they existed. This was not a programming error on our part; it was
an error in the software connection to the traffic volume database. The underlying
ODBC drivers had an error that caused some calls to the traffic volume database to not

find a detector. This problem was corrected with new drivers for the ACCESS database.

6.1.2.3 Not all flows were computed accurately if turnings exist

When we compute the flows in a network, our algorithm specifies which detectors
to select from the traffic volume database and where to put the flows. Unfortunately if a
vehicle has choice of a turning in a section then the simulator assumes that turns are of
equal probability. In reality, this assumption may not be true. It may be that given a
choice of going left or right that a driver more often will choose left. In this case, our
flows would not be calculated correctly. A solution to this problem is to compute the
flows from the detectors in the left and right turn areas and then adjust the turning

probabilities to reflect the actual flows.

6.2 Things that we learned

e Adding a database capability to an application that is not currently using a
database can be a very complex project.—even more so if the database must be

integrated internally into the application. For example, just replacing the input

54

files with database calls is much simpler than modifying the application to use the
database as a real-time updating tool.

Problems in the HW/SW interface may not be apparent until implementation.
Even though training costs $$, time lost trying to figure out software can be even
more costly in $$ than a training class. Training on externally purchased software
should be a must.

Coordination on projects where details are not completely worked out can be a
difficult problem to solve. As many details as possible must be nailed down
before the project starts.

Designing a new software system requires thorough planning and diagrams with
all the interfaces nailed down before work is started.

Test plans should be done at design time so that components can be tested
Choosing ODBC protocol will pay off. Many other software products now have
this protocol available.

GDC implementation does not completely work. Some functions work, but a

redesign of the connection to the database needs to be done

6.3 What we would do different, if we had to do it again

Do a more thorough design of the system. Define all the interface components, all

the functions that need to be designed, all the levels of abstraction that must be
considered, and ensure that the system design is consistent and workable. In our case, we
did not do a complete detailed system design. We thought we did, but it was not detailed

enough. We did not know what the interfaces would really look like; we did not have a

55

complete detailed paper design to follow. What we missed is that we did not have
complete knowledge of the geometry software, we did not know ODBC, we did not know
the process for building DLLs in the visual C++ environment, we did not know
ACCESS, and the geometry translation from a set of ASCII files to a relational database
waé not a direct simple translation. All these factors combined together made this task
overwhelming. In addition, the database design had a few errors that were difficult to

find because of lack of knowledge of SQL and ODBC.

6.4 Major accomplishments

e GDC was designed. On the top the overall GDC looked like a good design, but
implementation was not as easy. I think that too many things were changed to
make a successful project without checkpoints to ensure that the software would
eventually work.

e AST was designed and Implemented

e AST can generate simulation states with flow data from a selected network

e Some portions of the GDC are working, but they have no effect on whether the
AST is working or not.

e I35W geometry with all ramps, meterings, and detectors was entered (it took
approximately 3 hours/mile of freeway to enter the data).

e Currently an ITS lab user can take any contiguous portion of I35W and do a
simulation with either current TMC data (relatively new data, not real-time), and
in less than 30 minutes. This is a major step forward in being able to simulate so

quickly.

56

6.5 Conclusions
The completion of the AST essentially completes most of the objectives of this

project. The other objectives included partial entry of the Twin Cities Freeway network,
and the design and implementation of the GDC. Although the GDC was designed and
partly implemented, there were many problems both in the design and implementation of
a complete GDC. Portions of the GDC worked, but the complete implementation with all
100+ functions was not completed. Fortunately, a redesign and a new implementation of
the GDC have dvercome many of these problems. The process of design and
implementation of this project and all the problems that we had gave us great insight in
how to improve our methodology for completion of the next project phase.

A major result of this project is that any traffic engineer can now select a network
for simulation, determine a time period for simulation, and run the simulation without
any manual entry of data or re-entry of geometry. This process alone reduces the amount
of time that it takes to prepare data for a simulation run, and it also minimizes errors in
data entry. Of course, the network must already be in the GDC (either in ASCII or

database format), and the detector information must be available.

57

Appendix A

Database Specifications

A-1

Appendix A : Database Specifications

Introduction t0 APPENAIX Acoovirirriiiiirtiiii e s 3
Table: BackgroundLaYErS.cceeereririuiiiiiiiiiiniiceeree sttt 3
Table: BaCKZIOUNAS.......coeeereenieeiiiiiiiinect ettt 4
TADLE: BlOCKPOINTS ... eeeeeeeeeeeeeieetrieeeeeeeeretrassssnseseessereressssssnssassseeesessssssssssnsesssssssonssnssssssssssseess 5
T ADLE: BIOCKS weeneeeeeeeeeeeeeeeeeeeeetteessusaesseereeesssssssssesssseesressssssnsnsnnsessesssssassnsssesessesssnessssnsssssosessssses 6
Table: CentrOIANOGES . . cceeeeeieiiiieieeerreereetttrrrieeeeeeeeeerrrasnnnraeaereaeearasnsenersessesssessssnssonssssessernanns 6
B0 (o O0=) 110 £ o) L IO TR 8
TaADIE: CONtTOIA S EC IONS. e e e eeeeiieeetrtteereeeeettretteeeeeeereesreesssnnnnsaasesseresssnsnnnsnsssssseestteasssssosssseenss 9
T ablE: CONTOUIPOINES .. eeeveeeeeeieieiieiiieeeeeeieeesesraerreeeesseessrreesaeaesaesssssnnasseeessaananssnneeesssssssrsnsnens 10
Table: CONtIOllETDEtECIOTS. ..ccvvevrreeieereerrrirertiieeeereeeeererrarsnnenaessseesersressnnssaseesessessssessnsssssssssass 11
Table: ControllerMEtEriNgS.ceeueeeereerreerriiriiiiriieeerr ittt sne e tesebe s s s e rsasstessbssnsneeanas 13
Table: CONIOIEIINOAES ...uueveeeevrriieereeeirertenaearirresrararaerer———eeresteteeterrrraettettteaeeesesesetsetemmartnmsmmons 14
7o) (SR 00030150 | (=3 5 DUUUUUR OO PP 16
B0 (o @035 1) (51 B ALY TS 17
T ADIE: DIELECIOTS wvvueeeeeeeeeeeeeeeeeerreuttiesseeeeesssssssaneeseeaasesereranssssssssssssessersneesssnesssssssnessnssssmsssssses 18
Table: GIODMESSAZESververereeereerinetiniieiitirti ittt ere st e s e e r e e e e ssbe e sb e s an e et s e st e e ssssonresensanes 19
AL LALEIALS. .. ueeeeeeeeeeeeeeeeiiiitteeeseeeereeereesasraseeeeseeessesrsssssnnsnssssseenresnensssaesssesssssersrarsrasssssnses 20
TADIE: MELETINGS ..eevveeveeeeeieieeeieerierte it e e sttt sb e st s b e b e b e b e b e s s e ss s s e sanesss e bt s e e eae 21
TaADIE: INEEWOTK ... ceiriieeeeeieiteereeer e eeeereeera e aaeeesaeeeeeseasssessnesessseeseessassssssesssnesessmmmrsssssssnssnanns 22
T ADIE: INOGES .oveeeeeeeeeeeeeeettteteresseeseeresessssssssaeeseseesesssssnsssransssaaeeseenensnssssnsonssssertrssmssnsssssnnsns 24
Table: RIGNESveeerieeeieieeeeeece ettt bbbt 25
Table: ROZUIROULESccoeimierieiieiieciceeent ittt et e ettt 27
Table: ROGUIROULESECHONSoueerviiiuiiieiiiiiiiiciiite ettt 28
TADIE: ROZUIS ..eveuveerreieeeieeeeeeetee ettt e et r st s it et r e s st e s e e s e ae s s s e san s s e nesat e st nae 30
Table: ROGUIVIMSS......ciiiiiiiieiinietenetit ittt e e b st 31
T ADLE: SECHIOMNS .ceeeeeeeeiieeeeeeeiiiisarssssrerenrrnenrrerssssssrnrsrrrsrrraeraaseeseaaeeennaeeseasseraressessasesssessonsssssssnns 32
T ADIE: SEIPEITIIISSIONS. ... ceueerieerurrerennenesteneeesensrssrasserrarerrreraesreesereeseeersaeesseeaesssesssestossorsmanississss 35
TaABlE: STAZES ..eeereeeieeeeetcete et 36
DI TEXES. . ureeeeeeeeeeeeeiettiusasseeeseeeessessusasssesesesereesssssrsnsnsnnnssaseseesnsssssnnsssssssesenessssassnsesssssoss 37
TabIe: TUIMINESocveevevereererererreseeeesteeereesesteuestesetsseeesae et e reaesesbesbe s st b s s sasaseresseas s esessesesnens 38
TADIE: VO IASSES .oeeereieesiirerateeeeesssererarnsessssessseessreaaaeaeeeeeeesessaseesessanessasesssesssnassssnsennssnnnsns 40
TADLE: VM S .. eiieteeeeeeeeeeeeesetetssesesressessssnsasssesestsssnsesessrsrnasessenssssernnssasessnnsansasesmensnneessuanssssees 41
Relationships: All.....cocooiiiiiiiniiiiiiiiic e 42
A-2

Introduction to Appendix A

This appendix contains the full description of the database tables that were defined in the
ACCESS database. There is enough information here for each table to recreate the database.
Each database table explanation is partitioned into three parts: columns, relationships, and table

indexes.
Columns describe the type and size of data contained in a table. Each column that is

defined is a data field with a name (e.g. fileName), a certain type (e.g. Text) and a particular size

in bytes (e.g. text is 100 bytes long—characters).
Relationships specify how the tables in the database relate to each other. They provide an

efficient means to retrieve and to store information in a database. For example, if a relationship
exists between an element of blocks and records in blockpoints, and given that a block is
composed of blockpoints, then deleting a block also deletes ALL the blockpoints associated with
it automatically. So, just one delete command can delete many different records in RELATED
tables. In addition, UPDATING a record will automatically update all records associated with it.
Relationships also define the type of relationship between tables such as one-to-one, one-to-
many, and many-to-many.

Table indexes provide efficient methods to search databases for information and provide
keyword searching.

Table: BackgroundLayers

Columns
Name Type Size
filkeName Text 100
idLayer Text 20

Relationships

BackgroundsBackgroundLayers

Backgrounds BackgroundLayers
fileName 1 « fileName
Attributes: Enforced, Cascade Updates, Cascade Deletes
Attributes: One-To-Many
Table Indexes

Name Number of Fields
BackgroundsBackgroundLayers 1

Clustered: False

Distinct Count: 0

A-3

Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
fileName
Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
idBackgroundLayer
Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Backgrounds

Columns

Name

fileName
formatType

scale

drawingDetail
setCoordinateOrigin
coordinateOriginX
coordinateOriginY
angle
isRestrictLayers

Relationships

BackgroundsBackgroundLayers

Backgrounds

fileName

Attributes:
Attributes:

Table Indexes
Name

True

False
BackgroundsBackgroundLayers
False

False

False

fileName, Ascending

1

False

0

False

False

fileName

False

False

False

fileName, Ascending
2

False

0

False

False

idBackgroundLayer

True

True

True

fileName, Ascending

idLayer, Ascending

Type

Text

Number (Integer)
Number (Single)
Number (Integer)
Yes/No

Number (Double)
Number (Double)
Number (Single)
Yes/No

BackgroundLayers
1 - fileName

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

A-4

Size

-
o
o

2 hOO-2NAN

idBackground
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
Table: BlockPoints
Columns
Name
idBlock
idPoint
X
y

Relationships

BlocksBlockPoints

Table Indexes
Name

Blocks
idBlock

Attributes:
Attributes:

BlocksBlockPoints

idBlock

Clustered:
Distinct Count:
Foreign:
Ignore Nuils:
Name:
Primary:
Required:
Unique:
Fields:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idBlockPoint

Clustered:

1
False
0
False
False
idBackground
True
True
True
fileName, Ascending

Type
Number (Long)
Number (Integer)

Number (Double)
Number (Double)

BlockPoints
1 = idBlock

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1

False

0

True

False

BlocksBlockPoints

False

False

False

idBlock, Ascending
1

False

0

False

False

idBlock

False

False

False

idBlock, Ascending
2

False

Size

OON M~

Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
Table: Blocks
Columns
Name
idBlock
level
colorRed
colorGreen
colorBlue
Relationships
BlocksBiockPoints
Blocks
idBlock
Attributes:
Attributes:
Table Indexes
Name
idBlock
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
Table: CentroidNodes
Columns

0

False

False

idBlockPoint

True

True

True

idBlock, Ascending
idPoint, Ascending

Type

Number (Long)
Number (Integer)
Number (Long)
Number (Long)
Number (Long)

BlockPoints
1 = idBlock

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False

0

False

False

idBlock

True

True

True

idBlock, Ascending

Size

E N N S

Name
idCentroid

type
idNode
percentage

Relationships

CentroidsCentroidNodes

Centroids

idCentroid

Aftributes:
Aftributes:

NodesCentroidNodes

Nodes
idNode

Attributes:
Attributes:

Table Indexes
Name

CentroidsCentroidNodes
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idCentroid
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idCentroidNode
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idNode

Type Size
Number (Long)

Number (integer)

Number (Long)

Number (Single)

CentroidNodes
1 = jdCentroid

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

CentroidNodes
1 « idNode

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1

False

0

True

False

CentroidsCentroidNodes

False

False

False

idCentroid, Ascending
1

False

0

False

False

idCentroid

False

False

False

idCentroid, Ascending
3

False

0

False

False

idCentroidNode

True

True

True

idCentroid, Ascending

type, Ascending

idNode, Ascending
1

A-7

A AN D

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

NodesCentroidNodes
Clustered:
Distinct Count:
Foreign:
lgnore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Centroids

Columns

Name

idCentroid
name
level

X

y
autoPercentages

Relationships

CentroidsCentroidNodes

Centroids
idCentroid

Attributes:
Attributes:

CentroidsCentroidSections

Centroids
idCentroid
Attributes:
Attributes:
Table Indexes
Name
idCentroid

False

0

False

False

idNode

False

False

False

idNode, Ascending

1
False
0
True
False
NodesCentroidNodes
False
False
False
idNode, Ascending

Type

Number (Long)
Text

Number (Integer)
Number (Double)
Number (Double)
Yes/No

CentroidNodes
1 o idCentroid

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

CentroidSections
1 o idCentroid

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Number of Fields
1

Size

- 00O NONM

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: CentroidSections

Columns

Name
idCentroid

type
idSection
position
percentage

Relationships
CentroidsCentroidSections

Centroids
idCentroid

Attributes:
Aftributes:

SectionsCentroidSections

Sections
idSection

Attributes:
Attributes:

Table Indexes
Name

CentroidsCentroidSections
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unigue:
Fields:

idCentroid
Clustered:

False

1

False

False

idCentroid

True

True

True

idCentroid, Ascending

Type

Number (Long)
Number (Integer)
Number (Long)
Number (Single)
Number (Single)

CentroidSections
1 = idCentroid

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

CentroidSections
1 = idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False
0
True
False
CentroidsCentroidSections
False
False
False
idCentroid, Ascending
1
False

Size

AbhBNA

Distinct Count:
Foreign:
Ignore Nulis:
Name:
Primary:
Required:
Unique:
Fields:

idCentroidSection
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idSection
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unigue:
Fields:

SectionsCentroidSections
Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

0

False

False

idCentroid

False

False

False

idCentroid, Ascending
4

False .

0

False

False

idCentroidSection

True

True

True

idCentroid, Ascending

type, Ascending

idSection, Ascending

position, Ascending
1

False

0

Faise

False

idSection

False

False

False

idSection, Ascending
1

False

0

True

False

SectionsCentroidSections

False

False

False

idSection, Ascending

Table: ContourPoints

wWNN N

Columns
Name Type Size
idSection Number (Long)
side Number (integer)
idPoint Number (Integer)
X Number (Double)
y Number (Double)
Relationships
SectionsContourPoints
Sections ContourPoints
idSection 1 - idSection

A-10

Attributes:
Attributes:

Table Indexes

Name

idContourPoint
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idSection
Clustered:
Distinct Count:
Foreign:
Ignore Nulis:
Name:
Primary:
Required:
Unique:
Fields:

SectionsContourPoints

Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: ControllerDetectors

Columns

Name

idController
idDetector
idConnection
isActive

Relationships

ControllersControllerDetectors

Controllers

idController

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Number of Fields

3

False

0

False

False

idContourPoint

True

True

True

idSection, Ascending

side, Ascending

idPoint, Ascending
1

False

0

False

False

idSection

False

False

False

idSection, Ascending
1

False

0

True

False
SectionsContourPoints
False

False

False

idSection, Ascending

Type

Text

Text

Number (integer)
Yes/No

ControllerDetectors
1 1
idController

A-11

Size

Attributes:
Attributes:

DetectorsControllerDetectors

Unique, Enforced, Cascade Updates, Cascade Deletes
One-To-One

Detectors ControllerDetectors
idDetector 1 = idDetector
Attributes: Enforced, Cascade Updates, Cascade Deletes
Attributes: One-To-Many
Table Indexes
Name : Number of Fields
ControliersControllerDetectors 1
Clustered: False
Distinct Count: 0
Foreign: True
lgnore Nulls: False
Name: ControliersControllerDetectors
Primary: False
Required: False
Unique: True
Fields: idController, Ascending
DetectorsControllerDetectors 1
Clustered: False
Distinct Count: 0
Foreign: True
Ignore Nulls: False
Name: DetectorsControllerDetectors
Primary: False
Required: False
Unique: False
Fields: idDetector, Ascending
idController 1
Clustered: False
Distinct Count: 0
Foreign: False
ignore Nulls: False
Name: idControlter
Primary: False
Required: False
Unique: True
Fields: idController, Ascending
idControllerDetector 2
Clustered: False
Distinct Count: 0
Foreign: False
Ignore Nulls: False
Name: idControllerDetector
Primary: True
Required: True
Unique: True
Fields: idController, Ascending
idDetector, Ascending
idDetector 1
Clustered: False
Distinct Count: 0
Foreign: False
Ignore Nulls: False
Name: idDetector
Primary: False
Required: False
Unique: False

A-12

Fields: idDetector, Ascending

Table: ControllerMeterings

Relationships

ControllersControllerMeterings

Controllers

idController

Attributes:
Attributes:

MeteringsControllerMeterings

Meterings
idMetering

Attributes:
Attributes:

Table indexes

Name

ControllersControllerMeterings
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idController
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

ControllerMeterings

1 1
idController

Columns
Name Type Size
idController Text
idMetering Text
idConnection Number (Integer)
isActive Yes/No

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

ControllerMeterings
1 = idMetering

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False
0
True
False
ControllersControllerMeterings
False
False
True
idController, Ascending
1
False
0
False
False
idController
False
False
True
idController, Ascending

A-13

20
20

idControllerMetering
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idMetering
Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

MeteringsControllerMeterings
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: ControllerNodes

Columns

Name

idController
idNode
idConnection
isActive

Relationships
ControllersControlierNodes
Controllers
idController

Attributes:
Atftributes:

NodesControllerNodes

Nodes
idNode

2
Faise
0
False
False

idControllerMetering

True
True
True

idController, Ascending
idMetering, Ascending

1
False

0

False
False
idMetering
False
False
False

idMetering, Ascending

1
False
0
True
False

MeteringsControllerMeterings

False
False
False

idMetering, Ascending

1 1

Type

Text

Number (Long)
Number (Integer)
Yes/No

ControllerNodes

idController

Size

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

ControllerNodes

1 - idNode

A-14

= NL~O

Attributes:
Attributes:

Table Indexes

Name

ControllersControllerNodes
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idController
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idControllerNode
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idNode
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

NodesControllerNodes
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Number of Fields

1
False
0
True
False
ControllersControllerNodes
False
False
True
idController, Ascending

1

False

0

False

False

idController

False

False

True

idController, Ascending
2

Faise

0

False

False

idControllerNode

True

True

True

idController, Ascending

idNode, Ascending
1

False

0

False

False

idNode

False

False

False

idNode, Ascending
1

False

0

True

False

NodesControllerNodes

False

False

False

idNode, Ascending

A-15

Table: Controllers

Columns

Name

idController
name

level

X

y

Relationships
ControliersControllerDetectors
Controllers

idController

Attributes:
Attributes:

ControllersControllerMeterings
Controllers

idController

Attributes:
Attributes:

ControllersControllerNodes
Controllers

idController

Aftributes:
Attributes:

ControllersControllerVMSs

Controllers
idControlier
Attributes:
Attributes:
Table Indexes
Name
idController
Clustered:

Type
Text
Text
Number (Integer)
Number (Double)
Number (Double)

ControllerDetectors
1 1
idController

Size

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

ControllerMeterings
1 1
idController

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

ControllerNodes
1 1
idController

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

ControllerVMSs
1 1
idControlier

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

Number of Fields

1
False

A-16

Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: ControllerVMSs

Columns

Name

idController
idVMS
idConnection
isActive

Relationships

ControllersControllerVMSs

Controllers

idController

Attributes:
Atftributes:

VMSsControllerVMSs

VMSs
idVMS

Attributes:
Attributes:

Table Indexes
Name

ControllersControllerVMSs
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idController
Clustered:
Distinct Count:

0

False

False

idController

True

True

True

idController, Ascending

Type

Text

Text

Number (Integer)
Yes/No

ControllerVMSs

1 1
idController

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

ControllerVMSs
1 o idVMS

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False
0
True
False
ControllersControllerVMSs
False
False
True
idController, Ascending

1
False
0

A-17

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idvMS
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

PrimaryKey
Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

VMSsControlierVMSs
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Detectors

Columns

Name
idDetector
idSection

type
measuringCapability
idLaneFirst

idLanel ast

distance

length

Relationships

DetectorsControllerDetectors

Detectors
idDetector

Faise

False

idController

False

False

True

idController, Ascending

1

False

0

False

False

idvVMS

False

False

False

idVMS, Ascending
2

False

0

False

False

PrimaryKey

True

True

True

idController, Ascending

idVMS, Ascending
1

False

0

True

False

VMSsControllerVMSs

False

False

False

idVMS, Ascending

Type

Text

Number (Long)
Number (Integer)
Number (Long)
Number (Integer)
Number (Integer)
Number (Single)
Number (Single)

ControllerDetectors
1 - idDetector

A-18

Size

N

HEBBABNNBEBNRAO

Attributes:
Attributes:

SectionsDetectors

Sections
idSection

Attributes:
Attributes:

Table Indexes

Name

idDetector
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idSection

Clustered:
Distinct Count:
Foreign:
lgnore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

SectionsDetectors
Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: GlobMessages

Columns

Name
idGlobMessage
type

priority
description

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Detectors
1 o idSection

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Number of Fields

1
False

0

False

False

idDetector

True

True

True

idDetector, Ascending

1

False

0

False

False

idSection

False

False

False

idSection, Ascending
1

False

0

True

False

SectionsDetectors

False

False

False

idSection, Ascending

Type

Number (Long)
Number (Integer)
Number (Integer)
Text

A-19

Size

ONN S

Table Indexes
Name

idGlobMessage

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Laterals

Columns

Name
idSection

type
width
length

Relationships

SectionslLaterals

Table Indexes
Name
idLateral

idSection

Sections
idSection

Aftributes:
Attributes:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:

Number of Fields

1
False

0

False

False

idGlobMessage

True

True

True

idGlobMessage, Ascending

Type

Number (Long)
Number (Integer)
Number (Single)
Number (Single)

Laterals
1 « idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

2

False

0

False

False

idLateral

True

True

True

idSection, Ascending

type, Ascending
1

False

0

False

False

idSection

False

False

False

A-20

Size

BN S

-

Fields:
SectionsLaterals
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Meterings

Columns

Name
idMetering
idSection

type
platoonLength
distance

Relationships
MeteringsControllerMeterings

Meterings
idMetering

Attributes:
Atftributes:

SectionsMeterings

Sections
idSection

Attributes:
Attributes:

Table Indexes
Name

idMetering
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:

idSection, Ascending
1

False

0

True

False

SectionsLaterals

False

False

False

idSection, Ascending

Type

Text

Number (Long)
Number (Integer)
Number (Integer)
Number (Single)

ControllerMeterings
1 - idMetering

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Meterings
1 o idSection

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Number of Fields

1
False
0
False
False
idMetering
True
True
True

A-21

Size

HBNONSAO

Fields: idMetering, Ascending
idSection 1

Clustered: False

Distinct Count: 0

Foreign: False

Ignore Nulis: False

Name: idSection

Primary: False

Required: False

Unique: False

Fields: idSection, Ascending
SectionsMeterings 1

Clustered: False

Distinct Count: 0

Foreign: True

Ignore Nulls: False

Name: SectionsMeterings

Primary: False

Required: False

Unique: False

Fields: idSection, Ascending

Table: Network
Columns

Name Type Size
dummyld Number (Integer)
version Number (Single)
isPointerStandar Yes/No
showDistance Yes/No
isGridSet Yes/No
showGrid Yes/No
gridDistance Number (Single)
xMin Number (Long)
yMin Number (Long)
xMax Number (Long)
yMax Number (Long)
xMinDw Number (Long)
yMinDw Number (Long)
xMaxDw Number (Long)
yMaxDw Number (Long)
backgroundColorRed Number (Long)
backgroundColorGreen Number (Long)
backgroundColorBlue Number (Long)
textColorRed Number (Long)
textColorGreen Number (Long)
textColorBiue Number (Long)
sectionBaseColorRed Number (Long)
sectionBaseColorGreen Number (Long)
sectionBaseColorBlue Number (Long)
sectionLinesColorRed Number (Long)
sectionLinesColorGreen Number (Long)
sectionLinesColorBlue Number (Long)
sectionSelPermissionColorRed Number (Long)
sectionSelPermissionColorGreen Number (Long)
sectionSelPermissionColorBlue Number (Long)
sectionSelectedLaneColorRed Number (Long)
sectionSelectedl.aneColorGreen Number (Long)
sectionSelectedLaneColorBlue Number (Long)
nodeColorRed Number (Long)
nodeColorGreen Number (Long)

A-22

AhbbhhbdbbBbAADAADDbOLIIMAOLAMADDALAELALDDDDDEDAM NN

nodeColorBlue
controllerColorRed
controllerColorGreen
controllerColorBlue
centroidColorRed
centroidColorGreen
centroidColorBlue
backgroundlLevel
textLevel

blockLevel
sectionLevel
controllerLevel
centroidLevel
defaultlLevel
defaultNbLanes
defaultLaneWidth
defaultRoadType
defaultArterialMaxspeed
defaultRoadMaxspeed
defaultFreewayMaxspeed
showObijects
isDetectorDisgregate
isTrafficLeftSide
nbbackgrounds

file

format

backscale

detail
set_coordinate_origin
coordinate_origin
angle

restrict_layers
nblayers

idlayer

Table Indexes

Name

idlayer
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idNetwork
Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

PrimaryKey
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Long)
Number (Integer)
Number (Single)
Number (Integer)
Number (Single)
Number (Single)
Number (Single)
Number (Long)
Yes/No

Yes/No

Text

Text

Text

Text

Text

Text

Text

Text

Text

Text

Text

Number of Fields

1

False

0

False

False

idlayer

False

False

False

idlayer, Ascending
1

False

0

False

False

idNetwork

False

False

False

dummyld, Ascending
1

False

0

False

False

PrimaryKey

True

True

True

dummyld, Ascending

A-23

D abhADLANBDNABRIMLRALALLDADDADLDNL

Table: Nodes

Columns

Name
idNode
type

isYellowBox

Relationships

NodesCentroidNodes

Nodes
idNode

Attributes:
Attributes:

NodesControllerNodes

Nodes
idNode

Attributes:
Attributes:

NodesStages

Nodes
idNode

Attributes:
Attributes:

NodesStages1

Nodes
idNode

Aftributes:
Attributes:
NodesTurnings

Nodes
idNode

Type Size

Number (Long)
Number (Integer)
Yes/No

CentroidNodes
1 « idNode

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

ControllerNodes
1 « idNode

Enforced, Cascade Updates, Cascade Deletes

One-To-Many ‘

Rights
1 = idNode

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Stages
1 - idNode

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Tumings
1 = jdNode

A-24

N A

’ . i /

Attributes:
Attributes:
Table Indexes
Name
idNode
Clustered:
Distinct Count:
Foreign:
Ignore 'Nulls:
Name:
Primary:
Required:
Unigque:
Fields:
Table: Rights
Columns
Name
idNode
idStage
idSectionOrigin
idSectionDest
Relationships
NodesStages
Nodes
idNode
Aftributes:
Attributes:
SectionsStages
Sections
idSection
Attributes:
Attributes:
SectionsStages1
Sections
idSection
Attributes:

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False
0
Faise
False
idNode
True
True
True
idNode, Ascending

Type Size

Number (Long)
Number (Integer)
Number (Long)
Number (Long)

Rights
1 « idNode

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Rights
1 o idSectionOrigin

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Rights
1 o idSectionDest

Enforced, Cascade Updates, Cascade Deletes

A-25

BN

Attributes: One-To-Many
StagesRights
Stages Rights
idNode 1 « idNode
idStage 1 o~ idStage
Attributes: Enforced, Cascade Updates, Cascade Deletes
Attributes: One-To-Many
Tabie Indexes
Name Number of Fields
idNode 1
Clustered: False
Distinct Count: 0
Foreign: False
Ignore Nulls: False
Name: idNode
Primary: False
Required: False
Unique: False
Fields: idNode, Ascending
idSectionDest 1
Clustered: False
Distinct Count: 0
Foreign: False
Ignore Nulls: False
Name: idSectionDest
Primary: False
Required: False
Unique: False
Fields: idSectionDest, Ascending
idSectionOrigin 1
Clustered: False
Distinct Count: 0
Foreign: False
Ignore Nulls: False
Name: idSectionOrigin
Primary: False
Required: False
Unique: False
Fields: idSectionOrigin, Ascending
idStage 4
Cilustered: False
Distinct Count: 0
Foreign: False
Ignore Nulls: False
Name: idStage
Primary: True
Required: True
Unique: True
Fields: idNode, Ascending
idSectionOrigin, Ascending
idSectionDest, Ascending
idStage, Ascending
NodesStages 1
Clustered: False
Distinct Count: 0
Foreign: True
Ignore Nulls: False
Name: NodesStages
Primary: False

A-26

Required:
Unique:
Fields:
SectionsStages
Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
SectionsStages1
Clustered:

Distinct Count:

Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
StagesRights
Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: RoguiRoutes

Columns

Name
idRogui
idRoute
name

type

Relationships

RoguiRoutesRoguiRouteSections

RoguiRoutes

idRogui
idRoute

Attributes:
Attributes:

False

False

idNode, Ascending
1

False

0

True

False

SectionsStages

False

False

False

idSectionOrigin, Ascending
1

False

0

True

False

SectionsStages1

False

False

False

idSectionDest, Ascending
2

False

0

True

False

StagesRights

False

False

False

idNode, Ascending

idStage, Ascending

Type
Text
Text
Text
Number (integer)

RoguiRouteSections
1 o idRogui
1 = idRoute

Enforced
One-To-Many

A-27

Size
20

20

RoguisRoguiRoutes

Table Indexes
Name
idRogui

Roguis
idRogui

Attributes:
Attributes:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idRoguiRoute

idRoute

Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

RoguisRoguiRoutes

Table: RoguiRouteSections

Columns

Name

Clustered:
Distinct Count:
Foreign:
ignore Nulis:
Name:
Primary:
Required:
Unique:
Fields:

RoguiRoutes

1 o idRogui

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Number of Fields

1

False

0

False

False

idRogui

False

False

False

idRogui, Ascending
2

False

0

False

False

idRoguiRoute

True

True

True

idRogui, Ascending

idRoute, Ascending
1

False

0

False

False

idRoute

False

False

False

idRoute, Ascending
1

False

0

True

False

RoguisRoguiRoutes

False

False

False

idRogui, Ascending

Type

A-28

Size

-l ‘- - - ,-/ _ - — -

idRogui
idRoute
idSection

Relationships
RoguiRoutesRoguiRouteSections

RoguiRoutes
idRogui
idRoute

Attributes:
Attributes:

SectionsRoguiRouteSections

Sections
idSection

Attributes:
Attributes:

Table Indexes

Name

idRogui
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idRoguiRouteSection
Clustered:
Distinct Count:
Foreign:
lgnore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idRoute
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idSection
Clustered:
Distinct Count:

Text 20
Text 20
Number (Long) 4

RoguiRouteSections
1 « idRogui
1 = idRoute

Enforced
One-To-Many

RoguiRouteSections
1 ~ idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1

False

0

False

False

idRogui

False

False

False

idRogui, Ascending
3

False

0

False

False

idRoguiRouteSection

True

True

True

idRogui, Ascending

idRoute, Ascending

idSection, Ascending
1

False

0

False

False

idRoute

False

False

False

idRoute, Ascending
1

False

0

A-29

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

RoguiRoutesRoguiRouteSections
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

SectionsRoguiRouteSections
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Roguis

Columns

Name
idRogui
name
idNodeOrigin
idNodeDest

Relationships

RoguisRoguiRoutes

Roguis
idRogui

Attributes:
Attributes:

RoguisRoguiVMSs

Roguis
idRogui

Aftributes:

False

False

idSection

False

False

False

idSection, Ascending

2
False
0
True
False
RoguiRoutesRoguiRouteSections
False
False
False
idRogui, Ascending
idRoute, Ascending
1
False
0
True
Faise
SectionsRoguiRouteSections
False
False
False
idSection, Ascending

Type
Text
Text
Number (Long)
Number (Long)

RoguiRoutes
1 - idRogui

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

RoguiVMSs
1 = idRogui

Enforced, Cascade Updates, Cascade Deletes

A-30

Size

20
20

i

Attributes:

Table Indexes
Name

idNodeDest
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idNodeOrigin
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idRogui
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: RoguiVMSs

Columns

Name
idRogui
idvVMS

Relationships
RoguisRoguiVMSs

Roguis
idRogui

Attributes:
Aftributes:

One-To-Many

Number of Fields

1

False

0

False

False

idNodeDest

False

False

False

idNodeDest, Ascending
1

False

0

False

False

idNodeOrigin

False

False

False

idNodeOrigin, Ascending
1

False

0

False

False

idRogui

True

True

True

idRogui, Ascending

Type
Text
Text

RoguiVMSs

1 « idRogui

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

A-31

Size
20
20

Table Indexes
Name
idRogui

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idRoguiVMS

idvVMS

Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

RoguisRoguivVMSs

Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Sections

Columns

Name

idSection

name
level

nbLanes

slopeType
slopePercentage
heightinitial
heightEnd
contourType
roadType
maxSpeed

capacity

Number of Fields

1

False

0

False

False

idRogui

False

False

False

idRogui, Ascending
2

False

0

False

False

idRoguiVMS

True

True

True

idRogui, Ascending

idVMS, Ascending
1

False

0

False

False

idVMS

False

False

False

idvVMS, Ascending
1

False

0

True

Failse

RoguisRoguiVMSs

False

False

False

idRogui, Ascending

A-32

Type

Number (Long)
Text

Number (Integer)
Number (Integer)
Number (Integer)
Number (Single)
Number (Long)
Number (Long)
Number (Integer)
Number (Integer)
Number (Single)
Number (Single)

Size

EHBNONDRABEANONNNO S

—

- '

optional

Relationships
SectionsCentroidSections

Sections
idSection

Attributes:
Attributes:

SectionsContourPoints

Sections
idSection

Attributes:
Attributes:

SectionsDetectors

Sections
idSection

Attributes:
Attributes:

SectionsLaterals

Sections
idSection

Attributes:
Attributes:

SectionsMeterings

Sections
idSection

Attributes:
Attributes:

SectionsRoguiRouteSections

Sections
idSection

Attributes:
Attributes:

Text 20

CentroidSections
1 -« idSection

Enforced, Cascade Updates, Cascade Deletes

One-To-Many
ContourPoints
1 o idSection
One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Detectors
1 o idSection

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

Laterals
1 o idSection
One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Meterings
1 - idSection

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

RoguiRouteSections
1 « idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

A-33

SectionsSelPermissions
Sections

idSection

Attributes:
Attributes:

SectionsStages

Sections
idSection

Attributes:
Attributes:

SectionsStages1

Sections
idSection

Attributes:
Attributes:

SectionsTurnings

Sections
idSection

Attributes:
Attributes:

SectionsTurnings1

Sections
idSection

Attributes:
Attributes:

SectionsVMSs

Sections
idSection

Attributes:
. Attributes:

Table Indexes
Name

SelPermissions

1 1
idSection

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

Rights
1 = idSectionOrigin

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

Rights
1 o« idSectionDest
One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Turnings
1 o idSectionOrigin

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Tumings
1 « idSectionDest

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

VMSs
1 - idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

A-34

'

idSection
Clustered:
Distinct Count:
Foreign:
Ignore Nuils:
Name:
Primary:
Required:
Unique:
Fields:

Table: SelPermissions

Columns

Name

idSection

idLaneFirst
idLanelLast
idvVehClass

Relationships
SectionsSelPermissions

Sections

idSection

Atftributes:
Attributes:

VehClassesSelPermissions

VehClasses
idvehClass

Attributes:
Attributes:

Table Indexes

Name

idClassVehicle
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idSection

1
False

2

False

False

idSection

True

True

True

idSection, Ascending

Type

Number (Long)
Number (Integer)
Number (Integer)
Text

SelPermissions

1 1
idSection

Size

Unique, Enforced, Cascade Updates, Cascade Deletes

One-To-One

SelPemissions
1 ~ idVehClass

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False

0

False

False

idClassVehicle

False

False

False

idvehClass, Ascending

1

A-35

ONN M

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

SectionsSelPermissions
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

VehClassesSelPermissions
Clustered:
Distinct Count:
Foreign:
Ignore Nulis:
Name:
Primary:
Required:
Unique:
Fields:

Table: Stages

Columns

Name

idNode
idStage
type

Relationships

NodesStages1

Nodes
idNode

Aftributes:
Attributes:

StagesRights

Stages
idNode
idStage

False
0
False
False
idSection
True
True
True
idSection, Ascending
1
False
0
True
False
SectionsSelPermissions
False
False
True
idSection, Ascending
1
False
0
True
False
VehClassesSelPermissions
False
False
False
idvVehClass, Ascending

Type

Number (Long)
Number (Integer)
Number (Integer)

Stages
1 « idNode

Enforced, Cascade Updates, Cascade Deletes

One-To-Many

Rights
1 o idNode
1 « idStage

A-36

Size

NN DS

Attributes:
Attributes:

Table Indexes

RE-L1L-A L\

Name
idNode

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

NodesStages1

Clustered:

Distinct Count:

Foreign:
ignore Nulils:
Name:
Primary:
Required:
Unique:
Fields:
PrimaryKey
Clustered:

Distinct Count:

Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: Texts

Columns

Name

idText
level
string
X

y
fontName
fontType
fontHeight
colorRed
colorGreen
colorBlue

Table indexes

Name
idText

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False

0

False

False

idNode

False

False

False

idNode, Ascending

1

False

0

True

False

NodesStages1

False

False

Faise

idNode, Ascending
2

False

0

False

False

PrimaryKey

True

True

True

idNode, Ascending

idStage, Ascending

Type

Number {Long)
Number (Integer)
Text

Number (Double)
Number (Double)
Text

Number (Long)
Number (Single)
Number (Long)
Number (Long)
Number {Long)

Number of Fields
1

A-37

Size

N b

AP AEANOOO

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:
PrimaryKey
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

False

0

False

False

idText

False

Faise

False

idText, Ascending

1
False

0

False

False

PrimaryKey

True

True

True

idText, Ascending

Table: Turnings

Columns
Name Type Size
idNode Number (Long)
idSectionOrigin Number (Long)
idSectionDest Number (Long)
originidLaneFirst Number (Integer)
originldLanel ast Number (Integer)
destidLaneFirst Number (integer)
destldLanelLast Number (Integer)
givewayType Number (Long)
maxSpeedAutomatic Yes/No
maxSpeed Number (Single)
optional Text

Relationships

NodesTurnings

Nodes Turnings
idNode 1 - idNode
Attributes: Enforced, Cascade Updates, Cascade Deletes
Attributes: One-To-Many
SectionsTurnings
Sections Turnings
idSection 1 = idSectionOrigin
Attributes: Enforced, Cascade Updates, Cascade Deletes
Attributes: One-To-Many
A-38

OB =2DBNNONNNALEDL

N

SectionsTurings1

Table Indexes
Name
idNode

Sections
idSection

Aftributes:
Aftributes:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idSectionDest

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

IdSectionOrigin

idTurning

Clustered:
Distinct Count:
Foreign:
ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

NodesTurnings

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

SectionsTurnings

Clustered:
Distinct Count:
Foreign:
Ignore Nulls:

Turnings
1 « idSectionDest

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False

0

False

False

idNode

False

False

False

idNode, Ascending

1

False

0

False

False

idSectionDest

False

False

False

idSectionDest, Ascending
1

False

0

False

False

IdSectionOrigin

False

False

False

idSectionOrigin, Ascending
3

False

0

False

False

idTurning

True

True

True

idNode, Ascending

idSectionOrigin, Ascending

idSectionDest, Ascending
1

False

0

True

False

NodesTurnings

False

False

False

idNode, Ascending
1

False

0

True

False

A-39

Name:
Primary:
Required:
Unique:
Fields:
SectionsTurnings1
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

Table: VehClasses

Columns

Name
idvehClass

Relationships

VehClassesSelPermissions

VehClasses
idVehClass

Attributes:
Attributes:

Table Indexes
Name

idVehClass
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

SectionsTurnings

False

False

Faise

idSectionOrigin, Ascending
1

False

0

True

False

SectionsTurnings1

False

False

False

idSectionDest, Ascending

Type Size
Text 20

SelPermissions
1 = idVehClass

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1
False

0

False

False

idVehClass

True

True

True

idVehClass, Ascending

A-40

Table: VMSs

Columns

Name
idVMS
idSection
distance

Relationships

SectionsVMSs

Sections
idSection

Attributes:
Attributes:

VMSsControllerVMSs

VMSs
idvMS

Attributes:
Attributes:

Table Indexes

Name

idSection
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

idVMS
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:
Unique:
Fields:

SectionsVMSs
Clustered:
Distinct Count:
Foreign:
Ignore Nulls:
Name:
Primary:
Required:

Type Size

Text 20

Number (Long) 4

Number (Single) 4
VMSs

1 « idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

ControllerVMSs
1 « idVMS

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Number of Fields

1

False

0

False

False

idSection

Faise

False

False

idSection, Ascending
1

False

0

False

False

idVMS

True

True

True

idVMS, Ascending
1

False

0

True

False

SectionsVMSs

False

False

A-41

Unique:
Fields:
Properties
AccessVersion: 07.53
Collating Order: General
Query Timeout: 60
Transactions: True

User Permissions

admin

Group Permissions

Admins
Users

Relationships: All

Relationships

BackgroundsBackgroundLayers

Backgrounds
fileName

Attributes:

BlocksBlockPoints

Blocks
idBlock

Attributes:
Attributes:

CentroidsCentroidNodes

Centroids
idCentroid

Attributes:
Attributes:

False
idSection, Ascending

Build: 4122
Def. Updatable: True
Records Affected: 0
Version : 3.0
BackgroundLayers
1 fileName
One-To-Many

Enforced, Cascade Updates, Cascade Deletes

BlockPoints
1 o idBlock

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

CentroidNodes
1 = idCentroid

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

A-42

CentroidsCentroidSections

Centroids
idCentroid

Attributes:
Attributes:

ControllersControllerDetectors
Controllers
idController

Attributes:
Attributes:

ControllersControllerMeterings
Controllers
idController

Attributes:
Attributes:

ControllersControllerNodes
Controllers
idController

Attributes:
Attributes:

ControllersControlierVMSs
Controllers
idController

Attributes:
Attributes:

DetectorsControllerDetectors

Detectors
idDetector

Attributes:
Attributes:

MeteringsControllerMeterings

CentroidSections
1 s idCentroid

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

ControllerDetectors

1 1
idController

One-To-One
Unique, Enforced, Cascade Updates, Cascade Deletes

ControllerMeterings

1 1
idController

One-To-One
Unique, Enforced, Cascade Updates, Cascade Deletes

ControllerNodes

1 1
idController

One-To-One
Unique, Enforced, Cascade Updates, Cascade Deletes

ControllerVMSs

1 1
idController

Unique, Enforced, Cascade Updates, Cascade Deletes
One-To-One

Controlle(Detectors
1 - idDetector

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

A-43

Meterings ControllerMeterings
idMetering 1 o idMetering
Attributes: One-To-Many
Attributes: Enforced, Cascade Updates, Cascade Deletes

NodesCentroidNodes

Nodes CentroidNodes
idNode 1 -~ idNode
Attributes: One-To-Many
Attributes: Enforced, Cascade Updates, Cascade Deletes

NodesControllerNodes

Nodes ControllerNodes
idNode 1 - idNode
Attributes: Enforced, Cascade Updates, Cascade Deletes
Attributes: One-To-Many
NodesStages
Nodes Rights
idNode 1 o idNode
Attributes: One-To-Many
Attributes: Enforced, Cascade Updates, Cascade Deletes
NodesStages1
Nodes Stages
idNode 1 « idNode
Attributes: One-To-Many
Attributes: Enforced, Cascade Updates, Cascade Deletes
NodesTurnings
Nodes Turnings
idNode 1 = idNode
Attributes: One-To-Many
Attributes: Enforced, Cascade Updates, Cascade Deletes

RoguiRoutesRoguiRouteSections

RoguiRoutes RoguiRouteSections
idRogui 1 - idRogui
idRoute 1 o jdRoute
A-44

Attributes:
Attributes:

RoguisRoguiRoutes

Roguis
idRogui

Attributes:
Attributes:

RoguisRoguiVMSs

Roguis
idRogui

Attributes:
Attributes:

SectionsCentroidSections

Sections
idSection

Attributes:
Attributes:
SectionsContourPoints

Sections
idSection

Attributes:
Attributes:

SectionsDetectors

Sections
idSection

Attributes:
Attributes:

SectionsLaterals

Sections
idSection

Attributes:
Attributes:

One-To-Many
Enforced

RoguiRoutes
1 = idRogui

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

RoguiVMSs
1 s idRogui

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

CentroidSections
1 o idSection

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

ContourPoints
1 o idSection
One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Detectors
1 o« idSection

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Laterals
1 o idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

A-45

SectionsMeterings

Sections
idSection

Attributes:
Attributes:

SectionsRoguiRouteSections

Sections
idSection

Attributes:
Attributes:
SectionsSelPermissions
Sections
idSection

Attributes:
Attributes:

SectionsStages

Sections
idSection

Attributes:
Attributes:

SectionsStages1

Sections
idSection

Attributes:
Attributes:

SectionsTurnings

Sections
idSection

Attributes:
Attributes:

SectionsTurnings1

Sections

Meterings
1 - idSection

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

RoguiRouteSections
1 « idSection

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

SelPermissions
1 1
idSection

One-To-One

Unique, Enforced, Cascade Updates, Cascade Deletes

Rights
1 = idSectionOrigin

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Rights
1 = idSectionDest

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

Turnings
1 o idSectionOrigin

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

Turnings

A-46

idSection

Attributes:
Attributes:
SectionsVMSs

Sections
idSection

Attributes:
Attributes:

StagesRights

Stages
idNode
idStage

Attributes:
Attributes:

VehClassesSelPermissions

VehClasses
idVehClass

Attributes:
Attributes:

VMSsControllerVMSs

VMSs
idvMS

Attributes:
Aftributes:

1 o idSectionDest

One-To-Many
Enforced, Cascade Updates, Cascade Deletes

VMSs
1 « idSection

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

Rights
1 - idNode
1 - idStage

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

SelPermissions
1 - idVehClass

One-To-Many

Enforced, Cascade Updates, Cascade Deletes

ControllerVMSs
1 o« idVMS

Enforced, Cascade Updates, Cascade Deletes
One-To-Many

A-47

Appendix B

Relational Database Functions

B-1

Appendix B: Relational Database Functions

Appendix B: Relational Database FUnctions............cceeeeinviiienenininiicieieeceiecene 1
IMPIEMENLAtION ...c..eoverieiiiiieeirictiiet ettt 5
GDC Prototype Implementation............coceveeiiiiniineiiiiiniiicieeie et 5
BIOCKS .nunvtieeeeeeeeeeeesseereeseeeeestesseasasssssseeeeessessasssassasesesaaassasaessesasbassaaesesssessssnneaansessanenn 5
TDRREHEVEBIOCK .coeteieeeieeeeitieeee e eeereraeeeseeesaeeeeesesssssaesssaesessssssseassessssnne 6
TDRRELTIEVEBIOCKPOINLS ...ccoieiieeeireeiieeeriesiiirrrreeeesiesirereeesssessssssesssessesssnssanasssssssnne 7
TDRRErHIEVEBIOCKPOINLSvvevviiiiiiiieeeiisentrereraeseeeeeeseeseeeseaaesaeseaeesseessessannns 7
TDRSIOTEBIOCK .cceeiiiiiiieii i sraeareseseaeeaeseaaessaesssaesaeassnenssnsannnn 7
TDREXISIBIOCK .ccoeeiiiiiiiiiiiiieceeeecer e sneseree e s e eeeeeseeeeesaessseneensaanesssssassnn 8
TDREAABIOCKIAS ...c.ceeeeeieeeeiereeeeeererererrrrrreeerrerreerrareeeereeeessessessesssssssssssnsssssssesssmsnnsen 8
TDRDEIEIEBIOCK ..cccoeeeieeitttitteeeereeeerererrevreesserraresesseeeesasasesesessessssnssssssssnssssmmnnssne 8
TDRLASIBIOCKS. ..ceetttiiiicttiee e teeettteree e e e eerartreeeeeseeaaaaasseesnrenaesesessssnnnmseneaeesasnnnene 9

T RNDBIOCKS ...ccoititiieiiiieiiiiiicieteterrterarerrrrerrrsarresssressseeeseeseeeessaassaesasssssasssanssssnsnnnsee 9
Xt ettt eeeeeeeeeeteressstesssesasseaseererenssnnssssssnssasaesssssssssnnsnssnsssssnsaseseessnnnnsnnsnsnserseeeassarns 9
TDRREIEVETEXL ... eeeeeeerireeeeeeieeitititeeseeeeeerrerersrsnennnseasaasaasseeassserssnsnssnssssasaeesseeenes 10
TDRSIOTETEXE «evveeieeeeeeeieiieieeiereiirtseeeseseeeeernrnnnsssaaesaaaaaaaaeesseerenmenmasessssssssssenseeeennen 10
TDREXISITEXL wevvuuneeeeeeiiieeiieieereeeaerenreeeeseeerersrssnsnnnnaaaasaeasseeeeressessanssnssssssssessnennennens 10
TR SEAICHTEXL . ..ccceieiiiiiiieinieeererrrerereerereerrreeeesrereseaeeeeseseseerassssssnsssssssssnsssnssssnsssnsees 11
TDRREAATEXIIAS. ...eeeiiveiiieieieeeereneenreerrrenrrresreesteeeeeeeeeeseaesearssesssssssssssssssssssssnnsrsrnens 11
TDRDEIEIETEXL .ooeeeeeieieiiieieeiieieeertrrrarrersrserssrasterssreeeeeseeseemrseasasssssssnssssssssnsnssnessesees 12
D R LISETEXES . .ceevueiiiiiitiieeiiierritesieeesstieseernssneseerseranessesremnsssasessssnssssersrnssnsessmmnensenaes 12
T RINDTEXES ..cveeeeeeeeeeesiiieeeeeeseesesreeeeesassssssnseseessessssssssseensssssssesessensnsssssansessssssnns 12
VEHICIE CLASSES..euuruueenrereiiiiieeeeietieeeeieeseeeesessessaeeessssssssssrsssraaaeeaaeesassassasssssessesssssnssnnnn 12
TDRREIEVEVERCIASS ...coovveiiieiiiiiiiiiiieeeeeeeeeerteerttinaaeeeseesaeseessssssnssnnsssssssseeaesanns 13
TDRSIOTEVERCLASS ...veeiiieeereetieerreeerrerereeeeeereeteeeeeeeseseessssssnrssrrsssressseteaseressaseeens 13
TDREXISEVERCIASS. ... coeiiereerrreeerrireeeeeeeeeeeeeeeeeeeeeeeeeesennsssnnsssersssssseassesereseensessnns 14
TDRDELEIEVENCIASSccoevvverieievirmniriieeeeeeeeeeeireertsaaeteeeeeeesessssesasssssssnsnsnnssesasseenanes 14
TDRLISTVERCIASSES ...cceeeeeieeieierriieitieeieeeereeeerereessssssssssnnssereesesesssessssssssssnnnsssesssesanes 14
TDRNDVERCIASSES. ..cceiieeerieiriiriiitetiieieeeeeeeeeereeereraransnnrneresesaseasesssessessnsanssssaeseraaens 15
GlODAl MESSAZES...eeervveerneeeerteeaeeeeeeeirteeseeseeessente et e e be s sasessas e s bt s s as s e sannesabesenns 15
TDRRELHEVEGIODMESSAZEcvevereeierreeieireeeieeeneeeneeeeereeeeeseseeeenneeesneessosnsessssesas 15
TDRStOrEGIODMESSALE ...ccuveeneerererieeenriiriiereieeesreeeeteeeresseeeesteseseesenneesaseessonsesen 16
TDREXIStGIODMESSAZE ...ccvvveeuriirrieieiireeieeeereesrteeceeeesetesseesenseessanesasseeeessesessanesns 16
TDRDEleteGIODMESSALEeeeeieeeeereeeieereiettereentte et et ceeiteesessassessesrenessonnnes 16
TDRLISIGIODMESSAZES.....c..ueeeueteeerieeetereerercteerestereree e setesesreeessaee s sbecsssaessasesas 17
TDRNDGIODMESSAZESveeruveeeerrererieeeirersteeesieeesineeessaasastessseeseseeerasessaeesosressnnsees 17

S CEIOMS . eeeeeeeeeeeeeeetreeeeeieeeasssssasnraensnrranrreeeeeeaseeseesaeseeemmaessssssssssssssssasnsaeasaeesseeaneneaeanns 17
TDRREITIEVESECHON.oeivveriieerieriierereeeereerrsrantnsereeeseeassreeesesasssesssrssnsssnsssaessessessnes 18
TDRRetrieveSectiOnNLateralSeeeieiieieeeriiiiicircieecceeereeeeeeeeeeeevesraerareeseeeseesasanes 18
TDRRetrieve SectionSelPermMISSIONS . ..vveiiiieeieeeeeeeeiieeeeeeiirrirearereeeeeeeeseeeeseeeaseeeeeeens 19
TDRREtrIEVESECHONDEECTOIS ...evvvrrirrriieeireeeeeeeeeeeeeeeeeeeerirrreearererereeseeseesseeeeeeeseanees 19
TDRRetrIeVESECHONMELETINES ...eeevveereeerreeeererireeeeeesireeeeneeseseeessseessssesssseesensnes 19
TDRRetrieveSectioNMESSASIZISeeeererreierreieerereeeererreeeeerreeeeseeessessseeesessseesesnes 20
TR SIOTESECION. c.cceeeeeeiiieeeeirerrerrernereerrreeseeereeeeeseeseeannsrassrssassrereareaserseeeeaarsens 20

B-2

D R E XIS S O ION e eevuuneeeerseneeeeemmseesesesaeserssssnaasssrmanseesecessssssssnmuussssnnnnsesasssnnsiossasanens 21
DR S EAICHSECION < .veeeeeeeeeiiiieieeeeeeeeeeerersrsasaaeressessseemtissatssraaesessrnnnssssasnsaaassssss 21
TDRSearchSectionByOptionalccciiiriiriieiininnieience et 22
TDRREAASECHONIAS ... e ieeessannsnneessseseeeenteeertesateenrssaesrrrassaassraaeesaaeeeses 22
D R D Lt S ECtION. .. eeeeeeeeeeeeeenneeseeeseerersessssssseasassesesssasmseessssessesemsssrsnssrsanaesnensaneens 22
TR LISESECHONS .o eeeeeeereeeeeeeeesieseessesssssssssressnssssssssensesaesssennesssssssnnssssssssrnnsnsansssnasees 23
T RN DSECHONS .eoeeeeeeeeeeeeaeeesaaseesesesssssssssssnnsessssnsessnrsesssesstenetssstsnrtennssssassnarsassaseenes 23
D R E X STt CEOT . eeeeeeeeeeeeeeeeeeeeseseseresssssnnssassssnsssrsnnnseresseensassssssnsesssssassrasrasaasaaanss 23
D R S EAICHD e C 0T .. eeeeeeeeereeeeeeeeeeesesesesrersnsssnnnnnssssensrnnesseeeressssssnnnnssssssrnnnsssaasasaenes 24
TDREXISIMETEIING ...c.veveveeveeiereerentiisiiieieete st essssns et e st ens s s 24
TDRSEArChMELEIING ... ceveeueeeeeeetrnerteiie st es b esa ettt 24
TDREXIStMESSASIZN .vveerneriiiiiiiiiie e eeciiennieee ettreeererareern—teesentbteeessabenanree 25
TDRSEArChMESSASIZI...cuveereeirereniriesieiiteiesreresse et nre et 25
N OGS et eeeeeeeeeeeeeeeseaeeeessaesesssasesassesasssssseasassaasssnreeeosesssarrsbanesseseaaansabssasasessessnnnees 26
TR REIIEVENOUEeeeeeeeeeeeeeeieeeeeeeeieeesseeseeeeseessseraseeeessasssasssessessersssrsnnaeaessssssssees 26
TDRRetrieVENOAETUININES ...cvvevveerereerserereiiiisiineentesseesessesnessessesse st esssss s sanesees 26
TDRREtriEVENOAESIAZES ..eveenveeririreniiiriteiti ettt sttt 27
T D R STOTENOUE ..cevevveeeeeeeeeeeeeeeeeeteerensssssstreasaasaeassessesessnssssssessseseeenmsarasnnsssensessseesanes 27
T REXISINOME ..eevveeeteeeeeeeeeeeeettttessssnsseesseseaasssrasssessenssssesssosessmsmnnsnsnnnanarasesesennenes 28
TDRREAANOAELAS .oevvvveeeeeeeeeeeeeeeieeisiiieieeseeeaesaeseeseeeresnsesesssessaesermennsrasassassssensaseces 28
TR S AT CHIUNCIULE ... oo eee e eeieeieeeeeieieseeraensuaeseeeeaneeeaesteassssessnsrsssmssnnanasssnnassonss 29
TDRREAATUNCHUTELAS. eeeeeeeeeeeeeiiiiiieeeeeeeeeeeeeessrrennassnsessesersecsessesssssareasesassanensannes 29
T R S CAIC T UNCIION e eeeeereeeaereeerrreesrresareseeeeaeeasneeaesseeriessssasnaeseasssssansasssnsns 30
TDRREAATUNCHONIAS. .o eeeeeeeeeemiiieeeeeeeeeeeeeerrnrreaaseeeeeseeeeeecsuenssssssesassnssssssannassssssses 30
T RIDEIEIENOGE eeeeeeeeeiiitieieeeteeeeerereeessasaaaaeeesaseeessessnsasesassssseesssrnnnnnnasassssssess 30
TDRLISINOGES .evveneeeeeeeeeeeieeieiesseseeesesseessssnsnnnssnnssasasaeseessrnsnsssssossssssssmnmssssnsnnnasases 31
D RN DN OAES . ..oeeieeeeeeeeeeeeeeeeeeeeeeeeeeesssessssssssnsssssssrsraasaaaaasaasssenesessseenieessonananssasnsansns 31
(070 1112011 L= ¢ TUTUUTTUU OO U U ORI 31
TDRREHEVECONITOIIET ... eeeeeeeieeiriieeerinreerireeeeeeeeeeeeteeesaseeasaeessssssssosssssrasssssnssnssssnses 32
TDRRetrieveControllerCONDEVICES.uvvriireerieeeieiiiieereeeeeneeeisiiisisss e sesssssnees 32
TR SIOTECONIIOLIET .. eeeeeeeeeeeeeeeeeeeeeeteeeereressrsraesaraaaasaeeeeeeseaesnssnsssssoessssmmmsnnnrnnnnnnns 32
HED) 24 D T 1000115 ¢0) 1 1< SUUUUUUT U OO 34
TDRREAACONOIIEIIAS ... neeeeeeeieeeerieieieiereeeeeeeeereessesssaee s essnsaesssssssssssssssassssssrnssees 34
TDRDEIEtECONIOIIET . .eneereereerieerrererreeeeeseeereessessssssossesssnssssssssssssssssssssssnsnsnrens 35
TDRLISECONIIOLLIEIS ... eeeeeeeeerrteeeieeeereeeeaeeeeeaesaessesssssssenssseesstanersestranrrannessasraeseesaaes 35
T RN D CONTOIIETS . .eeeeeeeeeeeeeeiiittireesseeeeseaaeeassererrennnsssasssssersseessesnsnnssssssesassnannens 35
CEITOIAS . evveeeeeeeeeeeeeeseeeeeeeeeemasssassasaseeeeeasaasssssnsnnnsssssssnssssssssecsassssssssssssssseennanssssnnsnnn 35
TDRREFHEVECENITOIAeeeeeereeiiererererreeeeeeerreeseseseeseesissessesnessaresreressassennstessessrrenes 36
TDRRetrieveCentroidCenConnNECtioNScceveeieerieeeeeireereceiieiieseeseesissssrenneesireeens 36
TR SIOTECEIIIOIA. ... e eeeereeeeeeeitieeseerrrerseseerrestneaaerrarsneseeesmanssreecsnsssssssnnsosssemsrrnnsss 36
TDREXISTCENITOIAeeeeeeeereetiereeereeeeseeeaeseeraeerennsasessessnranereeeeteesteestesssmmnsessesnes 37
TDRREAACENITOIALAS .. e veeeeeeeeiietrttiiiiseeeeeeeeeareeesrerrereannansesssaaeseeeeseessmassssossssssenssses 37
TDRReadObjectToCentroidConnectionscecvvveeeurreescncnenneeneneniitcsicnennes 38
TDRDEIETECENIIOIA. .. e ieeeeeeeeeieiiriiiieereeeeeeeeeeeeeareressrnrannssnssassssessreemrmsasssoessssesssssnnns 38
TR LISECENIIOIAS <. eeeeeeeeeeeeemeriiiieseeeseeeeeeeeerssssarssasnnnannsssasaeeesesreenssnsssserssessssersssssns 38
T RN DCENIOIAS. .ot eeeeeeeeeeeeeeieeeiirsssrsesreressseaseeeseseaaassesssasasessssssssssenssnnsssesmmssssssnnns 39
B-3

ROGUIS 1ot ereieie ettt ee e e s tee e st e ssnbe s s as e s s sab e e sabbe s e s sne e s snr e s nans 39
TDRREHEVEROGUI.....oueerrreeieeeeiieeie et enisrtte s ce s snseraee e e s nans e e s eansnne s 39
TDRRetrieveROGUIROULESccoovieiriiiiiiiiiiicereicitiie e 40
TDRRetrievEROGUIUPVIMSSooviiiiiiieeiirtenitecee et 40
TDRSHOTEROQUI....ceeeieiiririieeeieciiee ettt ane s can s e s aaa s 40
TDREXISTROZUI...ccuviieiiiiiirieeiiireeieneseeseereeseeesseesesseesessesesbteesntessnesssnnesssnsassseeas 41
TDRREAAROGUIIASoeveieiiieiieeiieeeeeieeierc ettt re b et css e e 41
TDRDEIEIEROZUI......ceierreiriiiiecieeiieee ittt et e et ee s sse e sneeesaneessnessnseeas 41
TDRLIStROGUIS ...vvveivieiienreeeteniereesteeeesnerseessie s esseesne e b sns s sns s saneas 42
TDRNDROZUIS.ccocivreeiiirriteerieaeneee st eesireseeeeeseeesseeeseseressnesssnreesnaeseneesssassannsens 42

ROULES ettt re s eeeeeeeeeeeeeeeasaaasaasasensesssassnsnsnssnnranees 42
TDRREHEVEROULE ...t ie e e s ee e e s e e e e eesensasssssee s s s e e eeasssasaen 42
TDRSOTEROULE ..coevviiiiieeeeeeeeeeiie e et et eeese s e e eeeeereeseb e s s s seesasesesaeas 43
TDREXISTROULEuveeeiieeiiieieiiieirttiietieeeeeeeeeeeesesesesesesesssassssssssssssasasssssssssseseesreneseens 43
TDRREAAROULELASeeveeriieieerierieeieerieeeeeeeeeeeeeeeeeeeseeseeeeeennenannnessssensnsssseeeeaeeseeesens 43
TDRDEIEIEROULEeeveeeereiieneiiirerereiiriieeeeeeeeeeresesseseseeees e ssasasanessnssessnraaseacasosseses 44
TDRLISTROULES. ..cvvttieeeeeeeeieeeiiirreitiiiieieesseeeeeeeereeereressssnssnessasassssssssesannnssssasasssanaanaees 44
TDRINDROULESeeititiieeeetteerrteeeeerereeeeeeeeseesessseesssnnsnsnsnsssnsnsnsssnsssssseasasaseeses 44

NEEWOTK. ..ot eeeeee e e s e e e e e e e e e ee e aaae s e seeseaesssansasnssanssssessnssnanane 45
TDROPENDALADASEeeereeieeireciieeeeeee e ceeerteesrrere e sraees s sveessraesssnaseessasanes 45
TDRCIOSEDALADASEcoeeieeeeiiiiierntieeeieeeeeeeeereeeeererrieeeeeseeeeeenenasssasnseassesanssesaseaees 45
TDRPrepareNEeWNEIWOTKcceeerrerrreeeerieeneceeieeiitensitin st aee s 46
TDROPENNEIWOTK ...c.neeiiiiiiiiieeciecen ettt 46
TDRGuUeSSNEtWOTKFOITNALuvuviiiiiieiiiiieiee e rneeer e e e e e e s e 46
TDRReadNEetWOrKDIMccoevviiiiiiiiieieeieieeeeeeeeeeiieieieteeeeeseeeeeaenntasaesesesseassaenanees 47
TDRCIOSENEIWOTKiiiiieeitriiiriereeeerreeeeeeeeesaeeeseeeasssnnnsnnsnnssssesssranssssarassesaeeses 47
TDRWIIteNetWorkGIODalS ...cvvveiiieieeeeeeeeceeererrerreeeeeeecreeereer e s e 47

Relational Databaseevvuuiiieieiiiiiiiiiieieeeeeeeereeeeee e e e e e e e e reeeaneeeeeseaeeeeseeaessesnenens 48
ODBCREGISLEIDAtASOUICEcceevrrerrereeeerirereereeeesieeeeseneteesessreeeessneeessaasessosnses 48
ODBCUNRegiSterDataSOUICe.ueeeiueieeeniieeriirteeeeetesseereessestceessnsessenseessesnnens 49
ODBCCOPYDOSFILEvveiieiieeeeiiieeeceeerete et ceette s saete s senre s s sssee s sese e s nnas s 49
ODBC GELTEXIDALA veeuveerieieeieiiiiiiiiiiiiireeceeeeeeseeeeeeeeeerrarssnsnnseseseeassessssssssssnnssnnsnnnnnns 50
00 161 € 131111 D F: 17 W OO UR SRR 50
ODBCGetLongIntData..........ccocoiieerneiineirceietet it eeeieer e cere e s sre e ssnees 51
ODBCGEtFI0atDALA.ccveeeieeeeeeeeeeeeeeeeeeecectrrererreeeeeeeeeseesesesesesesseeeseseesessssssnnsssens 51
ODBCGEtDOUDIEDALAceeeeeeeeeeeeeeeeeeeeeccrrreerrrereeeee e eee e e s e e e e ee s e e se e e e e s e s e e s nannnnnnes 52
ODB CAIIOCSIML ...c.vieveeeiciieeiieteeeeeeeeirereeeeeesesreeesesenssseeeseesssssnssnnesessesasssraeesssanens 52
005108 35 (=To) 1 o 11 AU U U 52
ODBECSEIECE ... ettt ettt eeeeese e esrneaasbaraseeseeeseeseseeseeessessssessesssrnssrennns 53
(0)5) 5104 21C] (¢« H U ST USSR 53
(0] D)2 GRS (51014 = 1o ¢ W PO RURRRRRRRRI 53
ODBCTADIESIZEeeeeeeieeeeieeeiieeeeeeeeee e rrereae e treseeeeeseeeeeseaessseeeseseesssenssssssnsnns 54

B-4

Implementation

GDC Prototype Implementation

The geometry data container (GDC) is implementation of the original geometry system done in
ASCII Files, but redesigned to make it functional in a relational database format. All the new functions and
their implementation is transparent to the user of this system. This redesign of functions in the input/output
portion of the traffic simulation system (TSS) is not a trivial rewriting of code. Our initial design of the
database includes more than 105 completely new functions at the lowest level. Each function accesses the
relational database system for either retrieval, updating, or saving of geometry or geometry-like
information. These functions can be grouped into functional categories that operate on specific parts of the
geometry. The functional classes correspond to their analogs in the original ASCII version of the geometry

and are defined as follows:

e Blocks: drawing blocks which help in visualizing the area being simulated
e Texts: text used to identify objects being viewed

e Vehicle Classes: vehicle class definitions such as HOV->TRUCKS+BUSES
¢ Global Messages: global messages for drivers

e Sections: geometry information on sections of roadways

e Nodes: nodes link sections to form networks

s Controllers: controllers link meters and detectors to nodes/sections

e Centroids: used for origin/destination routing

e Roguis: used for origin/destination routing

e Routes: used for origin/destination routing

e Network: general network characteristics

In order to explain the implementation, it is necessary to understand not only the overall structure
of the classes listed above, but the individual functions that need to be implemented for the relational
database to function. In the following, we will explain how each category is used in the implementation
and a definition and explanation of each function that needs to be implemented. More than 100 new
functions had to be designed and implemented to make the GDC fully operational.

Blocks

Blocks are background objects (polygons) used to help visualize the traffic network. Blocks are
polygons that can have shape and color. For example, blocks can be used visualize physical features such
as rivers, buildings, and other like scenes. In figure 1, a block is drawn using high level functions that
ultimately call the low level Block functions described below.

Implementing Blocks in the relational database requires defining the following functions:

o TDRRetrieveBlock
TDRRetrieveBlockPoints
TDRStoreBlock
TDREXxistBlock
TDReadBlockids
TDRDeleteBlock

B-5

s TDRListBlocks
e TDRNbBIlocks

Figure 1 : Block created using the network editor

In order to understand the implementation, it is necessary to explain each function, its parameters,
and what action that it should perform on the database. What follows is a detailed explanation of each of

the Block functions.

Finally, another class of functions was defined to provide relational database access from the
function classes defined in the geometry. This class of functions provides Open Database Connectivity
(ODBC) calls to any ODBC compliant database allowing many different databases to be used with the

same code without major, if any changes.

TDRRetrieveBlock
Summary This function TDRRetrieveBlock retrieves the block from the database, builds
a block object, and links it to the cache provided. An incremental retrieval is
performed first, the remaining information will be retrieved when needed.
Syntax int TDRRetrieveBlock(
int idblock,
TDICacheObject *cache)
Arguments idblock [INPUT] Id of block to read
cache[INPUT/OUTPUT] List to link new object to
Returns 0 ~ No errors
MemAlloc Memory allocation error

B-6

BlockUnk Unknown block
Comments This function is one of the TDR block functions that works exclusively with
blocks and does not interact with other types of objects. The errors defined by
the mnemonic are defined in TDErrors.h.
TDRRetrieveBlockPoints
Summary Retrieves from the relational database the points of the block currently in the
block storage manipulation.
Syntax int TDRRetrieveBlockPoints(
TDIBlock *block)
Arguments *block [INPUT/OUTPUT] Link to internal storage format
Returns 0 No errors
MemAlloc Memory allocation error
Comments This function is one of the TDR block functions that works exclusively with
blocks and does not interact with other types of objects. The errors defined by
the mnemonic are defined in TDErrors.h.
TDRRetrieveBlockPoints
Summary Retrieves from the relational database the points of the block currently in the block
storage manipulation.
Syntax int TDRRetrieveBlockPoints(
TDIBlock *block)
Arguments *block Link to block storage manipulation
Returns 0 no errors
MemAlloc memory allocation
Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.
TDRStoreBlock
Summary Stores the contents of the block storage manipulation to the relational database. If it is a
new block, supposes that it does not exist in the relational database. CAUTION: The
view is not updated here!!
Syntax int TDRStoreBlock(
TDIBlock *block_source)
Arguments *block_source Link to the block storage manipulation
Returns 0 NO eITors
ObjectNotOpen - the required object is not open
B-7

ObjectInteg the object does not comply integrity
requirements

MemAlloc memory allocation

Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDREXxistBlock

Summary Looks in the list of blocks in the relational database, looking for the block identifier
idblock. Returns TRUE if found, FALSE otherwise.

Syntax Bool TDREXxistBlock(
int idblock)

Arguments idblock Block identifier

Returns TRUE Block found
FALSE Block not found

Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDReadBlocklds

Summary Read the identifiers of the nodes in the relational database, and returns them in an array.

Syntax Int TDRReadBlockIds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)

Arguments *maxids Maximum number of Ids to read
*nbids Number of Ids read from the database
**ids An array returning the Ids read
*idcurrent Current Id

Returns 0 no errors
MemAlloc allocating memory

Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRDeleteBlock

Summary Deletes this block from the relational database.

Syntax int TDRDeleteBlock(
int idblock)

B-8

Arguments idblock Identifier of block to delete

Returns 0 no errors
BlockUnk Block not found

Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRListBlocks

Summary Lists the blocks in the relational database, with output to the screen

Syntax void
TDRListBlocks()

Arguments void None

Returns void no errors

Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRNbBIlocks

Summary Counts the blocks in the relational database.

Syntax Int TDRNbBIocks()

Arguments void None

Returns Number of blocks Number of blocks in the network

Comments This function is one of the TDR block functions that works exclusively with blocks and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

Texts

Texts are background texts, which are used to identify parts of the traffic network. Texts can be
used to identify scenes such as rivers, buildings, other scenes, as well as parts of the traffic network.
Implementing Texts in the relational database requires defining the following functions:

TDRRetrieveText
TDRStoreText
TDREXxistText
TDRSearchText
TDRReadTextlds
TDRDeleteText
TDRListTexts
TDRNbTexts

TDRRetrieveText

Summary

Syntax

Arguments

Returns

Comments

TDRStoreText
Summary

Syntax
Arguments

Returns

Comments

TDRExistText

Summary

Syntax

Retrieves from the relational database the text and puts it in the cache provided.
Supposes an unallocated storage.

int TDRRetrieveText(
int idtext,
TDICacheObject *cache)

idtext Identifier of the requested text
*cache Link to internal cache

0 no errors

MemAlloc memory allocation

TextUnk unknown text

This function is one of the TDR text functions that works exclusively with texts and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

Stores the contents of the text storage manipulation to the relational database

presentation. If it is a new text, supposes that it does not exist in the relational database.

CAUTION: The view is not updated here!!

int TDRStoreText(
TDIText *text_source)

text_source Link to object to be stored to the
relational database

0 NO eITors

ObjectNotOpen the required object is not open

Objectinteg the object does not comply integrity
requirements

MemAlloc memory allocation

This function is one of the TDR text functions that works exclusively with texts and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

Looks in the list of texts in the relational database, looking for the text with identifier
idtext. Returns TRUE if found, FALSE otherwise.

Bool TDREXistText(
int idtext)

B-10

Arguments idtext Id of text to search for

Returns TRUE If text is found
FALSE If text is not found

Comments This function is one of the TDR text functions that works exclusively with texts and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRSearchText

Summary Looks in the list of texts in the relational database, looking for the text with identifier
idtext. Returns a pointer to the text or NULL if not found. The previous text is also
returned.

Syntax TDIText TDRSearchText(
int idtext,
TDIText **text_prev)

Arguments idtext Id of the text being searched for
**text_prev Pointer to the previous text

Returns NULL Not found
Pointer to text If found

Comments This function is one of the TDR text functions that works exclusively with texts and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRReadTextlds

Summary Read the identifiers of the nodes in the relational database, and returns them in an array.

Syntax Int TDRRead Textlds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)

Arguments *maxids Maximum number of Ids to return
*nbids Number of Ids returned
**ids Array of Ids returned
*idcurrent Current 1d

Returns 0 no errors
MemAlloc allocating memory

Comments This function is one of the TDR text functions that works exclusively with texts and

does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

B-11

TDRDeleteText

Summary Deletes this text from the relational database

Syntax int TDRDeleteText(
int idtext)

Arguments idtext Id of text to delete

Returns 0 O eITors

Comments This function is one of the TDR text functions that works exclusively with texts and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRListTexts

Summary Lists the texts in the relational database, with output to the screen.

Syntax Void TDRListTexts()

Arguments Void No arguments

Returns Void Nothing returned

Comments This function is one of the TDR text functions that works exclusively with texts and
does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRNbTexts

Summary Counts the texts in the relational database

Syntax Int TDRNbTexts()

Arguments Void No arguments

Returns 0 No texts found
Number of texts Number of texts found

Comments This function is one of the TDR text functions that works exclusively with texts and

does not interact with other types of objects. The errors defined by the mnemonic are
defined in TDErrors.h.

Vehicle Classes

Vehicle Classes are groupings of types of vehicles. For example, one might define an HOV1
(High Occupancy Vehicle) class with taxis and buses, and another, HOV2, with trucks and large trucks.
Now lanes could be reserved in sections just for HOV1 and HOV2 type vehicles and no others.

Implementing Vehicle Classes in the relational database requires defining the following functions:

e TDRRetrieveVehClass

B-12

e TDRStoreVehClass
e TDRExistVehClass
e TDRDeleteVehClass
e TDRListVehClasses
e TDRNbVehClasses
TDRRetrieveVehClass
Summary Retrieves from the relational databse the vehclass and puts it in the network storage
manipulation. Supposes an unallocated storage
Syntax int TDRRetrieveVehClass(
char *idvehclass,
TDICacheObject *cache)
Arguments *idvehclass
*cache Link to internal cache
Returns 0 no errors
MemAlloc memory allocation
VehClassUnk unknown class of vehicle modalities
Comments This function is one of the TDR vehicle class functions that essentially defines classes
of vehicles and their highway permissions. For example, a High Occupancy Vehicle
(HOV) can have different lanes to use than a non HOV vehicle. The errors defined by
the mnemonic are defined in TDErrors.h.
TDRStoreVehClass
Summary Stores the contents of the network storage manipulation to the relational database. If it is
a new vehclass, supposes that it does not exist in the RDB. CAUTION: The view is not
updated here!! If the vehclass was already existing and has changed its identifier, then
it notifies that selpermissions have to be revised.
Syntax int TDRStoreVehClass(
TDIVehClass *vehclass_source,
Bool *check_selpermissions)
Arguments *vehclass_source
*check selpermissions
Returns 0 no errors
ObjectInteg : the object does not comply integrity
requirements
MemAlloc memory allocation
Comments This function is one of the TDR vehicle class functions that essentially defines classes

of vehicles and their highway permissions. For example, a High Occupancy Vehicle
(HOV) can have different lanes to use than a non HOV vehicle. The errors defined by
the mnemonic are defined in TDErrors.h.

B-13

TDRExistVehClass

Summary

Looks in the list of vehicle classes in the network, looking for the one with this
identifier. Returns TRUE if found, FALSE otherwise.

Syntax Bool TDRExistVehClass(
char *idvehclass)

Arguments *idvehclass Vehicle class identifier

Returns 0 no errors
Not equal 0 Errors

Comments This function is one of the TDR vehicle class functions that essentially defines classes
of vehicles and their highway permissions. For example, a High Occupancy Vehicle
(HOV) can have different lanes to use than a non HOV vehicle. The errors defined by
the mnemonic are defined in TDErrors.h.

TDRDeleteVehClass

Summary Deletes a vehicle modality class from the RDB, deleting also all selective permissions
with this class.

Syntax int TDRDeleteVehClass(
char *idvehclass)

Arguments *idvehclass Vehicle class identification

Returns 0 no errors
VehClassUnk unknown vehicle modality class

Comments This function is one of the TDR vehicle class functions that essentially defines classes
of vehicles and their highway permissions. For example, a High Occupancy Vehicle
(HOV) can have different lanes to use than a non HOV vehicle. The errors defined by
the mnemonic are defined in TDErrors.h.

TDRListVehClasses

Summary Lists the vehicle modalities classes in the network, with output to the screen.

Syntax Void TDRListVehClasses()

Arguments Void No arguments

Returns Void No return value

Comments This function is one of the TDR vehicle class functions that essentially defines classes

of vehicles and their highway permissions. For example, a High Occupancy Vehicle
(HOV) can have different lanes to use than a non HOV vehicle. The errors defined by
the mnemonic are defined in TDErrors.h.

B-14

TDRNbVehClasses

Summary Counts the classes of vehicles in the network.

Syntax Int TDRNbVehClasses().

Arguments Void No arguments

Returns 0 no errors
Not equal 0 Errors

Comments This function is one of the TDR vehicle class functions that essentially defines classes
of vehicles and their highway permissions. For example, a High Occupancy Vehicle
(HOV) can have different lanes to use than a non HOV vehicle. The errors defined by
the mnemonic are defined in TDErrors.h.

Global Messages

Global Messages are messages that are visible on either variable message signs, or changeable
message signs that are used on modern freeways. Each section can contain a variable message sign with
the potential messages and potential actions by drivers once the message sign is activated. For example, if
freeway traffic is heavy then the sign may be set to read “Congestion Ahead, Use Alternate Routes.” Once
the sign is activated then a potential action would be for 10% of the drivers to take the next exit.

Implementing Texts in the relational database requires defining the following functions:

TDRRetrieveGlobMessage
TDRStoreGlobMessage
TDREXxistGlobMessage
TDRDeleteGlobMessage
TDRListGlobMessages
TDRNbGlobMessages

TDRRetrieveGlobMessage

Summary

Syntax

Arguments

Returns

Comments

Retrieves from the relational database the globmessage and puts it the network storage
manipulation. Supposes an unallocated storage.

int TDRRetrieveGlobMessage(

int idglobmessage,

TDICacheObject *cache)

idglobmessage Identifier for global message
*cache Link to internal cache

0 no errors
MemAlloc memory allocation
GlobMessageUnk unknown class of vehicle modalities

This function is one of the TDR global message class functions that provide information
to drivers such as accident ahead, congestion ahead, speed reduced. In addition, driver
reactions to these messages is modeled. The errors defined by the mnemonic are
defined in TDErrors.h.

B-15

TDRStoreGlobMessage

Summary

Stores the contents of the network storage manipulation to the relational database
representation. If it is a new globmessage, supposes that it does not exist in the RDB.
CAUTION: The view is not updated here!! If the globmessage was already existing and
has changed its identifier, then it notifies that selpermissions have to be revised.

Syntax int TDRStoreGlobMessage(
TDIGlobMessage *globmessage_source,
Bool *check_messasigns)

Arguments globmessage source Link to global message
*check_messasigns Status

Returns 0 no errors
Objectinteg the object does not comply integrity

requirements

MemAlloc memory allocation

Comments This function is one of the TDR global message class functions that provide information
to drivers such as accident ahead, congestion ahead, speed reduced. In addition, driver
reactions to these messages is modeled. The errors defined by the mnemonic are
defined in TDErrors.h.

TDREXxistGlobMessage

Summary Looks in the list of global messages in the network, looking for the *
one with this identifier. Returns TRUE if found, FALSE otherwise.

Syntax Bool TDREXxistGlobMessage(
int idglobmessage)

Arguments idglobmessage Identifier for global message

Returns TRUE Message found
FALSE Message not found

Comments This function is one of the TDR global message class functions that provide information
to drivers such as accident ahead, congestion ahead, speed reduced. In addition, driver
reactions to these messages is modeled. The errors defined by the mnemonic are
defined in TDErrors.h.

TDRDeleteGlobMessage

Summary Deletes this global message from the RDB.

Syntax int TDRDeleteGlobMessage(
int idglobmessage)

Arguments idglobmessage Id of the global message

Returns 0 no errors

B-16

Not equal to 0 Errors

Comments This function is one of the TDR global message class functions that provide information
to drivers such as accident ahead, congestion ahead, speed reduced. In addition, driver
reactions to these messages is modeled. The errors defined by the mnemonic are

defined in TDErrors.h.
TDRListGlobMessages
Summary Lists the global messages in the network, with output to the screen.
Syntax Void TDRListGlobMessages()
Arguments Void No aguments
Returns 0 no errors
Not equal to 0 Errors
Comments This function is one of the TDR global message class functions that provide information

to drivers such as accident ahead, congestion ahead, speed reduced. In addition, driver
reactions to these messages is modeled. The errors defined by the mnemonic are

defined in TDErrors.h.
TDRNbGlobMessages
Summary Counts the global messages in the network.
Syntax Int TDRNbGlobMessages()
Arguments Void No arguments
Returns 0 no errors
Not equal to 0 errors
Comments This function is one of the TDR global message class functions that provide information

to drivers such as accident ahead, congestion ahead, speed reduced. In addition, driver
reactions to these messages is modeled. The errors defined by the mnemonic are
defined in TDErrors.h.

Sections

Sections contain the basic geometry of the network. A network itself is composed of a set of
sections linked together by nodes. The sections themselves contain information about the physical
characteristics of each section in the network such as number of lanes, lane length, lane width, capacity,

maximum speed, type of roadway, slope, and contour.
Implementing Sections in the relational database requires defining the following functions:

e TDRRetrieveSection

TDRRetrieveSectionLaterals
TDRRetrieveSectionSelPermissions

B-17

TDRRetrieveSectionDetectors
TDRRetrieveSectionMeterings
TDRRetrieveSectionMessaSigns
TDRStoreSection
TDREXxistSection;
TDRSearchSection
TDRSearchSectionByOptional
TDRReadSectionlds
TDRDeleteSection
TDRListSections
TDRNbSections
TDREXxistDetector
*TDRSearchDetector
TDREXxistMetering
TDRSearchMetering
TDRExistMessaSign
TDRSearchMessaSign

TDRRetrieveSection

Summary

Syntax

Arguments

Returns .

Comments

Retrieves from the relational database the section and puts it in the cache provided.
Supposes an unallocated storage. An incremental retrieval is performed: firstly, only
the basic info is retrieved, the remaining will be retrieved when needed.

int TDRRetrieveSection(
int idsection,
TDICacheObject *cache)

idsection
*cache

0
MemAlloc
SectionUnk

Id of the section to be retrieved
Link to internal cache

no errors
memory allocation
unknown section

This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRRetrieveSectionLaterals

Summary

Syntax

Arguments

Returns

Retrieves from the relational database the laterals of the section currently in the section
storage manipulation.

int TDRRetrieveSectionLaterals(
TDISection *section)

*section Link to internal section object
0 no errors
MemAlloc memory allocation

B-18

Comments

This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRRetrieveSectionSelPermissions

Summary

Syntax

Arguments

Returns

Comments

Retrieves from the relational database the selpermissions of the section currently in the
section storage manipulation.

int TDRRetrieveSectionSelPermissions(
TDISection *section)

*section Link to section storage manipulation
0 O erTors
MemAlloc memory allocation

This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRRetrieveSectionDetectors

Summary

Syntax

Arguments

Returns

Comments

Retrieves from the relational database the detectors of the section currently in the
section storage manipulation.

int TDRRetrieveSectionDetectors(
TDISection *section)

*section Link to section storage manipulation
0 no errors
MemAlloc memory allocation

This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRRetrieveSectionMeterings

Summary

Syntax

Arguments

Returns

Retrieves from the relational database the meterings of the section currently in the
section storage manipulation.

int TDRRetrieveSectionMeterings(
TDISection *section)

*section Link to section storage manipulation
0 no errors
MemAlloc memory allocation

B-19

Comments

This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRRetrieveSectionMessaSigns

Summary Retrieves from the relational database the messasigns of the section currently in the
section storage manipulation.
Syntax int TDRRetrieveSectionMessaSigns(
TDISection *section)
Arguments *section Link to section storage manipulation
Returns 0 no errors
MemAlloc memory allocation
Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.
TDRStoreSection
Summary Stores the contents of the section storage manipulation to the RDB. If it is a new
section, supposes that it does not exist in the RDB. CAUTION: The view is not updated
here!! Indicates also if the turnings have to be checked.
Syntax int TDRStoreSection(
TDISection *section_source,
Bool *check turnings,
Bool *check_speedturnings,
int *nbdetectors_deleted,
TDIConDev **detectors_deleted,
int *nbmeterings_deleted,
TDIConDev **meterings_deleted,
int *nbmessasigns_deleted,
TDIConDev **messasigns_deleted,
int *nbdetectors_updated,
TDIConDev **detectors_updated,
int *nbmeterings_updated,
TDIConDev **meterings updated,
int *nbmessasigns_updated,
TDIConDev **messasigns_updated)
Arguments *section_source Link to internal section object
*check turnings Boolean
*check_speedturnings Boolean
*nbdetectors_deleted Number of detectors deleted
**detectors_deleted Array of deleted detectors
*nbmeterings_deleted Number of meterings deleted
**meterings_deleted Array of deleted meterings
*nbmessasigns_deleted Number of messages deleted
**messasigns_deleted Array of deleted messages
B-20

*nbdetectors_updated Number of detectors updated
**detectors_updated Array of updated detectors
*nbmeterings updated Number of meterings updated
**meterings_updated Array of updated meterings
*nbmessasigns_updated Number of messages updated
**messasigns_updated Array of updated messages

Returns 0 no errors
ObjectNotOpen the required object is not open
Objectinteg the object does not comply integrity

requirements

MemAlloc memory allocation

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDREXxistSection

Summary Looks in the list of sections in the network, looking for the section with identifier
idsection. Returns TRUE if found, FALSE otherwise.

Syntax Bool TDRExistSection(
int idsection)

Arguments idsection Identifier for section

Returns TRUE Section found
FALSE Section not found

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRSearchSection

Summary Looks in the list of sections in the relational database, looking for the section with
identifier idsection. Returns a pointer to the section or NULL if not found. The
previous section is also returned.

Syntax TDISection TDRSearchSection(
int idsection,
TDISection **section_prev)

Arguments idsection Identifier of section
**gection_prev Link to previous section

Returns NULL Section not found
Not NULL Pointer to found section

Comments This function is one of the TDR section class functions. The functions in this class are

fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

B-21

TDRSearchSectionByOptional

Summary Searches in the list of sections in the network, returning the one with the optional field,
or NULL otherwise. Depending on type, it searches for this exact string or for this
string as part of another string.

Syntax TDISection *TDRSearchSectionByOptional(

TDName name,
int search_type)

Arguments name String to search for in optional fields
search_type Type of search

Returns NULL Not found
Not NULL Pointer to found object

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRReadSectionids

Summary Read the identifiers of the sections in the whole network, and returns them in an array.

Syntax int TDRReadSectionIds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)

Arguments *maxids Maximum number of ids to return
*nbids Number of ids actually returned
**ids Array of ids returned
*idcurrent Current id

Returns 0 no errors
MemAlloc allocating memory

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRDeleteSection

Summary Deletes this section from the RDB. All the subobjects as selective permissions,

detectors, meterings,.. and the references of all this in the nodes, controllers, ... will be
automatically deleted by cascade. The condition of that a node without turnings cannot
exist is also dealt elsewhere.

B-22

Syntax void TDRDeleteSection(
int idsection)

Arguments idsection Identifier of section to be deleted

Returns 0 no errors
Not equal to 0 Errors

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRListSections

Summary Lists the vehicle modalities in the network, with output to the screen. This function is
usually used for debugging.

Syntax void TDRListSections()

Arguments Void No arguments

Returns 0 no errors
Not equal to 0 Errors

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRNbSections

Summary Counts the sections in the relational database.

Syntax Int TDRNbSections()

Arguments void No arguments

Returns 0 no errors
>0 Number of sections in database
<0 Errors

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDREXxistDetector

Summary Looks in the list of detectors in the network, looking for the one with the required
identifier. Returns TRUE if found, FALSE otherwise. Looks among all detectors in the
network. Within a section, detectors are sorted alphabetically.

Syntax Bool TDRExistDetector(

char iddetector[TDMAXNAMLEN + 1])

B-23

Arguments iddetectorf TDMAXNAMLEN + 1] Identiﬁg:r for detector

Returns TRUE Detector found
FALSE Detector not found

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRSearchDetector

Summary Searches in the list of detectors in the RDB, returning the one with the required
identifier, or NULL otherwise. Looks among all detectors in the RDB. Within a
section, detectors are sorted alphabetically.

Syntax TDIDetector *TDRSearchDetector(
char iddetector[TDMAXNAMLEN + 1],
int *idsection)

Arguments iddetectorf TDMAXNAMLEN + 1] Identifier of detector
*idsection Link to section where detector exists

Returns 0 no errors
Pointer Pointer to detector found, if not NULL

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRExistMetering

Summary Looks in the list of meterings in the RDB, looking for the one with the required
identifier. Returns TRUE if found, FALSE otherwise. Looks among all meterings in the
network. Within a section, meterings are sorted alphabetically.

Syntax Bool TDREXxistMetering(
char idmetering[TDMAXNAMLEN + 1]) _

Arguments idmeteringl TDMAXNAMLEN + 1] Identifier for metering

Returns Metering not found
1 Metering found

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRSearchMetering

Summary Searches in the list of meterings in the RDB, returning the one with the required

identifier, or NULL otherwise. Looks among all meterings in the network. Within a
section, meterings are sorted alphabetically.

B-24

Syntax TDIMetering *TDRSearchMetering(
char idmetering TDMAXNAMLEN + 1],
int *idsection)

Arguments idmetering[TDMAXNAMLEN + 1] Identifier for metering
*idsection Link to section

Returns NULL Metering not found
Not NULL Pointer to metering found

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDREXxistMessaSign

Summary Looks in the list of VMSs in the network, looking for the one with the required
identifier. Returns TRUE if found, FALSE otherwise. Looks among all messasigns in
the network. Within a section, messasigns are sorted alphabetically.

Syntax Bool TDREXxistMessaSign(
char idmessasign TDMAXNAMLEN + 1])

Arguments idmessasignf TDMAXNAMLEN + 1] Identifier for message

Returns TRUE Message found
FALSE Message not found

Comments This function is one of the TDR section class functions. The functions in this class are
fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRSearchMessaSign

Summary Searches in the list of messages in the network, returning the one with the required
identifier, or NULL otherwise. Looks among all messasigns in the network. Within a
section, messasigns are sorted alphabetically.

Syntax TDIMessaSign *TDRSearchMessaSign(
char idmessasign[TDMAXNAMLEN + 1],
int *idsection)

Arguments idmessasign[TDMAXNAMLEN + 1] Identifier for message
*idsection Link to section where message is

Returns NULL Message not found
Not NULL Link to message

Comments This function is one of the TDR section class functions. The functions in this class are

fundamental to drawing and retrieving the section geometry. The errors defined by the
mnemonic are defined in TDErrors.h.

B-25

Nodes

Nodes are the links that form an actual network. Nodes link the sections together to form
networks. In general, there are two type of nodes: junctions, and junctures. Junctions are links between
sections that have driver selectable turnings, and junctures are links between sections that have no driver
selectable turnings—no intersections.

Implementing Nodes in the relational database requires defining the following functions:

TDRRetrieveNode
TDRRetrieveNodeTurnings
TDRRetrieveNodeStages
TDRStoreNode
TDREXxistNode
TDRSearchNode
TDRReadNodelds
TDRReadJuncturelds
TDRSearchJunction
TDRReadJunctionlds
TDRDeleteNode
TDRListNodes
TDRNbNodes

TDRRetrieveNode

Summary Retrieves from the RDB the node and puts it in the cache provided. Supposes an
unallocated storage. A incremental retrieval is performed: firstly, only the basic info is
retrieved, the remaining will be retrieved when needed.

Syntax int TDRRetrieveNode(
int idnode,

TDICacheObject *cache)

Arguments Idnode Identifier for node
*cache Link to internal cache

Returns 0 no errors
MemAlloc memory allocation
NodeUnk unknown node

Comments This function is one of the TDR node class functions. The functions in this class are

fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRRetrieveNodeTurnings

Summary Retrieves from the RDB the turnings within the node.
Syntax int TDRRetrieveNodeTurnings(
TDINode *node)
B-26

Arguments

Returns

Comments

*node

0
MemAlloc

This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic

are defined in TDErrors.h.

TDRRetrieveNodeStages

Summary

Syntax

Arguments

Returns

Comments

Link to node

No errors
memory allocation

Retrieves from the RDB the stages within the node.

int TDRRetrieveNodeStages(
TDINode *node)

*node

0
MemAlloc

This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic

are defined in TDErrors.h.

TDRStoreNode

Summary

Syntax

Arguments

Link to node

no errors
memory allocation

Stores the contents of the node storage manipulation to the RDB. If it is a new node,

supposes that it does not exist in the RDB. CAUTION: The view is not updated here!!

Returns the entrance and exiting sections which have been modified.

int TDR StoreNode(
TDINode *node_source,
Bool id_changed,

int *nbentrances_existed,
int **entrances_existed,
int *nbexits_existed,

int **exits existed,

int *nbentrances_deleted,
int **entrances_deleted,
int *nbexits_deleted,

int **exits_deleted,

int *nbentrances_added,
int **entrances_added,
int *nbexits_added,

int **exits_added)

*node_source
id_changed
*nbentrances_existed
**entrances_existed
*nbexits_existed
**exits_existed

B-27

Link to internal node

Was the ID of this node changed?
Number of entrances

Array of existed entrances
Number of exits

Array of exits

Returns 0
ObjectNotOpen *
Objectinteg - *
MemAlloc
Comments
are defined in TDErrors.h.
TDREXxistNode
Summary
Returns TRUE if found, FALSE otherwise.
Syntax Bool TDRExistNode(
int idnode)
Arguments idnode
Returns TRUE
FALSE
Comments
are defined in TDErrors.h.
TDRReadNodelds
Summary
Syntax Int TDRReadNodelds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)
Arguments *maxids
*nbids
**ids
*idcurrent
Returns 0
MemAlloc

*nbentrances_deleted
**entrances_deleted
*nbexits_deleted
**exits_deleted
*nbentrances_added
**entrances_added
*nbexits_added
**exits _added

Number of entrances deleted
Array of entrances deleted
Number of exits deleted
Array of deleted exits
Number of entrances added
Array of entrances added
Number of exits added
Array of exits added

no errors

the required object is not open

the object does not comply integrity
requirements

memory allocation

This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic

Looks in the list of nodes in the RDB, looking for the node with identifier idnode.

Identifier of node

Node found
Node not found

This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic

Read the identifiers of the nodes in the whole network, and returns them in an array.

B-28

Maximum number of Ids to return
Number of IDS returned

Array of IDS

Current ID

no errors
allocating memory

Comments This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRSearchJuncture

Summary Looks in the list of nodes in the RDB, looking for the juncture with identifier idnode. A
juncture is a node with node->type = 0. Returns a pointer to the juncture or NULL if
not found. The *exists boolean indicates if the node exists without being a juncture.
The previous node is also returned.

Syntax TDINode *TDRSearchJuncture(
int idnode,

Bool *exists,
TDINode **node_prev)

Arguments idnode Identifier of node
*exists True if not a juncture, False otherwise
**node_prev Link to previous node

Returns NULL Not found
Not NULL Pointer to the juncture

Comments This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRReadJuncturelds

Summary Read the identifiers of the junctures (nodes) in the whole RDB, and returns them in an
array.

Syntax Int TDRReadJuncturelds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)

Arguments *maxids Maximum number of JunctureIDS
*nbids Number of IDS returned
**ids Array of IDS
*idcurrent Current ID

Returns 0 no errors
MemAlloc allocating memory

Comments This function is one of the TDR node class functions. The functions in this class are

fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

B-29

TDRSearchJunction

Summary

Syntax

Arguments

Returns

Comments

Looks in the list of nodes in the RDB, looking for the junction with identifier idnode. A
junction is a node with node->type = 1. Returns a pointer to the junction or NULL if
not found. The *exists boolean indicates if the node exists without being a junction.
The previous node is also returned.

TDINode *TDRSearchJunction(

int idnode,

Bool *exists,

TDINode **node_prev)

idnode Id of node

*exists TRUE if junction, FALSE otherwise
**node_prev Link to previous node

NULL Not found

Not NULL Pointer to the junction

This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRReadJunctionlds

Summary Read the identifiers of the junctions (nodes) in the whole network, and returns them in
an array.

Syntax Int TDRReadJunctionlds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)

Arguments *maxids Maximum number of IDS to return
*nbids Number of junctions returned
**ids Array of returned junctions
*idcurrent Current ID

Returns 0 No junctions found
MemAlloc allocating memory

Comments This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRDeleteNode

Summary Deletes the node from the RDB

Syntax void TDRDeleteNode(

int idnode)

B-30

Arguments Idnode Identifier for node

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRListNodes

Summary Lists the nodes in the RDB, with output to the screen.

Syntax Void TDRListNodes()

Arguments Void No arguments

Returns Void No return value

Comments This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRNbNodes

Summary Counts the nodes in the RDB.

Syntax Int TDRNbNodes()

Arguments Void No arguments

Returns 0 No nodes found
>0 Number of nodes in RDB

Comments This function is one of the TDR node class functions. The functions in this class are
fundamental to linking sections in the geometry. The errors defined by the mnemonic
are defined in TDErrors.h.

Controllers

Controllers connect detectors and meters for traffic counting and controlled entry to freeways.
Implementing Controllers in the relational database requires defining the following functions:

TDRRetrieveController
TDRRetrieveControllerConDevices
TDRStoreController
TDREXxistController
TDRReadControllerIds
TDRDeleteController
TDRListControllers
TDRNbControllers

B-31

TDRRetrieveController

Summary

Syntax

Arguments

Returns

Comments

Retrieves from the RDB the controller and puts it in the cache provided. Supposes an
unallocated storage. A incremental retrieval is performed: firstly, only the basic info is
retrieved, the remaining will be retrieved when needed.

int TDRRetrieveController(
char idcontroller TDMAXNAMLEN + 1],
TDICacheObject *cache)

idcontroller Identifier for controller
*cache Link to internal cache

0 no errors

MemAlloc memory allocation
ControllerUnk unknown controller

This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

TDRRetrieveControllerConDevices

Summary

Syntax

Arguments

Returns

Comments

Retrieves from the RDB the connections of the controller currently in the controller
storage manipulation.

int TDRRetrieveControllerConDevices(
TDIController *controller)

*controller Link to controller
0 no errors
MemAlloc memory allocation

This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

TDRStoreController

Summary

Stores the contents of the controller storage manipulation to the RDB. If it is a new
controller, supposes that it does not exist in the RDB. CAUTION: The view is not
updated here!! Returns the connections to junctions, meterings, detectors, and VMSs
that have been modified.

B-32

Syntax

Arguments

Returns

int TDRStoreController(
TDIController *controller_source,
Bool id_changed,

int *nbjunctions_existed,
TDIConDev **junctions_existed,
int *nbmeterings_existed,
TDIConDev **meterings_existed,
int *nbdetectors_existed,
TDIConDev **detectors_existed,
int *nbmessasigns_existed,
TDIConDev **messasigns_existed,
int *nbjunctions_deleted,
TDIConDev **junctions_deleted,
int *nbmeterings_deleted,
TDIConDev **meterings_deleted,
int *nbdetectors_deleted,
TDIConDev **detectors_deleted,
int *nbmessasigns_deleted,
TDIConDev **messasigns_deleted,
int *nbjunctions_added,
TDIConDev **junctions_added,
int *nbmeterings_added,
TDIConDev **meterings_added,
int *nbdetectors_added,
TDIConDev **detectors_added,
int *nbmessasigns_added,
TDIConDev **messasigns_added)

*controller_source,
id_changed,
*nbjunctions_existed,
**junctions_existed,
*nbmeterings_existed,
**meterings_existed
*nbdetectors_existed
**detectors_existed,
*nbmessasigns_existed
**messasigns_existed
*nbjunctions_deleted
**junctions_deleted
*nbmeterings_deleted,
**meterings_deleted,
*nbdetectors_deleted,
**detectors_deleted
*nbmessasigns_deleted
**messasigns_deleted
*nbjunctions_added
**junctions_added
*nbmeterings_added,
**meterings_added
*nbdetectors_added
**detectors_added
*nbmessasigns_added
**messasigns_added

0

B-33

Link to controller object

Was the ID changed? TRUE/FALSE
Number of junctions existing
Array of junctions existing
Number of meterings existing
Array of meterings existing
Number of detectors existing
Array of detectors existing
Number of messages existing
Array of messages existing
Number of junctions deleted
Array of junctions deleted
Number of meterings deleted
Array of meterings deleted
Number of detectors deleted
Array of detectors deleted
Number of messaged deleted
Array of messages deleted
Number of junctions added
Array of junctions added
Number of meterings added
Array of meterings added
Number of detectors added
Array of detectors added
Number of messages added
Array of messages added

no errors

Comments

ObjectNotOpen the required object is not open

ObjectInteg the object does not comply integrity
requirements

MemAlloc memory allocation

This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

TDREXxistController

Summary

Syntax

Arguments

Returns

Comments

Looks in the list of controllers in the RDB, looking for the controller with identifier
idcontroller. Returns TRUE if found, FALSE otherwise.

Bool TDREXxistController(
char idcontroller[TDMAXNAMLEN + 1)

idcontroller Identifier for controller
TRUE Controller found

FALSE Not found

This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

TDRReadControllerlds

Summary

Syntax

Arguments

Returns

Comments

Read the identifiers of the controllers in the whole network, and returns them in an
array.

Int TDRReadControllerIds(
int *maxids,

int *nbids,

char ***ids,

int *idcurrent)

*maxids Maximum number of controllers to
return

*nbids Number of controllers in array

**xids Character array of controller identifiers

*idcurrent Current ID

0 . no errors

MemAlloc allocating memory

This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

B-34

TDRDeleteController

Summary Lists the controllers in the RDB, with output to the screen.

Syntax Void TDRDeleteController(
char *idcontroller)

Arguments *idcontroller Identifier of controller

Returns Void No return values

Comments This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

TDRListControllers

Summary Lists the controllers in the RDB, with output to the screen.

Syntax void TDRListControllers()

Arguments Void No arguments

Returns Void No return values

Comments This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

TDRNbControllers

Summary Counts the controllers in the RDB

Syntax Int TDRNbControllers()

Arguments Void No arguments

Returns >=0 Number of controllers in RDB

Comments This function is one of the TDR controller class functions. The functions in this class
control meters and detector. The errors defined by the mnemonic are defined in
TDErrors.h.

Centroids

Implementing Centroids in the relational database requires defining the following functions:

TDRRetrieveCentroid
TDRRetrieveCentroidCenConnections
TDRStoreCentroid

TDREXxistCentroid

B-35

e TDRReadCentroidlds
o TDRReadObjectToCentroidConnections
s TDRDeleteCentroid
o TDRListCentroids
o TDRNbCentroids
TDRRetrieveCentroid
Summary Retrieves from the RDB the centroid and puts it in the cache provided. Supposes an
unallocated storage. A incremental retrieval is performed: firstly, only the basic info is
retrieved, the remaining will be retrieved when needed.
Syntax int TDRRetrieveCentroid(
int idcentroid,
TDICacheObject *cache)
Arguments idcentroid Identifier for centroid.
*cache Link to internal cache
Returns 0 NO €ITors
MemAlloc memory allocation
CentroidUnk unknown centroid
Comments This function is one of the TDR centroid class functions. The functions in this class

help select routes. The errors defined by the mnemonic are defined in TDErrors.h.

TDRRetrieveCentroidCenConnections

Summary Retrieves from the RDB the connections of the centroid currently in the centroid storage
manipulation.

Syntax int TDRRetrieveCentroidCenConnections(
TDICentroid *centroid)

Arguments *centroid Link to centroid storage manipulation

Returns 0 No errors
MemAlloc memory allocation

Comments This function is one of the TDR centroid class functions. The functions in this class
help select routes. The errors defined by the mnemonic are defined in TDErrors.h.

TDRStoreCentroid

Summary Stores the contents of the centroid storage manipulation to the RDB. If it is a new
centroid, supposes that it does not exist in the RDB. CAUTION: The view is not
updated here!!

Syntax int TDRStoreCentroid(

TDICentroid *centroid_source,
Bool id_changed)

B-36

Arguments *centroid_source Link to Object to be stored
id_changed TRUE if ID was change, otherwise
FALSE
Returns 0 no errors
ObjectNotOpen the required object is not
Objectlnteg the object does not comply integrity
requirements
MemAlloc memory allocation
Comments This function is one of the TDR centroid class functions. The functions in this class
help select routes. The errors defined by the mnemonic are defined in TDErrors.h.
TDREXxistCentroid
Summary Looks in the list of centroids in the RDB, looking for the centroid with identifier
idcentroid. Returns TRUE if found, FALSE otherwise.
Syntax Bool TDREXxistCentroid(
int idcentroid)
Arguments idcentroid Identifier of centroid
Returns TRUE Centroid found
FALSE Not found
Comments This function is one of the TDR centroid class functions. The functions in this class
help select routes. The errors defined by the mnemonic are defined in TDErrors.h.
TDRReadCentroidids
Summary Read the identifiers of the centroids in the whole RDB, and returns them in an array.
Syntax Int TDRReadCentroidlds(
int *maxids,
int *nbids,
int **ids,
int *idcurrent)
Arguments *maxids Maximum number of Centroids to return
*nbids Number of centroid IDS returned
**ids Array of centroid IDS
*idcurrent Currrent ID
Returns 0 no errors
MemAlloc allocating memory
Comments This function is one of the TDR centroid class functions. The functions in this class

help select routes. The errors defined by the mnemonic are defined in TDErrors.h.

B-37

TDRReadObjectToCentroidConnections

Summary Returns an array of connection descriptors between this object and the centroids. The
object has to be a section (type_object == 0) or a node (type_object == 1).
Syntax int TDRReadObjectToCentroidConnections(
int type_object,
int idobject,
int *nbobconnections_ret,
TDObjectToCentroid **TDobconnections_ret)
Arguments type_object Section (=0), Node (=1)
idobjec Identifier of object
*nbobconnections_ret Number of connections
**TDobconnections_ret Array of connections returned
Returns 0 no errors
ParamError incorrect parameter
NetNotOpen there is no open network
MemAlloc allocating memory
Comments This function is one of the TDR centroid class functions. The functions in this class
help select routes. The errors defined by the mnemonic are defined in TDErrors.h.
TDRDeleteCentroid
Summary Deletes this centroid from the RDB.
Syntax Void TDRDeleteCentroid(
int idcentroid)
Arguments Idcentroid Identifier for the centroid
Returns 0 no errors
Not equal 0 Errors
Comments This function is one of the TDR centroid class functions. The functions in this class
help select routes. The errors defined by the mnemonic are defined in TDErrors.h.
TDRListCentroids
Summary Lists the centroids in the RDB, with output to the screen.
Syntax void TDRListCentroids()
Arguments Void No arguments
Returns Void No return values
Comments This function is one of the TDR centroid class functions. The functions in this class

help select routes. The errors defined by the mnemonic are defined in TDErrors.h.

B-38

TDRNbCentroids
Summary Counts the centroids in the network.
Syntax Int TDRNbCentroids()
Arguments Void No arguments
Returns Number of centroids Number of centroids in RDB
Comments This function is one of the TDR centroid class functions. The functions in this class
help select routes. The errors defined by the mnemonic are defined in TDErrors.h.
Roguis
Implementing Roguis in the relational database requires defining the following functions:
e TDRRetrieveRogui
e TDRRetrieveRoguiRoute
o TDRRetrieveRoguiUpVMSs
e TDRStoreRogui
e TDREXxistRogui
o TDRReadRoguilds
e TDRDeleteRogui
» TDRListRoguis
e TDRNbRoguis
TDRRetrieveRogui
Summary Retrieves from the RDB the rogui and puts it in the cache provided. Supposes an
unallocated storage. A incremental retrieval is performed: firstly, only the basic info is
retrieved, the remaining will be retrieved when needed.
Syntax int TDRRetrieveRogui(
char idroguil TDMAXNAMLEN + 1],
TDICacheObject*cache)
Arguments idrogui Identifier for rogui
*cache Link to internal cache
Returns 0 no errors
MemAlloc memory allocation
RoguiUnk unknown rogui
Comments This function is one of the TDR rogue class functions. The errors defined by the

mnemonic are defined in TDErrors.h.

B-39

TDRRetrieveRoguiRoutes

Summary

Retrieves from the RDB the routes in the rogui that is currently in the storage
manipulation.

Syntax int TDRRetrieveRoguiRoutes(
TDIRogui *rogui)
Arguments *rogui Link to internal rogui object
Returns 0 RO EITors
MemAlloc memory allocation
Comments This function is one of the TDR rogue class functions. The errors defined by the
mnemonic are defined in TDErrors.h.
TDRRetrieveRoguiUpVMSs
Summary Retrieves from the RDB the upstream VMSs in the rogui that is currently in the storage
manipulation. :
Syntax int TDRRetrieveRoguiUpVMSs(
TDIRogui *rogui)
Arguments *rogui Link to internal rogui object
Returns 0 No errors
MemAlloc memory allocation
Comments This function is one of the TDR rogue class functions. The errors defined by the
mnemonic are defined in TDErrors.h.
TDRStoreRogui
Summary Stores the contents of the rogui storage manipulation to the RDB. If it is a new rogui,
supposes that it does not exist in the RDB. CAUTION: The view is not updated here!!
Syntax int TDRStoreRogui(
TDIRogui *rogui_source,
Bool id_changed)
Arguments *rogui_source Link to internal rogui storage
id changed TRUE, if ID was changed, FALSE
otherwise
Returns 0 no errors
ObjectNotOpen the required object is not open
Objectinteg the object does not comply integrity
requirements
MemAlloc memory allocation
Comments This function is one of the TDR rogue class functions. The errors defined by the

mnemonic are defined in TDErrors.h.

B-40

TDREXxistRogui

Summary

Syntax

Arguments

Returns

‘Comments

Looks in the list of roguis in the RDB, looking for the rogui with *
identifier idrogui. Returns TRUE if found, FALSE otherwise.

Bool TDRExistRogui(
char idroguil TDMAXNAMLEN + 1])

idrogui Identifier for the rogui
TRUE Rogui found
FALSE Rogui not found

This function is one of the TDR rogue class functions. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRReadRoguilds

Summary Read the identifiers of the roguis in the whole RDB, and returns them in an array..
Syntax Int TDRReadRoguilds(
int *maxids,
int *nbids,
char ***ids,
int *idcurrent)
Arguments *maxids Maximum number of roguis to return
*nbids Number of roguis returned
***ids Char array of roguis returned
*idcurrent Current rogui
Returns 0 NO erTors
MemAlloc error allocating memory
Comments This function is one of the TDR rogue class functions. The errors defined by the
mnemonic are defined in TDErrors.h.
TDRDeleteRogui
Summary Deletes the rogui from the RDB.
Syntax Void TDRDeleteRogui(
char *idrogui)
Arguments *idrogui Identifier of rogui
Returns Void No return values
Comments This function is one of the TDR rogue class functions. The errors defined by the

mnemonic are defined in TDErrors.h.

B-41

TDRListRoguis

Summary Lists the roguis in the RDB, with output to the screen.

Syntax void TDRListRoguis();

Arguments Void No arguments

Returns Void No return values

Comments This function is one of the TDR rogue class functions. The errors defined by the

mnemonic are defined in TDErrors.h.

TDRNbRoguis

Summary Counts the roguis in the RDB

Syntax int TDRNbRoguis();

Arguments Void No arguments

Returns Number of roguis Number of roguis in the RDB
Comments This function is one of the TDR rogue class functions. The errors defined by the

mnemonic are defined in TDErrors.h.

Routes

Implementing Routes in the relational database requires defining the following functions:

TDRRetrieveRoute
TDRStoreRoute
TDREXxistRoute
TDRReadRoutelds
TDRDeleteRoute
TDRListRoute
TDRNbRoutes

TDRRetrieveRoute

Summary Retrieves from the RDB the route and puts it in the cache provided. Supposes an
unallocated storage. A incremental retrieval is performed: firstly, only the basic info is
retrieved, the remaining will be retrieved when needed.

Syntax int TDRRetrieveRoute(

char idroute[TDMAXNAMLEN + 1],
TDICacheObject *cache)

B-42

Arguments Idroute Identifier of route
*cache Link to internal storage
Returns 0 no errors
MemAlloc memory allocation
RouteUnk unknown route
Comments This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.
TDRStoreRoute
Summary Stores the contents of the route storage manipulation to the RDB. If it is a new route,
supposes that it does not exist in the RDB. CAUTION: The view is not updated here
Syntax int TDRStoreRoute(
TDIRoute*route_source,
Bool id_changed)
Arguments *route_source Link to route
id_changed TRUE if id changed, FALSE otherwise
Returns 0 no errors
ObjectNotOpen the required object is not open
Objectlnteg the object does not comply integrity
requirements
MemAlloc memory allocation
Comments This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.
TDREXistRoute
Summary Looks in the list of routes in the RDB, looking for the route with identifier idroute.
Returns TRUE if found, FALSE otherwise
Syntax Bool TDREXistRoute(
char idroutef TDMAXNAMLEN + 1])
Arguments Idroute Identifier of route
Returns TRUE Route exists
FALSE Route not found
Comments This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.
TDRReadRoutelds
Summary Read the identifiers of the routes in the RDB, and returns them in an array.

B-43

Syntax Int TDRReadRoutelds(
int *maxids,
int *nbids,
char ***ids,
int *idcurrent)

Arguments *maxids Maximum number of routes to be

returned

*nbids Number of routes returned
**¥ids Char array of returned routes
*idcurrent Current ID

Returns 0 no errors
MemAlloc Error allocating memory

Comments This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRDeleteRoute

Summary Deletes the route from the RDB.

Syntax Void TDRDeleteRoute(
char *idroute)

Arguments *idroute Identifier for route

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRListRoutes

Summary Lists the routes in the RDB, with output to the screen.

Syntax void TDRListRoutes(void);

Arguments Void Nor arguments

Returns Void No return values

Comments This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.

TDRNbRoutes

Summary Counts the routes in the RDB.

Syntax int TDRNbRoutes(void);

B-44

Arguments
Returns

Comments

Network

Void No arguments
Number of routes Number of routes found in RDB

This function is one of the TDR route class functions. The errors defined by the
mnemonic are defined in TDErrors.h.

Implementing Network in the relational database requires defining the following functions:

int TDROpenDatabase

int TDRCloseDatabase

int TDRPrepareNewNetwork

int TDROpenNetwork

Bool TDRGuessNetworkFormat
int TDRReadNetworkDim

int TDRCloseNetwork

Int TDR WriteNetworkGlobals

TDROpenDatabase

Summary

Syntax

Arguments

Returns

Comments

Indicates, to the RDB part of the functions that this is the database should be used for
this specific mode (geREAD or geWRITE). This function opens a ODBC connection to
this database, so that next reads (Retrieve object execute faster).

int TDROpenDatabase(
char name_ful TDMAXFILEPATH + 1],
int mode);

name_full Full path and name of database
mode geREAD or geWRITE mode.

0 no errors
This function is one of the TDR network class functions. This class of functions forms

the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRCloseDatabase

Summary

Syntax

Arguments

Returns

Closes the database that was previously opened for this mode.

int TDRCloseDatabase(
int mode);

mode geREAD or geWRITE mode.

0 no errors

B-45

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRPrepareNewNetwork

Summary Prepares a new network in RDB format. This means creating the database file and,
inside it, creating the tables and relationships. name_full is the 'database name' +'.' +
extension.

Syntax int TDRPrepareNewNetwork(
char newNameFull[TDMAXFILEPATH + 1]);

Arguments newNameFull Full path and name of new database

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDROpenNetwork

Summary Opens the network with the given name, supposing RDB format.

Syntax int TDROpenNetwork (
char name full TDMAXFILEPATH + 1])

Arguments name_full Full path and name of new database

Returns 0 no errors
NetAlOpen there is already an open network
MemaAlloc error allocating memory

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRGuessNetworkFormat

Summary Looks if the network with this name is in RDB format.

NOTE: fileName is really the complete path (C:\...)

Syntax Bool TDRGuessNetworkFormat (
char fileName[TDMAXFILEPATH + 1])

Arguments fileName Full path and name of database

Returns TRUE if RDB format
FALSE Otherwise

B-46

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRReadNetworkDim

Summary Reads the number of main objects in an existing RDB network. The network doesn't
need to be open.

Syntax int TDRReadNetworkDim(
char name[TDMAXFILEPATH + 1],

TDNetDim *TDnetdim)

Arguments name Full path and name of database
*TDnetdim Link to where counts of objects are

stored

Returns ParamError incorrect parameter
NetTypeUnsup unsupported type of network format
0 No errors

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRCloseNetwork

Summary Frees the required data structures.

Syntax int TDR CloseNetwork(void);

Arguments Void No arguments

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

TDRWIriteNetworkGlobals

Summary Writes the file which contains the global variables, from the Network structure, or the
view to the relational database.

Syntax Int TDR WriteNetworkGlobals(

Bool all_network)

Arguments all_network If TRUE do entire network, else do a

view

Returns 0 no errors
FileOpen opening the file

B-47

FileWrite writing the file
FileOpenAlready opening an already opened file
FileClose closing the file

Comments This function is one of the TDR network class functions. This class of functions forms
the basis for all other calls to the traffic network. The errors defined by the mnemonic
are defined in TDErrors.h.

Relational Database

The relational database functions use the ODBC 3.0 software development kit to build functions
that will move and search for data in an ODBC compliant database. All the database calls made to the
relational database (RDB) must use these functions to communicate with it. Although other functions may
work, debugging is made much easier if all the database troubleshooting can be done through these
functions. In addition, any function that has an error can be easily corrected here, in one place, saving
much time.

ODBCRegisterDataSource
ODBCUnRegisterDataSource
ODBCCopyDOSFile
ODBCGetTextData
ODBCGetIntData
ODBCGetLongIntData
ODBCGetFloatData
ODBCGetDoubleData
ODBCAllocStmt
ODBCFreeStmt
ODBCSelect

ODBCFetch
ODBCSelectFetch
ODBCTableSize

ODBCRegisterDataSource

Summary This function registers the parameters being passed as an ODBC database in the
ODBC32 administrator’s table.

Syntax int ODBCRegisterDataSource (
char szDSN[],
char szDefaultDir[],
char szDriverld[],
char szDriverName[],
char szDBQJ[])

Arguments szDSN(] Name for ODBC registry
SzDefaultDir[], Directory of original DB
szDriverld[], ODBC driverid Access=25
SzDriverName[], "Microsoft Access Driver (*.mdb)"
szDBQ[] Original DB filename

Returns 0 no errors

B-48

Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms

the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCUnRegisterDataSource

Summary This function removes the named ODBC registered database from the ODBC32
database registry.

Syntax int ODBCUnRegisterDataSource (
char szDSNJ],
char szDefaultDir{],
char szDriverld[],
char szDriverNamel},
char szDBQ[])

Arguments szDSN[], Name for ODBC registry
SzDefaultDir[], Directory of original DB
szDriverld[], ODBC driverid Access=25
SzDriverName[], "Microsoft Access Driver (*.mdb)"
szDBQJ] Original DB filename

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR database class functions. This class of functions forms

the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCCopyDOSFile

Summary Copy the file in origin[] to dest[] using the DOS COPY command. This function allows
certain files to be copied which will be needed by some of the other programs later.
Syntax Int ODBCCopyDOSFile (
char dest[],
const char originf])
Arguments destf], Path and name of where to copy file
origin[]) Path and name of file to make a copy of
Returns 0 No errors
Not 0 Errors (as defined by DOS)
Comments This function is one of the ODBC database class functions. This class of functions

forms the basis for all communication with the relational database. The errors defined
by the mnemonic are defined in TDErrors.h.

B-49

ODBCGetTextData

Summary

Retrieve TEXT data from an ODBC database for a particular column. Supposes that an
appropriate SELECT and FETCH have already been performed.

Syntax Int ODBCGetTextData(
SQLHSTMT hstmt,
Int col,
Char* data,
Int maxlength)
Arguments hstmt SQL statement handle
col col is an index to selected data
*data data received
maxlength maximum characters to accept
Returns 0 no errors
Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.
ODBCGetintData
Summary Retrieve INT data from an ODBC database for a particular column. Supposes that an
appropriate SELECT and FETCH have already been performed.
Syntax Int ODBCGetIntData(
SQLHSTMT hstmt,
Int col,
Int *data,
Int minvalue,
Int maxvalue)
Arguments hstmt SQL statement handle
col col is an index to selected data
*data data received
minvalue minimum acceptable
maxvalue maximum acceptable
Returns 0 no errors
Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms

the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

B-50

ODBCGetLonglntData

Summary Retrieve LONG INT data from an ODBC database for a particular column. Supposes
that an appropriate SELECT and FETCH have already been performed.
Syntax Int ODBCGetLongIntData (
SQLHSTMT hstmt,
Int col,
long int *data,
long int minvalue,
long int maxvalue)
Arguments hstmt SQL statement handle
col col is an index to selected data
*data data received
minvalue minimum acceptable
maxvalue maximum acceptable
Returns 0 no errors
Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.
ODBCGetFioatData
Summary Retrieve FLOAT data from an ODBC database for a particular column. Supposes that
an appropriate SELECT and FETCH have already been performed.
Syntax Int ODBCGetFloatData(
SQLHSTMT hstmt,
Int col,
Float *data,
Float minvalue,
Float maxvalue)
Arguments hstmt SQL statement handle
col which column is the data in for this
select
data data received
minvalue minimum acceptable
maxvalue ' maximum acceptable
Returns 0 no errors
Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms

the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

B-51

ODBCGetDoubleData

Summary

Syntax

Arguments

Returns

Comments

Retrieve DOUBLE data from an ODBC database for a particular column. Supposes that
an appropriate SELECT and FETCH have already been performed.

Int ODBCGetDoubleData(
SQLHSTMT hstmt,

int col,

double* data,

double minvalue,

double maxvalue)

hstmt SQL statement handle

col which column is the data in for this
select

Data data received

minvalue minimum acceptable

maxvalue maximum acceptable

0 no errors

Not 0 : Errors

This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCAlIllocStmt

Summary This function uses ODBC software development kit functions to allocate a statement
handle given a connection handle.

Syntax Int ODBCAllocStmt (
SQLHDBC FAR *hstmt,
SQLHDBC hdbc)

Arguments hstmt pointer to SQL stmt handle to allocate
hdbc existing connection handle to link to

Returns 0 no errors
Not 0 ' Errors

Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCFreeStmt

Summary Free up an ODBC statement handle

Syntax Int ODBCFreeStmt (
SQLHSTMT hstmt)

B-52

Arguments hstmt pointer to stmt to free

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCSelect

Summary This function sends the SELECT statement that is contained in the variable “selectxx”
for the ODBC database that is connected to the handle “hstmt”.

Syntax Int ODBCSelect (
SQLHSTMT hstmt,
SQLCHAR *selectxx)

Arguments hstmt pointer to SQL statement handle
selectxx SQL SELECT data command

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCFetch

Summary This function sends an ODBC Fetch command with statement handle to the ODBC
database that is hstmt is connected to. The FETCH command requests that a row of
data be sent back.

Syntax Int ODBCFetch (
SQLHSTMT hstmt)

Arguments hstmt SQL Fetch command

Returns 0 no errors
Not 0 Errors

Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

ODBCSelectFetch

Summary This function combines both the ODBCSelect and the ODBCFetch functions.

B-53

Syntax Int ODBCSelectFetch (
SQLHSTMT hstmt,
SQLCHAR* selectxx)
Arguments hstmt pointer to SQL statement handle
selectxx SQL SELECT data command
Returns 0 no errors
Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms
the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.
ODBCTableSize
Summary This function gets the number of records in the specified table in the database that hstmt
is connected to.
Syntax Int ODBCTableSize(
SQLHSTMT hstmt,
const char* table,
int* nbrecords)
Arguments hstmt Pointer to SQL statement handle
table The table to count records from
nbrecords Number of records in the table (returned)
Returns 0 no errors
Not 0 Errors
Comments This function is one of the TDR database class functions. This class of functions forms

the basis for all communication with the relational database. The errors defined by the
mnemonic are defined in TDErrors.h.

B-54

Appendix C

Sample of Traffic Volumes Provided by Mn/DOT

C-1

Appendix C: Sample of the traffic volumes provided by Mn/DOT

The data in the following table is a sampling of the data used. This is sample
simulation data for detector number 8 using an ACCESS database to hold it. Data was
provided by Mn/DOT . The columns are identified as:

e DetectorID
o Time:

o Date:
e Volume

Occupancy
Status

o Validity

the Mn/DOT identification for this detector

the number of the 5 minute time period past midnight. For
example, a time of 72 is 72*5=360 minutes = 6 hours past
midnight or 6 a.m.

the day of the month that the data was recorded

the number of vehicles in the last five (5) minutes. Note
for simulation volume needs to be converted to
vehicles/hour.

percentage of time the detector is occupied (range 0-100%)
communication status of the detector. A value other than
zero indicates a fault (range(-4 to 3).

validity of the detector. A value other than zero indicates a
fault (range: -3 to 4).

.DetectorlD ~ Time =~ Date Volume Occupancy Status ~ Validity
‘ 8 72 12 17 1 0 0
8 73 B 12 21 1 0 0
8 74 12 16 1 0 0
8 75 12 23 2 0 0
8 76 12 30 2 0 o
. = 2 = o 0 :
8 78 12 34 2 0 0
8 79 12 34 2 0 0
8 80 12 32 3 0 0
8 81 12 40 3 0 0
8 82 12 39 3 0 0
8 83 12 39 3 0 0
8 84 12 37 4 0 o
8 85 12 2 2 0 0
8 86 12 28 2 0 0
e S = = 5 : :
8 88 12 39 4 0 0
8 89 12 33 3 0 o
8 %0 2 41 3 o 0
8 91 12 38 3 0 0
8 92 12 50 4 0 0
8 93 12 37 3 0 0
8 94 12 44 4 0 0
8 95 12. 44 4 0 0
8 9% 12 39 3 0 0
8 97 12 48 4 0 0
C-2

. Occupancy

100

101

102

103

104

105

106

107

108

109

110

REEET

112/

113

114

115

116

117

118

119

120

121

122

H

123

124

{

3 M B i

125

126

127

128

i

129

130

H

131

132.

133

134

135

136

137

138

139

140

i

141

142

143

144

00 00iC0 000000 00 00 000 C0iC0 COIo0 CO|00i DI 0000, 0O GO C0iCD C0iCO CO!CO OV 00 00 00 00 00 OO QO 00O ViV G000 oo Oloo;

145

BADBADEADADODWRAINWODRRDEANWWRWADMWANWOIMIODDAWHRWLEDLIMNODS WO®

Ooocooooooooooooooooooo

0
e
0
=
OI
5
5
o
0
0
0
0
0
0
0
0
0
0
0
,WOA
0
5
5
.o
0
0
0
<
0
0
0
0
0
)
O,
0
0
0
Ov
O.
0
0

C-3

oo

ooooooo

i..

i
{

i

H

i

QOO O SRR NONDDOONOOEDWADMOGGORORMO SRS OSBRSS BRNO

00 0000000000000 000000000o0000o0ooooooocooooooo

§
i

. | ; i
0000000000000 000000000000 o00 0

13

63

" Volume . Occupancy -

12

56

13

13

64

57

61

§

@Ecocooo:oojoooojoooooo,oo%ooqooooooopooooooooqoooooqoooo‘l
i 1 [i :

i3

=i

H

13
13
13
.
=

13
B
I
T

75

69

noia oo sioo;

2
65

H

000 0000 00

85

X

62

13

LT

-2
B
3

=
-
%0

o
31

73

87

!

H

oo ooooooo0o0o0o0oo

i
H
i
H

NN N oo N Ne oo oN e oo

0000000000000 000

‘oolocooo

