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Executive Summary!

The objective of this report is to present a set of design equations for beam-
columns made of pultruded fiber reinforced composite materials. A beam-
column is a column subjected to a primary axial load and secondary bending
load. The bending load may be caused by lateral loads or by eccentricity of
the axial load (see Fig. 1).

This report is divided in the following sections:

1.

(11

Design procedure (Section 1). Describes the step-by-step design pro-
cedure to be followed to design fiber reinforced plastic (FRP) beam-
columns. The procedure is based on four section properties which must
be supplied by the manufacturer (see Tables 2-3). Testing procedures

to be used in the experimental determination of those properties are
available in the literature.

Examples (Section 2). The design procedure is illustrated with illus-
trative examples. These step-by-step examples make reference to the
equations in the design procedure.

Commentary to the design procedure (Section 3). The commentary
further explains the design procedure and provides justification for the
equations presented.

. Testing procedure (Section ). It was found that no additional testing

is required specificallv for the design of beam columns. All the prop-
erties required for the design of beam columns are already available
for the design of beams and columns without lateral load. Section 04
briefly describes the available literature where testing procedures are
described for the determination of these properties.

Conclusions and recommendations. This section concludes the report

and delineates some of the aspects that may need to be considered in
the future.

'RP % 131



1 Design Procedure

The design of beam-columns begins by considering bending about the weak
axis (Fig. 1). Then. the procedure is repeated to check bending about the
strong axis.

A beam-column is a column subjected to a primary axial load and sec-
ondary bending load. Bending load may be caused by lateral loads or by
eccentricity of the axial load. The design is based on four properties that
should be provided by the manufacturer:

e The bending stiffness of the section (ET).

e The short-column buckling load Py.

e The interaction constant c.

e The critical bending moment Al..

The design is carried out as follows:

1. Given the design load Py, select a section with Pp, > Pp (see Table 2).

2. Compute the composite slenderness

_kL [ P (1)

A= TV ED

where L is the length of the column (Figure 1) and k is the end-restraint
coefficient (see Table 1). If A < 1 the column is short. otherwise is long.

3. Compute the column load (no eccentricity, no lateral load)
Pc = kiPL (2)

where the interaction factor is

/ 1
}\’,, = k,\ - ki - (:/\2 (3)

where [°; and ¢ are given in Table 2. and

ky = (1+1/7\)/2¢ (4)
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1. If only eccentriciry of the axial load exists proceed to step 5. If lateral
load exists. comgute the equivalent end-moment My. The equivalent
end-moment is su h that it produces the same maximum deflection as
the actual lateral wad when no axial load is applied. That is

Mo = 8 (EI) 6max/L? (5)

where (E1) is the bending stiffness (Table 2) and dmax is the maximum
deflection produced by the lateral load. Formulas used to compute dmax
for a variety of cas=s are shown in Fig. 2.

3. Compute the reduced failure load
P =k.P; (6)

in terms of the reduction factor k,. Different reduction factors are used
depending on the tvpe of load, as follows:

(a) If the axial load has an eccentricity e. then
k, = 0.871 — 0.0814(e/t) (7)

where ¢ is the flange thickness and e is the load eccentricity.

(b) If and end-moment M results from lateral load, then
k, = 1.001 — 1.012(Mo/M,,) (8)

where Ay is the equivalent end-moment computed in step 4 and

M., is the ultimate bending strength of the section acting as a
beam (Table 2).

6. Compute the adjusted failure load (due to beam-column interaction)
P, = koP; (9)
The adjustment factor k, is computed as:

{a) For luad eccentricity
b, = 1.102 — 0.644) (10)

where \ is the compuosite slenderness (Eq. 1).

3



(b) For end-moment

kq = 1.148 — 0.803A (11)

where A is the composite slenderness (Eq. 1).

7. The adjusted failure load P, should be lower than the design load F,.

If not, select another section. It is assumed that F, already contains
load factors to account for uncertainty in the applied load. The factors
k, and k, used in the determination of P, are resistant factors that

account only for variability of resistance of various structural shapes to
sustain beam-column loads.

. To check serviceability. first compute the reduced bending stiffness

(EI), = {(EI) - (%)2130 <£E> (12)

where P, is the design load and Pg is the Euler load. computed as

(EI)
Pg=-—7+—"— 13
The deflection is found considering only the lateral load and the true
end conditions into the formulas in Fig. 2. For the load to be used in
the equations. two cases are possible:

(a) For load eccentricity, use an end-moment equal to My = Poe where
P, is the load and e is the eccentricity. For example, for a pinned-
pinned column with load eccentricity, the lateral deflection is com-
puted as

F})CL"Z
8(ET),

(14)

w =

(b) For lateral loads. use the actual load in terms of the reduced bend-
ing stiffness is (£ 1), (see Example 3).



End-restraint

pinned-pinned

clamped-clamped

pinned-clamped

clamped-free

Ktheory Ksteel Kwood
1.0 1.0 1.0
0.5 0.65 | 0.65
0.7 0.8 0.8
2.0 2.1 24

Table 1: End-restraint coefficients for long column buckling

SECTION | TYPE | (El)weak | (GA)weak P, c Mer
in%psi in®psi b inlb

dx4x1/4 WF | 1.03E+07 | 1.18E4+06 | 51000 | 0.84 | 37732
6x6x1/4 WF | 3.35E+07 | 1.83E+06 | 34000 | 0.84 | 18750
6x6x3/8 WF | 5.19E+07 | 2.67E+06 | 111000 | 0.84 | 157830
8X8X3/8 WF | 1.33E4+08 | 3.78E+06 | 83000 | 0.84 | 161480
8X4X3/8 I]1.74E+07 | 1.94E+06 | 144000 | 0.84 | 70044
12x12x1/2 WF | 5.26E+08 | 6.85E+06 | 157000 | 0.84 -

Table 2: Section properties provided by the manufacturer (Weak Axis)

SECTION | TYPE | (El)strong | (GA)strong Py c Mer
in’psi in®psi Ib inlb

dxdx1/4 WF | 3.08E+07 5.26E+05 | 51000 | 0.84 | 293,868
6x6x1/4 WEF | 9.92E+07 8.58E+05 | 34000 | 0.84 | 364,481
6x6x3/8 WF | 1.54E+08 1.14E+06 | 111000 | 0.84 | 519,979
8X8X3/8 WF | 1.06E+08 1.56E+06 | 83000 | 0.84 | 563,889
8X4X3/8 [ 2.56E+08 2.21E+06 | 144000 | 0.84 | 1.060.648
 12x12x1/2 WF | [.68E+09 | 3.28E+06 | 157000 | 0.84 -

Table 3: Section properties provided by the manufacturer (Strong Axis)
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Figure 1: Coordinate svstem. dimensions. and loads for beam-column equa-
tions.
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2 Examples
Example 1 /Colummn; Seiect a section qven the follounng:

Fy = 80 kip (Appliea axial load)

M, = 0 (Applied end-moment weak axis)
M, = 0 (Applied end-moment strong axis)
L =72 in (column iength)

Ends: both pinned

g, = 0 (Lateral load weak axis]

gr = 0 (Lateral load strong axis)

e = 0 (Eccentricitv of he axial load)

Solution 1 Follow closely the design procedure described in Section  [:

1. From Tables 2. select section with P, > F,. Select (Trial 1) 8 x3x 3/8:

P, = 83.000 1b (13)
(El)y = 1.33(10®) 1b in?
c=0.84
t =0.375 in

2. Compute the composite slenderness Eq. 1. Use Table 1 for end-
conditions factor k = 1.

kL P

= \/(El)u.

= 0.579 < 1 (short column) (16)

3. No lateral load. use Eq. 2 and Eq. 3

by = (1~ 1/A%)/2 = 2.370 (17)
T | ,
b, = h kY- | =0933 (18)
‘! * \ ) (',\‘:\t
P. = 0.933P. = 77.439 1b (19)

8



1. P. < Fy (not adequate:.

5. (Trial 2)12 x 12 x 1/2 WF/CP:

Pr =157,0001b (20)
(ED), = 5.26(108) Ib in?
c=0.84
t=0.51n
results in
A = 0.396 (21)
Ay = 4.391
k; = 0.972

P.=0.972P, = 152,604 Ib

6. P. > P, (adequate). Use: WF/CP 12 x 12 x 1/2.

7. Verify strong axis load following same procedure.

Example 2 (Load eccentricity) Select a section given the following:

Fy =20.000 Ib

e = 0.5 in (load eccentricitv with respect to weak axis)
L=72in

Ends: both pinned

My=M,=q,=q.=0

Solution 2 Follow closely the design procedure described in Section 1:

1. From Table 2. select section with P, > P,. Select (Trial 1) 6 x6 x 1/4:

P, =34.000 Ib (22)
(EI), =3.35(10)" 1b in”

o= 0.84

t =0.25 1n



ot

-1

Composite slenderness Eq. 1. Use Table 1 for end-conditions factor
k=1

A = 0.709 (23)
Column buckling load. Eq. 2 and Eq. 3
ky=1.779 (24)

P. = 0.886P, = 30,124 1b
Reduction factor for eccentricity Eq. 7
k. = 0.871 — 0.0814(0.5/0.25) = 0.708 (25)
Reduced buckling load
P, = k.P. = (0.708)30.124 = 21,328 1b (26)

Adjustment factor (beam-column interaction) for column with eccen-
tricity Eq. 10

ks = 1.102 — 0.644(0.709) = 0.645 (27)
Adjusted buckling load
P, = k,P. = (0.645)21.328 = 13,757 1b (28)

P, < P, (not adequate).

(Trial 2) Use 4 x 4 x 1/4

P, =51.0001b (29)
(EI), = 1.03(10)" Ib in®

o= 0.84

F=10.25

10



Repeat steps 5 tu O

A =1613
ky = 0.824
k, = 0.333
P. = (0.353)51.000 = 18.003 1b

8. P. < 20.000 (not adequate).
9. (Trial 3) Use 6 x 6 ~ 3/8

P; = 111.000 lb (31)
(EI), = 5.19(107) lb in’
c=0.84
t =0.3751in
Repeat steps 3 to 6

A =1.06 (32)
k,=1.125

ki = 0.671

P. = (0.671) 111,000 = 74,481 1b

K. = 0.708 (no change)

P, = (0.762) 74,481 = 52,733 1b

Ko = 1.102 — 0.644 (1.06) = 0.419

Pa = (0.419) 56,735 = 22,095 1b

10. P, > F, (adequate).

11. Check serviceabilitv. First. compute the Euler load Eq. 13

5.19(107)

Pp=2—— =988101lb 33
e = Ty = 98810 (33)

. Next. compute the reduced bending stiffness Eq. 12

[ - 79\ ° 74,481
319(107) — [ =} 20. \ 34)
510l (,—.\ 0.000 <98.8m> :

(ETy.

Il

-

(Ely. = 31.206(10°) 1b in”

11



13. The moment produced byv eccentricity 1s
Mo = Pe = 20.000(0.5) = 10.000 in 1b (35)

14. Compute deflection with deflection equation using Eq. 14

=0.208 in (36)

For other end-conditions or lateral loads use customary maximum de-
flection formulas in terms of (ET),.

Example 3 (Latera! Load) Select a section gien the following:

P = 20.000 1b

L=60in

Ends: both pinned

My,=M.=0

gy = 10 Ib/in (uniformly distributed load. weak axis)
g: =0

e=01in

Solution 3 Follow closely the design procedure described in Section  I:
1. From Table 2. select section with P > Pp. Select (Trial 1) 6 x 6 x 1/4:

P, = 34.000 b (37)
(EI), = 3.33(10) lb in®
(GA)w = 1.83(10)° 1b
Mcgr = 48.750 in 1b
c=0.84

t =0.251n

9. Composite slenderness Eq. 1. Use Table 1 for end conditions k=1

A =0.591 (38)

y—i
[ ]



ot

. Column buckling load

kx = 2.299 (39)
k; = 0.929
P. = 0.929P, = 31,586 b

Equivalent end moment. First compute the maximum deflection caused
by the uniform distributed load (Figure 2)

5 qL* +l qL?

384 (EI)  8(GA)

5 10(60%) 1 10(60?)
384 3.55(107) ' 81.83(106)
Smax = 0.048 +0.002 =0.05 in

(40)

Next compute the equivalent end-moment using Eq. 5

(8)3.55(107)0.05

Ma =
° 602

—=3,944 in b (41)

. Reduced failure load (due to end-moment), use Eq. 8

k., = 1.001 — 1.012(3944/48750) = 0.919 (42)
P. = 0919P, =31,2461b

Adjusted failure load. use Eq. 11 for end-moment

k, = 1.148 —0.803\ =0.673 (43)
P, = 0673P.=21,0291b

P, > P, (adequate). Note that P, is barely larger than Py. 1t is as-
sumed that P, already contains load factors to account for uncertainty
in the applied load. The factors k., and k, used in the determination
of P, are resistant factors that account only for variability of resistance
of various structural shapes to sustain beam-column loads.

Serviceability. First compute the Euler load using Eq. 13
_3.55(107)

- . =97.325 1b (44)
£ (60/7)

13



Then compute the reduced bending stiffness using Eq. 12

31.586
97.325

(EI), = [3.55(107) — (60/7)%20.000] ( > = 9.154(10°) Ib in’

(45)

The maximum lateral deflection of a pinned-pinned beam under uni-
formly distributed load is from Fig. 2

5 5 10(60%) 1 10(60%)
max . T 3849.154(10%)  81.83(106)
= 0.184 + 0.002 = 0.186 in

(46)

14
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3 Commentary

3.1 Composite Slenderness

Since FRP shapes have uifferent moduli at various points of the cross-section,
the geometrical propert.es such as slenderness r = /I/A, moment of inertia
I, area A, and so on are not appropriate to describe the section. To solve this
problem, mechanical properties such as bending stiffness (EI) are defined and

no attempt is made to s~parate E from I. Along these lines, the composite
slenderness was defined ia ref. [4] as

xL [ Py
A=V ED 47

where L is the total length of the column. In addition P; is the short-
column load (Tables 2-3), and (EI) is the bending stiffness, either weak or
strong axis (Tables 2-3). Both P, and (EI) are section-properties supplied
by the manufacturer. Values of end-condition factor k (see Table 1) should be

chosen using engineering judgement because exact end-conditions are seldom
known.

3.2 Column Failure Load

The column failure load of a column loaded along its axis, with no load
eccentricity and no lateral load, is found as

Pc = ]C,‘PL (48)
where the interaction factor k; is

1

ki=h =\ - =3 (49)
where ¢ is the interaction constant, and
ky = ky = (14+1/2%)/2c (50)

This was called a universal equation in ref. [1. 5, 6] because a single
expression is used for any column length without distinction of short, inter-
mediate, or long columns. A comparison between the Euler load (Eq. 13)

15
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Figure 3: Comparison of buckling loads for columns without load eccentricity
or lateral load.

and the actual column load given by Eq. 48 is shown in Fig. 3. Note that for
A < 1 the column load approaches the short-column load Py as the column

becomes shorter (A — 0). For experimental validation of these equations see
ref. [4, 10].

3.3 Lateral Load

If the axial load P, is applied with some eccentricity e with respect to the
axis of the column. an end-moment is produced, equal to

Mo =ePy (51)

Also, a column with lateral load g (Fig. 1) can be modeled as a column
with end moments My plus the axial load Py. The equivalent end-moment

16
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My can be found for any type of lateral load and end conditions. The moment
M, is such that produces the same maximum deflection on a pinned-pinned
column as the actual lateral load acting on the column with actual end con-
ditions. The maximum deflection 6yax under lateral load can be computed
using Fig. 2 in terms of the bending stiffness (EI) and shear stiffness (GA),
which are section-properties given by the manufacturer (see Tables 2-3).

For example, a clamped-clamped column with uniform lateral load ( and
no end load) deflects

5 B qL‘ + qL2
X T 384(EI) 1 8(GA)

Then, Mp is found so that it matches the deflection of the actual column..

Using the formula for the maximum deflection of a pinned-pinned beam under
end moments (Fig. 2), M, is

(52)

M, = ﬂ%ﬁ“- (53)

3.4 Reduced Failure Load

Both eccentricity of the axial load and lateral load reduce the failure load of
a column. The reduction factor depends of the source of end-moment.

(a) For eccentricity e
k, = Ac — Be(e/t) (54)
(b) For end moment M,
k, = Am — Bm(Mo/M.) (55)

where ¢ is the thickness of the flange and M., is the bending strength
of the section working as a beam.

Then, the reduced failure load is
P. =k P, (56)

The coefficients in Eqs. 34-33 (see Table 4) have been obtained from
finite element modeling (FEM) of sections (listed in Tables 2-3) and further

17
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Figure 4: Resistance factor to account for load eccentricity
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Figure 5: Resistance factor to account for end-moment
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A, | 0871 | C. | 1.102
B. | 0.0814 | D. | 0.644
A, 1001 |G, | 1.148
B, | 1.012 | D, | 0.803

Table 4: Design coefficients

validated experimentally. A comparison of Eqs. 54-55 with the data is shown
in Fig. 4-5.

A linear regression provides a very good approximation of the relationship
between k, and e/t with a correlation coefficient of 92%. This means that 92%
of the variability in the data is accounted for by the linear relationship. The
remaining 8% is due to other unknown factors. Further support of a linear
model is provided by a narrow 95 confidence interval. The 95% confidence
lines drawn in the Fig. 4-5 mean that if the data were to be collected many
times over, the linear regression line will be within the dotted lines 95% of
the time. To account for all unknown factors, we decided to draw the design
line parallel to the regression line and below all the data points available, as
shown in Fig. 4-5.

The coefficients in Eq. 54 and 55 define a lower bound for the buck-
ling load of a perfect column with eccentricity (or end-moment). Since a
perfect column does not exist, the coefficients cannot be directly validated
with experiments. However, they can be validated indirectly along with the
coefficients defining k,, as described below.

3.5 Adjusted Failure Load

The reduced failure load has to be further adjusted to account for imperfec-
tions, which leads to interaction between the lateral deflection and the local

failure mode (e.g., flange buckling). This is accomplished by computing the
adjustment factor k,

(a) For eccentricity ¢

(b) For end moment g

= ;o EYE TR . ° i . 2 SOMICRESAGESI T 4
S RTRIIES JIVINE P05 T NUCINU A SRS T A A W REEA i~
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Then, the adjusted failure load is Pa
P, = ko P, = kok, PL (59)

The coefficients in Eq. 57 and 58 (see Table 4) were obtained by linear
regression of FEM data and validated experimentally. A comparison of Eq.
57 and 58 with the data is shown in Fig. 6-7. The linear regression provides
a very good model for the relationship between k, and ) as supported by a
correlation coefficient of 87%. This means that only 13% of the variability in
the data is not accounted by the regression. Also, the 95% confidence lines
are close to the regression line, indicating good correlation between k, and
A. Once more, to account for all factors, the design line was drawn parallel
to the regression line but leaving all the FEM data above the line (see Fig.
6-7).

Note in Fig. 6 that all the experimental data are above the design line,
thus validating the model. Note also that agreement between experiment
and the linear model in Fig. 6 validate the linear model for k, because the
experimental failure loads were normalized by the theoretical value of P, for
plotting in Fig. 6.

The FEM was validated with experimental data obtained with e = 0 and
e = 17 for several column types (listed in Tables 2-3) and several column
lengths. Experimental and numerical values of load vs. lateral deflection are
compared in Fig. 8. It can be seen that the actual lateral deflection (Euler
mode) and the failure load are predicted accurately by the FEM model.
Similarly, experimental and numerical values of load vs. flange deflections
(local mode) are compared in Fig. 9, where good agreement between the
experimental and numerical values in observed. Any discrepancies observed
in the flange deflections are attributed to the variability of the imperfections
in the sample tested. The experimental flange deflection was obtained by an
optical measurement technique, which is described in {13, 10, 16]. All the
details of the FEM modeling as well as all the experimental data are included

in [16].
3.6 Interpretation of the Resistance Factors

The resistance factors k, and k, are used in Eq. 39 to estimate the fgilgre
load of the beam-column P,. The value P, does not account for uncertainties
and/or variability in the design load. The failure load P, is compared to the
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design load P,. It is assumed that the design load Py contains appropriate

load factors to account for the variability and/or uncertainty in the applied
load.

3.7 Serviceability

Even though the column may be able to carry the axial load, the resulting
lateral deflection may be excessive. This is because the axial load effectively
reduces the bending stiffness of the section, according to

‘ kL\? P
r = - F = 60
(1) [(EI) (%) o} (%) (60
where (E) is the bending stiffness listed in Tables 2-3, k is the end-condition
factor (Table 1), L is the column length, Py is the applied load, F. is the

column load (Eq. 48), P, is the adjusted load (Eq. 59), (EI), is the reduced
bending stiffness (Eq. 60) and Pg is the Euler load computed as

_ (BD) 61
Fe = Gpjmpe (61)
Then, the lateral deflection of the column is computed as
2
8 nay = MoL” (62)
8(EI)-

where M, is the end-moment computed as:
a - For eccentric load use Eq. 31
b - For lateral load use procedure leading to Eq. 33.
The serviceability equation (Eq. 60) was validated with experimental

data as shown in Fig. 8. were excellent correlation is shown up to the failure
point.

3.8 Weak and Strong Axis

The design is usually carried for the weak axis, until a section is selected.

Then. the strong axis is checked following the same procedure by using the
values in Table 3.
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4 'Testing Procedures

This section discusses th : availability of data required for the design and the
test procedures used to »)btain such data.

The data necessary for design of beam-columns consists of:
e (EI): bending stiffness

e (GA): shear stiffness

e M,: bending strength

e P;: short-column failure load

e c: interaction coefficient

Note that the design of beam-columns does not require any new property
to be measured. The properties available for the design under pure bending
and pure axial load are sufficient to complete the beam-column design. This
is very advantageous because testing is expensive and time consuming.

4.1 Bending Test

A bending test is the simplest way of determining (EI), (GA), and M,,. The
testing procedure is described in detail in ref. 2] (see Appendix). These tests
are done routinely by industry.

The values of (EI), (GA), and M., may be reported by industry in slightly
different formats. For example, it is customary to divide the bending stifiness
(EI) by I in order to report an apparent modulus E for the section. Such
procedure has the disadvantage that different values of E are obtained from
weak-axis and strong-axis bending tests, because the actual modulus E of
the flanges and webs are different.

If the shear modulus G is reported instead of (GA), the area of the web
only should be used for the computation of (GA). Using only the area of
the web is customary practice in steel design. Theoretical support for this
practice on composite sections can be found in (3, 8]. In any case, (GA) is
used only to compute P. which is only necessary in the serviceability equation

(Eq. 60). Furthermore. the influence of shear deflections is very small, as
shown in Example 3.
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The value of M.. should be obtained from test data. Predictions of M,
using the flexure formula ¢ = Mc/I (8] and the compressive strength of the

material 7] are not accurate because the presence of some type of buckling
during bending failure.

4.2 Short-Column Test

A short-column test provides the short-column failure load P;. The test
procedure is described in ref. [15] (see Appendix). This test is routinely
done by industry.

The short-column load P; is a section-property available in design man-
uals of all pultrusion manufacturers [14, 11, 9]. The value of P is usually
controlled by local buckling of the flanges. The values listed in the design
manuals have been determined by performing short-column tests such as
those described in [15]. Material crushing may be also involved for sections
with thick and narrow flanges. In this case the material failure is reflected
in the value reported in the design manuals. However, the crushing load
required to fail the material in compression without causing local buckling
may be quite high. The crushing load can be predicted using equation (8.34)
in [7]. Since the values of P, reported by industry come from tests, they
include the effects of both flange buckling and material crushing.

4.3 Interaction Constant

A column test of an intermediate length column is required to determine
the interaction constant c. The length of the column is such that A = 1
(Eq. 47). The test procedure is described in ref. [4] (see Appendix). The
interaction constant ¢ is used only in the serviceability equation (Eq. 60)
or when no eccentricity and no lateral loads are present [4, 5, 6]. The use
of the interaction constant ¢ not only allows for accurate predictions of F
but also greatly simplified the design by eliminating the need for considering
separately the cases of short-, long- and intermediate-length columns.
When the value of the interaction constant c is not available, the designer
may use engineering judgement to select a value. As it can be seen from
Fig. 3. the effect of ¢ in Eq. 48 is to create a smooth transition between
the short-column load P, and the Euler load (Eq. 61). When ¢ = 1 the
transition becomes sharp. In other words, when ¢ = 1 an axially loaded
column has either short- or long-column behavior; any intermediate-length
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effect is denied. This type of behavior is not likely to occur, as indicated by
experimental observations on composite columns [4, 10} and as well as steel
1, 12] and wood columns [17], both of which show distinctive intermediate-
length effects. At the other extreme, a value of ¢ = 0 means linear interaction
(see Fig. 1 in [4]) and it is usually a conservative assumption. Since ¢ =0
cannot be used in Eq. 49 and 50, a very small value could be used instead.
However, ¢ = 0 is probably too conservative. The best option is to determine
the value of ¢ through testing, which is very simple [4, 10].

5 Conclusions and Recommendations

A simple procedure was developed for the design of beam-columns. The
design accounts for load eccentricity and lateral loads. Several examples are
presented in Section 2 to illustrate the simplified design procedure listed
in Section 1. The procedure is also explained in the commentary (Section

3). It was found that no additional section properties are required for
the design of beam columns. The section properties used in the design of
beams and columns are sufficient. Therefore, the cost and time involved in
testing structural shapes is minimized. Procedures for determination of those
properties through testing of structural shapes are described in the literature,
which is included in Appendix.

This project did not include long-duration loads, which may induce creep
and stress-corrosion. Due to limitations of the testing equipment at the onset
of the project, the larger sections introduced recently for bridge construction
(e.g. 12x12x1/2) were not tested. We have recently upgraded our equipment
and we are now in a position to test those large sections if funding were
available. Also, due to limited availability of samples, box-sections were not
tested. With further collaboration with industry in the future we may be
able to validate the proposed design method for closed sections.
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ABSTRACT: An experimental methodology is presented for the simu -
tancous determination of the section flexural modulus and the section
shear modulus of thin-wailed fiber reinforced polyester and vinylester
pultruded beams. A pilot test program, involving four different fiber
reinforced plastic (FRP) beams, is described and resuits are discussed.
A slenderness ratio is introduced to characterize the shape of the thin-
walled beam, and recommended values of this ratio are suggested for
design purposes. With available vaiues of the section moduii the de-

signer has the option of using the Timoshenko beam theory instead of
the Euler-Bernoulli beam theoey.

KEY WORDS: flexure testing, full-section testing, flexural moduius.

shear modulus, fiber-reinforced plastics. puitruded beams. Timo-
shenko beam theory

Composite materials are continuing to see increased use in many
engineering fields including that of structurai engineering. Further
increased use of composite materials in structural applications de-
pends on cost and on designers, fabricators, and contractors be-
coming more familiar with composite materiais and their behavior
in structures.

The behavior of a composite structure depends on the mechani-
cal properties of the structural elements that form the structure.
The behavior of a structural element depends. in turn. on the me-
chanical properties of the composite material used in the structaral
element. On the micro-mechanical level the mechanical properties
of the matrix and fiber constituents, their geometric refation to one
another, and their volume fractions all enter into the characteriza-
tion of the composite material. Much theoretical and experimentai
work has been done on characterizing the mechanical properties of
various anisotropic composite materiais [/.2].

In the analysis stage of design of a compaosite structure the de-
signer must decide on the appropriate analytical method to use to
model the structure {3]. Due to the complexity of the stress and
strain distributions in composite materials the finite element
1nethod is often the only acceptable analytical tool for precise stress
~nalysis. However, it is often desirable to use simplified anaiytical
1aethods, especially for prefiminary sizing and design. For two- or
three-dimensional truss or frame structures the designer witl often
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choose to use a rod or beam theory to model the structure. A choice
musst then be made as to which of the mechanical properties of the
composite material to use in the structurai model. Alternatively,
the designer may decide to obtain the mechanical properties for the
model from direct tests on the structurai elements themselves. If
the structural element has a compiex internal structure or has me-
chanical properties that vary within the element itself. then tests on
full-section structural elements may be the only way to obtain real-
istic design properties for a simplified structural model.

In this paper the use of full-section tests in characterizing the
mechanical properties of thin-walled fiber reinforced composite
material beams is investigated. Thin-walled composite- material
beams are being used in aerospace. mechanical, and civil engineer-
ing structures; see, for example. Refs 4 to 7. In the aesospace and
robotic fields composite material beams are usually custom de-
signed and manufactured for very specific structural applications.
Full-section element tests are performed to verify structural behav-
jor that is predicted from analysis based on composits: material
properties. In the civil engineering field standard “off-the-sheif
thin-walled puitruded fiber reinforced plastic (FRP) beams are be-
ing produced in the United States for generai purpose applications
{8.9). In the case of FRP standardized shapes. which are generaily
used as beams or beam columns, the manufacturers usuaily specify
full-section stiffness properties for design purposes.

An experimental methodology is described which allows the si-
muitaneous determination of the section flexural modulus and the
section shear modulus of full-section beams for use in 8 shear de-
formation beam theory. The terminoiogy “'section™ modulus is
used to distinguish the measured property from the “material™ or
“coupon” modulus. The application to standard commercially
produced pultruded fiber reinforced plastic beams is considered.
Resuits of a pilot experimental program using pultruded FRP
beams are described. Recommendations for testing FRP beams by
the proposed method are given.

Beam Theory

If a beam theory is used to model the structural elements. the
designer will need to obtain the relevant mechanical properties for
the beam theory chosen. The choice of beam theory will depend on
many factors, one of which is the degree of anisotropy of the com-
posite material. Composite materials generally have ratios of their
longitudinal modulus to their shear moduli which are higher than
those for isotropic materials. Under these circumstances deforma-
tion of the beam due to shear will increase as this anisotropy ratio -
increases (/0). To account for this shear deformation the beam the-

© 1989 by the American Society for Testing and Materiais
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ory due to Bresse and Timoshenko, generaily cailed the Ti-
moshenko beam theory {//], can be used as a first improvement
ovet the Euler-Bernoulli beam theory, which does not account for
shear deformation. In the Timoshenko beam theory two moduli
are required. For isotropic materials these are the Young's modu-
lus ( £) and the shear modulus (G). and the deflection under static
loads is found from the equations

aé
El—=M
% )
dy Q
-— B ———
a ¢ kAG 2

where [ is the second moment of area, ¢ is the bending slope, z is
the axial coordinate. M is the bending moment, y is the beam de-
flection, Q is the shear force, k is the shear coefficient. and A is
the cross-sectional area. The shear coefficient & is a constant which
accounts for the fact that the shear stress distribution is not uni-
form over the beam cross section. It depends on the cross-sectional
shape, the material properties and, in dynamic analysis. on the fre-
quency of vibration of the beam (/2].

For anisotropic materials various anchors {e.g., 13-15] have
considered the question of which of the anisotropic material con-
stants are appropriate for use in the Timoshenko beam theory.
Values of the shear coefficient have been given for a number of
different anisotropic beams {/6-18). In this paper the Timoshenko
beam theory is used to model & full-section beam element and as
such is used in a macro-mechanical sense. For the full-section thin-
walled beam element we define a section flexural modulus(E,) and

a section shear modulus (G,) and write the two equations of the
Timoshenko beam theory as

3
Esl—¢=M 3)
dz
o ) '
— ey = — 4
az d AG, @

The full-section moduii depend on the geometrical and material
properties of the thin-walled composite beam. lt shouid be noted
that the shear coefficient does not appear in Eqs 3 and 4 because it
is incorporated into the section shear modulus which is now a me-
chanical property of the beam itself and not only a property of the
material.

The moduli E, and Gy can be found from direct tests on full-
section beams by a procedure to be described in what follows. At
first glance it may seem that the two moduli, especiaily the section
shear modulus, would need to be obtained for every conctivable
beam section for the formuiation to be useful. In the case of a cus-
tom-made composite beam this is true, but in the case of puitruded
FRP beams section shear moduli are found for families or types of
the standard section profiles such as wide-flange, | beam, and rec-
tangular box sections. It is known from analytical formulations
(18.19] that the shear coefficient depends only on the reiative di-
mensions of a thin-walled section and not on the absolute dimen-
sions. Therefore ail wide-flange sections made of the same compos-
ite material with the same microstructure, for example, wouid have
the same value of k and therefore shouid have the same vaiue of
Gy

Manufacturers of thin-walled pultruded FRP beams typically
give only a value for the full-section flexural modulus for thin-
walled FRP beams [8.9]. A singie value of E, is given for a given
composite system, glass/polyester or glass/vinyiester, which is in-
tended for use with all shapes of cross sections. The flexural mod-
uli are obtained from tests on long-span beams to obtain values
that are unaffected by shear deformation during the actual testing.
Since it is implicity assumed and is, in fact, suggested in the manu-
facturers’ design manuals, that Euler-Bernoulli beam theory is to
be used in design, the “given" value for the flexural modulus is
actually lower than the true value. This “apparent” flexural modu-
Jus must be lowered to account for shear deformation effects in
short-span beams and therefore it penalizes the designer of long-
span beams. The use of a Timoshenko beam theory would allow
much better utilization of FRP sections. The reason why this issue
is so important for FRP beam sections is that many composite
structural designs are deformation critical and not strength eritical
due to the low stiffness of pultruded fiber reinforced plastics {20.
The use of a more accurate theory would increase the competitive-
ness of FRP sections in relation to current construction materiais.

Test Theery

Shear deformation has been recognized as an important influ.
ence on the test methods for obtaining the flexural modulus of
composite materials {2/]. Flexural modulus tests (ASTM D 790)
for composite materials are performed on small solid recsangular:
cross-section beam coupons. A three-point bend or a four-point-
bend test configuration is used. The test is performed routinely be-
cause of its simplicity. The value of the flexural modulus obtained
from the test is known to be different from the value of the longite-
dinal modulus for the same composite material found from a ten~
sile test {22]. The test therefore reaily measures a structural/mate-
rial mechanical property and not a pure material mechanical
property as discussed in Ref 2/.

For composite material solid rectangular test coupons it is rec-
ommended [21] that the ratio of the span length () to beam height
(k) be at least 60 for the effects of shear deformation to be negligi-
ble. For thin-walled sections the ¢/ h criterion cannot be used, since
the height of the cross section is not the only geometrical property
of importance. In fact, using such a criterion would imply that 2 20
cm high 1 section would need to be tested over a span of 12 m. In
such situations large deflections under small loads wouid create
additional theoretical and experimental problems. The geometri-
cal property used in this paper to characterize the thin-walled sec-
tion is the ratio of the span length (¢) to the radius of gyration (r)
about the bending axis. This '‘slenderness ratio” (¢/r) replaces the
¢/ h ratio as the parameter which determines the contribution of
the shear deformation during the test.

The Timoshenko beam theory has been utilized previously by
many authors [e.g., 2/-23] to determine the flexural moduius of
composite beams or for the simultaneous determination of the lon-
gitudinal and shear moduli of composite materials. The methodol-
ogy proposed in this work follows that of Tolf and Clarin {22] but
applies the concept to the testing of full-section thin-walled com-
posite beams and the measurement of full-section flexural and
shear moduli. For the three-point bend test configuration, Eqs 3
and 4 are solved to give

2
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where w is the midspan (maximum) defiection and P is the mid-
point load. Equation § can be rewritten as

4Aw 1 (t)l 1
—_—= —) + = (6)
Pt 12Ey \ r Gy

Equation 6 is an equation of a straight line where the slope and the
intercept are directly related to the section flexural modulus and
the section shear modulus. respectively. The sienderness ratio /r
appears as the independent variable and the quantity 4Aw/Pl as
the dependent variable. Since shear deformation is accounted for
in this experimental method, precise values can be obtained from
tests on short-span beams.

In Ref 2/ a substantial discussion is devoted to the effect of fiber
eccentricity on the magnitude and distribution of the stresses in the
smail solid rectangular test coupon of composite material. Minor
variations-in fiber placement in parts of the beam cross section,
which will inevitably be caused by the puitrusion process, will not
affect significantly the overall properties of the beam section. This
is due to the size of the cross section of the full-section specimen,
which is much larger than that of the solid specimen; therefore lo-
cal material inhomogeneities will have a smalier influence on the
measured properties. In a similar investigation on braided com-
posite | beams (6] the neutral surface was found to be very close to
the center line of the beam.

The sienderness ratio can be used also to determine the span
length required in a test setup to obtain the section fiexural modu-
lus from a test method that does not account for shear deforma-
tion. The apparent section flexural modulus (E,) is reiated to the
true section flexural modulus (E,) and the sienderness ratio (£/r)

by the formula
11 (
—_—= |1+
E, E

As can be seen the apparent section flexural moduius is always
lower than the true section flexural modulus. For larger slender-
ness ratio values and for lower anisotropy ratios (Ey/Gy), the ap-
parent section flexural modulus approaches the true section flex-
ural modulus. Therefore, if the anisotropy ratio is known, one can
determine the required slenderness ratio such that the percentage
difference between the apparent and the true section flexural mod-
uli is within some acceptable limit, for exampie, $%. As shown in
the test results that follow, the anisotropy ratio for typical
puitruded FRP beams varies from 18 to 30. These values are signif-

icantly higher than those that wouid be found for beams of iso-
tropic material.

E./G,)
12 —— 7
ey Y

Test Method

The FRP beam is tested in the three-point bend configuration.
Since the test is performed on a full-section beam specimen, it is
not the ASTM D 790 test which applies to a solid rectangular cou-
pon. The underlying philosophy of this test is, however, the same
as that of the three-point bend test in ASTM D 790. The beam is
loaded at the midpoint, and the deflection at a point directly under
the load is measured. In application of Eq 6 the beam is tested for a
number of different spans. At each different span the beam is
loaded quasi-statically to s nominal load ( P) and the deflection (w)
is measured. Theoreticaily, only two different spans are needed to
obtain the two points required to characterize the straight line.

However. taking measurements at a greater number of spans in-
creases the number of experimental data points and reduces error.
The straight line is then obtained by a linear regression through the
experimental points obtained by plotting the variable 4Aw/ Pt
against (/r)? as indicated in Eq 6. The section flexural modulus is
obtained from the slope of the straight line, and the section shear
modulus is obtained from the intercept of the straight line:

1

Ey = ——
* 12 X siope

0))

1
Gy = —— 9
intercept

Test Program

A pilot test program was conducted using four different 914 mm
(36 in.) long commercially produced puitruded FRP beams ob-
tained from Morrison Molded Fiber Glass Compeny (MMFG).2
Two 102 by 102 by 6.4 mm (4 by 4 by '/4 in.) wide-flange (WF)
beams and two 102 by 51 by 6.4 mm (4 by 2 by /4 in.)} | beams were
tested. These dimensions are given for the cross sections of the |
and WF beams where the values refer to the total cross-sectional
height (h) by flange width (b) by thickness (¢). For the beams
tested the thickness of the flanges and the webs were equal and as
such the thickness is constant and given by one value only. Figure |
shows the cross-sectional shapes of the test specimens. The section
properties given in Ref & for the WF beams are / = 331 X 10
mm* (7.94 in.") and r = 42 mm (1.66 in.); those for the | beams
are / = 1.83 X 10° mm* (4.40 in.*) and r = 39 mm{1.54 in.). of
each beam section one of the beams was an E-glass: fiber/iso-
phthalic polyester resin (Extren series 500) and the other was an E-
glass fiber/vinylester resin (Extren series 625). The fibers are a
combination of unidirectional rovings and continuous strand mat
arranged in proprietary pattern and having a 40 to 50% volume
fraction.

The test setup consisted of supports with diameters of 38 mm
(1.5 in.) and a load bar with diameter of 51 mm (2 in.) made {from
steel round stock. The radii of the supports and load bars were
chosen based on the flange thickness of the beams tested following
the general guidelines of ASTM D 790. in which the center load
bar is typically larger than the supports in the three-point bend
test. The supports were placed on 203 mm (8 in.) high steel | beams
to raise them off the testing table of a Baldwin Universal Testing
System. Load was indicated on the digital display panei of the test-
ing machine. An AMES 212.5 dial indicator, manufactured by
B.C. Ames Company (Waltham, Mass.). having a sensitivity of
0.00254 mm (0.0001 in.), was placed directly under the load and
deflections were recorded during the test. A photograph of the ex-
perimental rig is shown in Fig. 2.

Each beam was tested over spans having vaiues of (¢/r) which
started at 100 and increased in increments of 50 to 450 for both the
WF and the I beams. The deflections were recorded for two differ-
ent values of load: 3558 N (800 1b) and 5338 N (1200 1b) for the |
beam and 4448 N (1000 Ib) and 6672 N (1500 ib) for the WF beam.
Each test was repeated twice so that four values were obtained for

A1l measurements were made in standard U.S. units and then converted
to SI units. For this reason the data in the figures appear in standard U.S.
units. The mention of MMFG by name is only done to enable identification
of the beams being tested and does not constitute any endorsement of the
company or its products.
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the ratio P/w for each span. Values of the loads were chosen to e
give measurable deflections for each beam, while still remaining in
the linear load-deflection range. However, the maximum deflec- 2o
tions under the loads were always less than ¢/330. As such. the de- 3* w0 & Polyesier WF Beam
flections were small enough so as not to require any correctiors O Vinylester WF Beam
(ASTM D 790). The average of the four 4 Aw/ Pt values was plotted
against (¢/r)? and the straight line graph drawn for each beam.
Values of the siopes and intercepts were obtained from a computer st
graphics package which performed the linear regression.
Test R 0 . L L .
esuits and Discussion h ey 200 200 200 200

Resuits of the tests are shown in Fig. 3 for the [ beams and in
Fig. 4 for the WF beams. Values of the slopes, intercepts, and cor-
relation coefficients for the graphs shown in Figs. 3 and 4 are given
in Table 1. Values of E, and G, for each beam calculated from the F1G. 4—Test resuits for polyester and vinylester WF beams (1 psi =
data in Table | are given in Table 2. The ratio £,/ Gy is also shown 6895 Pa).
in Table 2 for each beam.

From Figs. 3 and 4 we see that the data points do. in fact, fall on

sy

a straight line. This is confirmed by the values obtained for the ter resin fiber reinforced beams are 15.9 GPa (2.3 Msi) and 17.2
carrelation coefficients. Even for points at (/ r¥ equal to 100 the GPa (2.5 Msi), respectively. From Table 2 we caiculate the average
points do not deviate significantly from the straight line. The slope value of E\, for the polyester beams as 22.48 GPa (3.26 Msi) and for
and the intercept of the straight line can be seen clearly. The differ- the vinylester beams as 22.34 GPa (3.24 Msi). Both values are
ences between the response of the 1 and WF beams and the polyes- higher than the recommended values. However, there does not
ter and vinylester resin systems are seen. seem to be a higher stiffness for the vinylester beams. In fact, as

The values of the flexural moduli shown in Table 2 fall into the can be seen from Table 2 for the WF beams the flexural modulus of
range of flexurai moduli expected for these beams. In Ref 8 the the vinylester beam is actually lower than that of the poiyester

values of E, suggested for design with the polyester and the vinyies- beam.
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TABLE 1—Vulues of slopes. intercepts. and correlation coefficients from
linear regressions for four beam tests.*

Slope Intercept
(X10°% (X107 Correlation

Beam (psi™") (psi~") Coefficient
{ beam

polyester 2.3933 5.7589 0.997
| beam

vinylester 2.5183 5.5783 0.994
WF beam

polyester 2.5233 9.2158 0.992
WF beam

vinyiester 2.6267 7.8042 0.994

1 psi = 6895 Pa.

TABLE 2—Resuits of tests on FRP beams.*

Beam E, Gy Eo/Gy
| beam 22.13GPa 1.20 GPa 18.5

polyester (3.21 Msi) (0.174 Msi)
1 beam 22.82GPa 1.23 GPa 18.5

vinylester (3.31 Msi) (0.179 Msi)
WF beam 22.75 GPa 0.75 GPa 30.3

polyester (3.30 Msi) (0.109 Msi)
WF beam 21.86 GPa 0.88 GPa 25.6

vinyiester (3.17 Msi) (0.128 Msi)

*1 Msi = 6.895 GPa.

The section shear moduli show a clear difference between the
vatues for the WF and the [ beams. This confirms the fact that the
section shear modulus is indeed a structural/material property.
The trend towards the lower values of Gy, for the wide-flange beams
is expected, since these beams have much lower values of the shear
coefficient {/8.19] than do | beams. An examination of the actual
values of the section shear moduli for the beams shows that there is
a slight increase in G, for the vinylester beams. This is also ex-
pected since the vinylester resin is somewhat stiffer than the polyes-
ter resin and we expect the resin properties to have more of an in-
fluence on the shear moduli than on the flexurai moduli which are
dominated by the fibers. Due to the lower vaiues of Gy in the WF
beams the ratios Ey,/ G for these beams are significantly higher
than those for the | beams.

In Fig. 5 the values of E,/ G\ are used in Eq 7 to show the effect
of shear deformation on the apparent flexural modulus. E,. Figure
5 shows the ratio of E,/E, as a function of the sienderness ratio
¢/r. As can be seen, for low values of ¢/r the apparent flexural
modulus is significantly lower than the true flexural modulus. The
WF beams are more susceptible to shear deformation than the I
beams. From the graphs in Fig. 5 we see that a slenderness ratio of
60 is required for all the beams to have less than a 10% error in the
apparent flexural modulus and a sienderness ratio of 80 for this
error to drop to 5%. For ¢ r = 60 the iengths of the WF and 1
beams required in order to neglect the effects of shear deformation
are 2.53 m (8.3 ft) and 2.35 m (7.7 ft), respectively. Beams shorter
than these lengths will have greater than 10% of their deflection
due to shear deformation. and a shear deformation beam theory

1
8 -
5 =
d // _ Polyester/Vinylester | Beam
ol [/ e == - Vinylester WF Beam
41 / — — . Polyester WF Beam
[/
I/
2k
o ] i { ]
0 20 40 60 80 100

SLENDERNESS RATIO (2/1)

FIG. 5—Ratio of the apparent flexural modulus to the true flexural mod-
ulus as a function of the slenderness ratio for the four beam tests.

should be used in their design. For 2 305 by 30S by 13 mm (12 by 12
by 1/2in.) WF beam with r = 129 mm (5.07 in.) the required beam
length for ¢/r = 60 is calculated to be 7.73 m (25.4 ft).

It is interesting to note that the requirement of /r = 60 can be
compared with the requirement for solid composite beam coupons
{21] which is & h = 60. The sienderness ratio for the testing of full
section FRP beams seems justified and is useful for characterizing
the response of beams susceptible to shear deformations.

Conclusion

A methodology has been presented for obtaining the secticn flex-
ural modulus and the section shear modulus from tests on full-sec-
tion thin-walled fiber reinforced plastic beams. Results of a pilot
experimental investigation show that reasonable values are ob-
tained for these moduli from the test method proposed. The use of
the section moduli in a Timoshenko beam theory is suggested for
designers. With available values of the section shear moduli the
additional effort required to use the Timoshenko beam theory is
minimal [24]. The payoff in better estimation of beam deflections
shouid allow more realistic designs and cost savings.

Although the methodology proposed has concentrated on thin-
walled sections of pultruded FRP the use of the test for thin-wailed
beams constructed of other composite material systems is also ap-
propriate. For systems such as graphite/epoxy with higher anisot-
ropy ratios the use of a shear deformation beam theory becomes
even more important. An additional potential use for the test now
being investigated is to obtain values for the shear coefficient for
thin-wailed composite beams {18). Since Gy = kGmarenans the test
allows experimental verification of the material shear modulus or
the shear coefficient. An extensive test program is currently investi-
gating these and other phenomena associated with the behavior of
thin-walled fiber reinforced piastic beams.
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ABSTRACT

In this paper, local flange-buckling of thin-walled puitruded FRP columns
is investigated. Experimental data are presented and correlated with theo-

retical predictions. Good agreement between theoretical and experimental
results is found. Possible explanations for slight deviations in the experi-
mental data are advanced. The experimental and data reduction procedures
used 1o obtain the local buckling loads are presented. A new data reduction
technique using Southwell’s method is developed to interpret local buckling
test data. The usefulness of the data reduction technique is demonstrated
for various column sections and experimental conditions.

1 INTRODUCTION

Pultruded composite beams and columns are being extensively used for
civil engineering structural applications. They have many advantages over
conventional materials (steel. concrete, wood. etc.), such as light weight
and high corrosion resistance. Mass production of composite structural
members (e.g. by pulitrusion) makes composite materials cost-competitive
with conventional ones. In the pultrusion process. fibers and polymer
resin are pulled through a heated die that provides the shape of the cross-
section to the final product. Pultrusion is a continuous process for the
production of prismatic sections of virtually any shape.! Other mass
production techniques like automatic tape layout can also be used to
produce prismatic sections.
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Pultruded structural members have open or closed thin-walled cross-
sections. For long com.posite columns, overall (Euler) buckling is more
likely to occur before >ny other instability failure. For short columns,
local buckling occurs fir.t, leading either to large deflections and finally to
overall buckling or to material degradation due to large strains (crip-
pling). For intermediate lengths, interaction between local and global
buckling and possibly material degradation may occur. Because of the
large elongation to failure allowed by both the fibers and the resin, the
composite material remains linearly elastic for large deflections and
strains, unlike conventional materials that yield (steel) or crack (concrete)
for moderate strains. Therefore, buckling is the governing failure for this
type of cross-section and the critical buckling load is directly related to the
carrying capacity of the member.

For a composite column, the classical buckling theory” in combination
with basic concepts of the classical lamination theory™* are applied in
order to determine the bending stiffness of the column® and the critical
buckling load.® In the case of short columns, Euler’s theory cannot be
applied because short column buckling failure is associated more likely
with local buckling (i.e. buckling of a part of the cross-section of the
column) or material failure that may be encountered before any instability
failure. A very short column of solid cross-section with thin parts, such as
wide flange I-beams and box beams, is considered herein.

The problem of local buckling has aiready been considered for steel
cross-sections and considerable research has been done in this area in
order to increase the carrying capacity of a steel member against local
buckling by introducing stiffeners.” An analytical solution for local buck-
ling of pultruded composite columns® is used in this work. Other alter-
natives are to use the Finite Strip method?® or the Finite Element Method.”
Experimental resuits on FRP columns for cooling towers were presented
by Yuan.'®

In almost any experimental test, the validity of the test somewhat relies
on the workmanship of the testing apparatus and material being tested.
This is particularly true in a buckling test where 2 high state of instability
exists. Due to the manufacturing process of pultruded fiber reinforced
plastic (FRP) beams. imperfections in the final beam composition are
impossible to control to any reliable estimate. These imperfections will
play a large role in any buckling experiment.

2 DATA REDUCTION IN LONG-COLUMN BUCKLING

This section provides the background for the proposed data reduction
method for local buckling described in Section 3. In any buckling experi-
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Euter's Criioal Load

Iniial imperfection

Central Deflection
Fig. 1. Experimentai curves for a column with initial imperfections.

ment, particularly one using FRP sections, the theoretical critical load of
the column is almost never achieved due to material imperfections. The
resulting load—deflection curve will have the form represented in Fig. 1. Its
maximum is very difficult to obtain experimentally and it may not have a
close correspondence with the theoretical critical load P. Thus, it
becomes necessary to make use of the method proposed by Southwell'"'?
which takes into account the load reduction resulting from such imper-
fections.

2.1 Southwell’s method

The governing equation for an axially loaded column in terms of the
deflection w and an imperfection wo, both measured from the line of
application of the load, is

d?w  d*w
———l = 1
D(I 7 dxl) +Pw=90 (N

Provided that w, vanishes at each end of the column, a general solution
of eqn (1) may be obtained by expressing w and w, in terms of a Fournier
series, assuming w and w, will be continuous functions of x:

w= i {A,. sin %} (2)

nwmi

Wo = i[ﬁ:sin ?} (3)

nmi

By substituting eqn (2) and (3) into eqn (1), the following relation is
found:
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dy= o )

where P, represents the critical load of the nth mode. The true deflection
measured with respect to the centroidal axis of the column (or middle
surface of the flange) is A = w — w,. In the case of no interaction among
modes, one modes dominates and A reduces

A.sin—
_ L 5
A— fl_ ( )
P
or
A 1 A . nx

-F—E-A+7,Tsm—z- (6)

Equation (5) relates the deflection A to the increasing load P. Tlli_s
equation also represents a rectangular hyperbola having the axis A =-4
and the horizontal line P = P, as asymptotes (Fig. 2). Equation (6)
represents a linear relationship between A/P and A with the inverse of the
slope representing the critical buckling load and the A-intercept repre-
senting the apparent imperfection (Fig. 3).

Southwell’s method may also be extended to cases which also take into
account real imperfections of the beam, eccentricity at the ends, the
beam's own weight, and transverse lateral load,'*'* all of which have the
same effect when analyzed by Southwell’'s method. On all accounts, the
load will not pass exactly through the centroid of the section and the
column will be subjected to bending actions and lateral deflections from
the first application of load. Southwell’'s method is extended in the next
section for data reduction of local-buckling test data.

3 DATA REDUCTION IN LOCAL BUCKLING

Although Southwell's method was developed for the long column (Euler)
case, application to short columns, tested in the manner described above.
appears to be possible. As will be seen in following sections. measurements
taken on the flanges during a local buckling test fall on the same hyper-
bolic curve as shown in Fig. 2. Thus, when this curve is linearized. the
slope of the resulting straight line will give the inverse of the critical load
as shown in Fig. 3.
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Fig. 2. Hyperbolic A—P plot with asymptotes P=P and &= —Ar.
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Fig. 3. Linearized A-O/P plot with slope 1/ P, and intercept ~A.

A major question in the application of the proposed data reduction
method to the local buckling measurement is the placement of the gauges
with respect to the buckled mode shape. As in the classical Southwell’s
method, the most logical gauge placement will be in the center of a buck-
ling wave in the sample being tested (where the maximum deflection can
be obtained with respect to the compressive load). But. in local flange
buckling tests, the convenience of being able to properly place a gauge n
the center of a wavelength is impossible due to the unknown buckied
shape.

For example, a typical buckled flange with three gauges placed along
the wavelength L' is shown in Fig. 4. Recalling eqn (6), the deflection 1S
dependent upon the position x of the gauge with respect to the wavelength
L'. Hence, with respect to Fig. 4, eqn (6) becomes

A 1 4, . nx
= — A+—sin —
=P, + B, sin T (7

When this linear relation is plotted. the siope of the straight line is the
inverse of the critical load (1/P,) and the intercept is the initial deflection
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)

Fig. 4. Section of buckled flange with wavelength L.

or imperfection, in this case A4, sin(nx/L). When several gauges from the
same test are linearized and placed on the A-A/P plot. the resuiting lines
will fall on lines similar to those represented in Fig. 5.

As shown in Fig. 5, even though all lines have different intercepts
(different values of the wavelength position x), the slope remains constant
at 1/P,. Hence, the critical load can be obtained regardless of the gauge
position with respect to the wavelength. This is very important because of
the following: if only one displacement transducer is available. its output
can be used regardless of its location with respect to the unknown location
of the maximum deflection of the buckled flange. If several displacement
transducers are available, their output can be used without further
complications introduced by the uncertainty of wavelength and wave
location. It should be noted that the quantity 4, sin{nx/L) will be very

Y

A\ 4

v

N

| p— a

owm 12 cnamnd

0 —

Fig. 5. Linearized plot showing slope independence with respect to dial gauge placement.
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small due to the fact that the initial deflection is not apparent in the
column, but initial imperfections in the material exist. It should also be
noted that in the extreme case when little or no measurement is recorded.
the gauge may be positioned at inflection point x = 0 or L. In this case,
the measurements taken from the gauge should be neglected for the
Southwell analysis.

4 ANALYSIS OF EXPERIMENTS

Local flange buckling of an axially compressed column plays an important
role in the load carrying capacity of the member. Since deformations in
the flange during local buckling can be quite large, they can induce mate-
rial damage. Therefore, the local buckling load can be used as a failure
criterion for the entire column.

In this section, the local flange buckling behavior of pultruded compo-
site wide flange I-beams is studied. A theoretical orthotopic plate model
based on the Levy method with one free and one elastically restrained
edge was used to predict the behavior of the test specimens.® For each
section being tested, three cases were considered for the elastic spring
constant d representing the amount of elastic support provided by the
web: clamped (d — ), elastic (4 = Dy;"®) and hinged (< = 0). As shown
by Raftoyiannis,'* the elastic supported boundary condition d = D%
best approximates the true boundary conditions which exist in the wide
flange I-beam. Thus, any experimental loads will be compared to the
elastically restrained case.

In addition to the theoretical curves, numerous experimental tests were
performed on each wide flange I-beam section. At least three tests were
done on each section with lengths corresponding to mode I1. 111 and IV of
the theoretical local buckling curves. Dial gauges were placed along the
flanges and measurements of the flange deflection and load were obtained.
A scheme based on Southwell’'s method, as described in Section 3, was
used to reduce the data and determine the critical load. All experimental
loads appear to be in good agreement with the theoretical predicted value.

4.1 Experimental setup and procedure

The flange local buckling tests were performed using a Baldwin test
machine to apply the axially compressive load to the specimens. Various
column lengths were cut, depending on the specific section being tested.
The FRP beam specimens were manufactured and supplied by Creative
Pultrusions, Inc.' Local buckling tests were conducted using the following
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doubly-symmetric wide flange I[-beams: 102mm x 102mm x 6-4mm
4" x 4" x 1/4"); 152mm x 152mm x 6-4mm (6" x 6" x 1/4");
152mm x 152mm x 9:-5mm (6" x 6" x 3-8") and 203 mm x
203 mmx 9-Smm (8" x 8” x 3/8). Table 1 shows the flange properties
for each FRP section along with the elastic support provided by the web.
Using the properties for each section. Figs. 6-9 show the theoretical
buckling curves predicted by the Levy solution® along with the overall
(Euler) buckling curves. Note that in Figs 6-9. the plots were nondi-
mensionalized by the flange width and the local buckling load (listed
below in Tables 2—4) for each section.

Since all the lengths and sections were to be loaded into compression, it
was very important to check that ail cuts made were perpendicular to the
column length. This was done to ensure that the cross-section was loaded
uniformly.

To distribute a uniform load from the Baldwin machine. a thick steel
plate was used at both ends. In addition to the steel plate, a protective grid
constructed from 25-4 mm (1”) steel square bar was mounted to the plate.

TABLE 1
Flange Properties and Web Support for Each Wide-Flange [-Beam Section (note:
Dy¢ = Dy = 0 for all flanges

Section Dy Dy Dn Des DYE®
fmm) {Ncm) (Nem) (Ncm) (N cm) (Ncm)
[x10°] [x10°] [x10°] [x10°] [x10°]
102 x 102 x 64 45.04 8-218 20-88 6-664 20-74
152 x 152 x 64 48.46 9-121 2292 7-248 21.08
102 x 102 x 9-5 1571 26-71 68-71 2223 67-11
203 x 203 x 9-5 161-3 26-82 69-09 22-39 67-52
20 :
02« 03 0.4:-. .'.'/'0‘ Asis
'( ' Siweng Axis

-

Fig. 6. Experimental loads for modes i1. 11l and 1V compared with theoretical curves for
the 102mm x 102mm x 6-4mm (4" x 4" x 1/4%) WF I-beam.
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L/ b

Fig. 7. Experimental loads for modes II, III and IV compared with theoretical curves for
the 152mm x i52mm x 6-6mm (4" x 6" x 1/4") WF I-beam.
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Fig. 8. Experimental loads for modes II. Il and IV compared with theoretical curves for
the 152mm x [52mm x 9-5mm (6" x 6" x 3/8") WF I-beam.

L/ b

Fig. 9. Experimental loads for modes II. III and IV compared with theoretical curves for
the 203mm x 203mm x 9-Smm (8" x 8” x 3/8") WF I-beam.



106 John Tomblin. Ever Barbero

Spedmen
———— Protecuve
v mesa et w
b
et ——
Base Piete

Fig. 10. Experimental setup showing base plate and protective grid.

This protective grid surrounds the specimen on all sides, as shown in Fig.
10, to protect against lateral slippage. It should be noted that the protec-
tive grid does not allow free rotation at the ends of the column but was
needed for safety reasons. Hence, the boundary conditions are slightly
different than the simply supported case assumed in the theoretical
analysis.

Dial gauges, with 0.025mm (0-001”) accuracy and a maximum
measurement of 25-4mm (1”), were used to detect the deflection of the
flanges. An average of four dial gauges were placed along the specimen
length attached to the outer edge of the flange. Figure 11 shows a typical
dial gauge placement along the specimen length. As seen from Fig. 11, the
dial gauges were staggered on both sides of the flanges along the length of
the column. Since the exact shape and mode of the deflected flange are
unknown, the exact longitudinal placement of the gauges was determined
randomly in a staggered pattern as indicated above. All dial gauges were
then placed into position and preset to a reading of approximately
12.7 mm (0-5"). This presetting was done to allow the deflection of the
flange to be positive or negative, as measured by the dial gauge, since the
shape, inflection and mode of the flange is an unknown.

The testing procedure consisted of loading the column and periodically
taking measurements from the dial gauges. In the initial phases of the
tests, the stepsize of the readings somewhat depended upon the theoreti-
cally predicted local buckling load (22kN to 44kN stepsize). Once a
noticeable change occurred in the gauges, the stepsize in the gauge read-
ings was decreased. It was also noticed that in the very initial stages of the
tests (P < 111kN), the gauge readings fluctuated slightly. These changes
are not considered as buckling, but as deformations occurring while the
column was being loaded as a result of initial imperfections. Once a
certain load was reached (around P = 120kN), the gauges stabilized and
did not move until the approach of the local buckling load. It should be
noted that these initial imperfections were not consistent in all specimens
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Fig. 11. Typical dial gauge placement along WF I-beam flanges (actual test shown for the
102mm x 102mm x 6-4mm (4” x 4" x 1/4") WF I-beam).

that were tested (some specimens stabilized at or below 22kN). All speci-
mens stabilized over an ample range of loads (133kN to 445kN range).
Hence, all measurements taken before the stabilized period were neglected
for the buckling analysis. .

Almost all specimens were loaded and measurements taken until the
flange was clearly buckled by eyesight. Once the final readings were taken,
the column was unloaded. It should also be noted that in most tests,
cracking of various kinds occurred inside the columns during the test.
Thus, any attempt to reload the specimen to repeat the test will resuit in
lower readings for the local buckling load than in the initial test when the
material is undamaged.
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4.2 Experimental test resuits

Local flange buckling tests were conducted on the wide flange I-beams
listed in Section 4.1. At least three tests were done on each section. The
lengths that were tested corresponded to the theoretical length caiculated
for a local buckling mode of II, III and IV. During each test, dial gauge
measurements were taken from each gauge. The resuits were then plotted
on a A—P plot, in which a hyperbolic relation was obtained (see Section
2). This curve was then lincarized on a A-A/P, in which a linear regres-
sion was done on each separate gauge measurement (see Section 3). The
average correlation coefficient calculated for each gauge measurement for
all local buckling tests was 0-99. The resulting slopes and intercepts
(regression coefficients) were averaged to obtain a general slope for the
test. The resulting critical buckling load was then determined from the
inverse of the average siope. The deviation of the average regression line
with respect to the individual regression line for a single gauge (for each
single test) was less than 1% for all tests. Hence, averaging of the slopes
obtained from each gauge introduced a negligible error in the buckling
load. For plotting purposes, the intercepts were also averaged in order
that all gauge measurements and the average regression line could be
shown on a single plot for one local buckling test. The average intercept
for the test introduced virtually no change in any regression line with
respect to the original line due to the extremely small magnitude of the
intercept value (small imperfection).

4.2.1 Mode II results

The shortest lengths that were tested in the short column tests were lengths
corresponding to a local buckling mode II. For the theoretical mode II
lengths. the buckled flange wiil have a shape corresponding to two full
wavelengths. Figures 6-9 show the mode I lengths as determined from
each of the theoretical curves generated in Section 4.1, corresponding to
each wide flange I-beam. Figures 12-14 show the gauge measurements
taken during the test and the resulting linear regressed line corresponding
to three of the wide flange [-beam sections tested. These three exampies
show the behaviors observed throughout the experimental program. As
seen from Figs 12-14, all gauge measurements have a hyperbolic rela-
tionship and a resuiting linear reiationship for A and A/P. The extent of
the hyperbolic relationship was dependent on the amount of imperfection
existing in the material and varied from test to test. Table 2 shows the
length, theoretical buckling load. experimental buckling load (inverse of
the slope) and the percentage difference between the theoretical and
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Fig. 12. Mode I hyperbolic and linearized measurements for the 102mm x

102mm x 6-4mm (4" x 4" x 1/47) WF [-bcam.

experimental loads for each section tested. As seen {rom Table 2. the
percentage error is less than 11% for all sections tested. With the excep-
tion of the 203mm x 203mm x 9-5mm (8" x 8" x 3/8"), which may be
due to a large imperfection, all experimental loads are slightly higher than
the theoretical value. This larger load and percentage error obtained could
be a direct result of the boundary conditions assumed in the theoretical
analysis. As stated before, the theoretical analysis® assumes simply-
supported boundary conditions at the ends. The boundary conditions n
the test were not simply-supported but a combination of fixed and simply-
supported. This boundary condition difference can explain the higher load
obtained experimentally.

4.2.2 Mode [ results

The next lengths that were tested corresponded to mode 11 lengths.
shown in Figs 6-9, as taken from the theoretical curves for each section
tested. For the theoretical mode 11T lengths. the buckled flange will have a
shape corresponding to three full wavelengths. Figure 15 shows the
hyperbolic = measurements taken during the test of the
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TABLE 2
Resulting Experimental Local Buckling Loads for Mode 1 Tests
Section (mm) Length (cm)  Pineory (KN} Pexper. (kN) % Diff.
102 x 102 x 6.4 267 2235 246-6 103
152 % 152 x 64 381 1753 179-0 21
152 x 152 x 6.4 381 1753 1793 23
152 x 152 x 9.5 39-4 547.5 5839 67
203 x 203 x 95 49.5 434.4 406-1 65

152mm x 152mm x 6-4mm (6" x 6” x 1/4”) wide flange I-beam and the
resulting linear regressed line. Table 3 shows the length, theoretical buck-
ling load, experimental buckling load (inverse of slope) and the percentage
difference between experimental and theoretical loads. As seen in Table 3,
all differences were less than 9% and all loads were slightly lower than the
theoretical (which could resuit from material imperfection). It should also
be noted that both the 102mm x 102mm x 6-4mm (4" x 4" x 1/4") and
the 152mm x 152mm x 6.4mm (6" x 6" x 1/4”) tests result in errors
less than 4%, thus proving the accuracy of the theoretical vaiues.
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TABLE 3
Resulting Experimental Local Buckling Loads for Mode I Tests

11

the 203mm x

Section (mm) Length (cm)  Pincory (KN)  Pexper. (KN) % Diff.
102 x 102 x 6.4 40-6 223.5 2236 0-0
152 x 152 x 6.4 572 1753 170-4 28
152 x 152 x 64 572 175-3 169-1 36
152 x 152 x 64 572 175-3 174.3 0-6
152 x 152 x 9-§ 58.4 547.5 507-2 73
203 x 203 x 9.5 73.7 4344 396-8 87

4.2.3 Mode IV tests

The longest columns that were tested in the short column range were those
corresponding to mode IV, shown in Figs 6-9, of the theoretical curves.
For the theoretical mode IV lengths, the buckled flange will have a shape
corresponding to four full wavelengths. Figure 16 shows the hyperbolic
measurements taken during the test of the 152mm x 152mm x 6-4mm
(6" x 6" x 1/4") wide flange I-beam and the resuiting regressed line. Table
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Fig. 15, Mode I[II hyperbolic and linearized measurements for the 152mm x
152mm x 6:4mm (6" x 6" x 1/4") WF l-beam.

4 shows the length, theoretical buckling load, experimental buckling load
(inverse of slope) and the percentage difference between the thcoretical
solution and the experimental results. As seen from Table 4, all percen-
tages are rather large (13-24%) and all loads are below the theoretical
prediction. These large differences may be a result of interaction between
long and short column ranges as shown by Tomblin.'® The possibility of
interaction can be visualized in Figs 6-9 from the length of the column in
mode IV being close to the column length at the intersection of the local
and Euler buckling curves.

4.3 Experimental observations

During the testing and data reduction procedure, various observations
were made as follows:

(1) All gauges had smail movements from the initial application of load
and then stabilized at a load (P < 111kN) until flange buckling
occurred. The stable range was large (133 kN to 445kN).

(2) In severali cases one flange buckled before the other, which may be
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Fig. 16. Mode [V hyperbolic and linearized measurements for the 152mm x
152mm x 6-4mm (6" x 6" x 1/4") WF I-beam.

TABLE 4
Resulting Experimental Local Buckling Loads for Mode 1V Tests
Section (mm) Length (cm)  Pueory (kN)  Pexpar. (kN) % Diff.
102 x 102 x 64 54-6 223.5 180-8 19-1
102 x 102 x 64 54.6 223.5 222.4 5.0
152x 152 x 64 76-2 175-3 143-0 18.4
152x 152 x 64 762 175.3 148.8 15-1
152 x 152 x 64 762 1753 161-8 77
152 x 152 x 64 76-2 1753 152:0 133
152 x 152 x 9§ 71-5 547.5 4553 16-8
203 x 203 x 9-5 100-3 4344 3292 24-2

caused by imperfections existing in that flange. However, this
phenomenon did not affect the value of the critical load due to the
use of the data reduction method proposed herein.

(3) When flange buckling occurred, all gauges had movement without
extra addition of load. Thus, possible human error in gauge readings
may exist. However, the dispersion of values and correlation with
theoretical prediction are very good.
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(4) Inthecaseoftie 152mm x 152mm x 9-5mm (6” x 6” x 3/8")and
the 203mm x 203mm x 9-5mm (8" x 8” x 3/8”) sections, oniy a
few gauge readings could be obtained. This was due to the fact that
once buckling occurred, the column experienced loud cracking and
large gauge mo /ements. This, in combination with the high load,
made the total filure of the column progress very quickly and made
manual reading of the gauges difficult.

(5) During the testing procedure, in the case in which no changes in the
gauge readings are obtained (i.e., gauge positioned at an inflection
point), the gauge readings must be neglected in the regression
analysis. However, during all the testing done on all the FRP
sections, this wa: encountered only twice.

(6) Mode IV tests produced the highest degree of error between
experimental loads and theory. These discrepancies are due to
interaction existing between the local and global buckling modes as
shown by Tomblin.'$

(7) Although the proposed method accurately determines the local
buckling of the flange, all FRP columns tested exhibited a certain
degree of post-buckling stiffness. Hence, the total ultimate strength
of the column is greater than that predicted by just the local buckling
analysis. However, it should be noted that in most cases, permanent
damage of the section occurred via internal cracks, delamination.
etc., as was evident when the column was reloaded.

(8) Due to the instrumentation employed, no measurement of the post-
buckling wavelength was possible.

Figures 6-9 show the experimental load obtained plotted with the
theoretical curves for each section. As seen from these figures, good
agreement with the elastically restrained theoretical load exists.

5 CONCLUSIONS

The local flange buckling load obtained experimentally appears to be in
good agreement with the theoretical loads for each wide flange I-beam
section tested. As shown in Tables 2 and 3. all percentage differences
between the theoretical and experimental loads are below |1%. The large
percentage differences experienced in the mode IV test reported in Table 4
should be further investigated. Measurements of the post-buckling wave-
length shouid be attempted.

A novel method to obtain the local buckling load based on Southwell’s
method was developed. As can be seen in the linearized A-A/P plots. all
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measurements fall close to the regressed straight line with very little data
scatter. Thus, by using this method in local buckling tests of pultruded
beams, one can account for the material imperfections common in the
pultrusion manufacturing process.
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ABSTRACT

A design equation for fiber reinforced plastic columns is presented in this
paper, based on the interaction between local (flange) and global ( Euler)
buckling observed during testing of the FRP columns included in this
investigation. An existing interaction equation is adapied to account for the
modes of failure observed in columns made of fiber reinforced composite
materials. Experimental data generated during this investigation are
presented and used to validate the interaction equation and to obtain the
interaction constant. A slenderness ratio is proposed and used to present u
plot of buckling for all sections and column lengths (short, long. and inter-
mediate). An expression for the optimum column length to be used in the
experimental determination of the interaction constani is proposed.

1 INTRODUCTION

Pultruded composite beams and columns are being used for civil engi-
neering structural applications' and aerospace applications.2 Composite
materials have many advantages over conventional materials (steel.
concrete, wood, aluminum, etc.), such as light weight and high corrosion
resistance. Mass production of composite structural members (e.g. by
pultrusion) makes composite materials cost-competitive with conventional
ones.

In the puitrusion process, fibers impregnated with a polymer resin are
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pulled through a heated die that provides the shape of the cross-section to
the final product. Pultrusion iv a continuous process for manufacturing
prismatic sections of virtually a1y shape.’ Other mass-production techni-
ques like automatic tape layou: can also be used to produce prismatic
sections.

Pultruded structural members have open or closed thin-walled cross-
sections. For long composite col imns, global (Euler) buckling is expected
to occur before any other instability failure. The buckling equation has to
account for the anisotropic nature of the material. Theoretical predictions
correlate well with experimen:al data for long columns.* For short
columns, local buckling occurs first, leading either to large deflections and
finally to overall buckling, or to material degradation due to large deflec-
tions (crippling). Because of the large elongation of failure allowed by
both the fibers and the resin, ihe composite material remains linearly
elastic for large deflections and strains, unlike conventional materials that
yield (steel) or crack (concrete) for moderate strains. Therefore, buckling
is the governing failure for this type of cross-section and the critical
buckling load is directly related to the load carrying capacity of the
member. Theoretical predictions for short column buckling taking into
account the anisotropy of the material correlate well with experimental
observations.*™’

The experimental data for short and long column buckling*~" suggest
the existence of an intermediate-column region where the critical loads are
lower than the predictions of both local and global buckling theories.
Since fiber reinforced plastics (FRPs) remain linearly elastic for large
values of strain, buckling in the intermediate range occurs due to mode
interaction between the local (flange) and global (Euler) buckling modes
rather than between local buckling and yield as in the case of steel
columns. Mode interaction has been shown by Arbocz® to reduce the
buckling load. In this paper. a phenomenological design equation is
presented to represent the buckling envelope for puitruded composite 1-
beams. The formulation accounts for the interaction between local
(flange) and globai (Euler) buckling modes. In the formulation. an adjus-
table interaction parameter was used to also account for various material
imperfections and interaction levels apparent in pultruded members. The
interaction constant is determined through a series of tests described in
this paper.

2 STEEL INTERACTION CURVES

Experimental data on steel columns deviate from predictions based on
Euler’s column buckling formula due to inelastic behavior of the material



Phenomenological design equation for FRP columns 119

in the short to intermediate column range. Considére’ and Engesser'®
developed a theory for inelastic buckling in the short to intermediate
column range. The tangent modulus theory states that Euler's formula
would be valid if the modulus of elasticity £ were replaced by the tangent
modulus of elasticity E,. In this theory, it is assumed that the bending
stress distribution due to buckling adds to the uniform compressive stress
in the column. Engesser'! proposed a second theory, the double modulus
theory or reduced modulus theory, which states that the modulus of elas-
ticity £ in Euler's formula must be replaced by a reduced modulus £,
which is a function of the tangent modulus, the elastic modulus, and the
moments of inertia on each side of the neutral axis. In this theory, the
tangent modulus E, should be used on the concave side and the elastic
modulus E on the convex side where stresses relax due to bending.

Bleich'? compares the reduced modulus and tangent modulus theories
with experimental results, showing that the experimental loads fall below
the critical load predicted by the reduced modulus theory and closer to the
tangent modulus theory. Shanley'? showed that columns start to deflect at
a load significantly below the load predicted by the reduced modulus
theory. These deflections occur in combination with an increasing axial
load. Thus, Shaniey concluded that the tensile strain increments caused by
the deflection are compensated by the axial shortening of the column.
Hence, there is no stress-relaxation anywhere in the cross-section. Shaniey
goes further to conciude that the maximum load of the column lies some-
where between the tangent modulus load and reduced modulus load.

The tangent and reduced modulus theories can physically explain the
inelastic buckling of short and intermediate columns but are rather
cumbersome from a design standpoint due to the variability of the tangent
modulus with stress. Hence, design of column members is simplified by
the use of empirical formulations.

According to the recommendations of the Column Research Council
(CRC),' '3 a single curve is used to model the mean trend of various
types of columns. On the CRC curve, the critical stress is plotted against
column slenderness. This design curve can be nondimensionalized b
plotting o/, against a universal slenderness ratio i. = L/p(o,/ 2 E)'/*,
The CRC curve is given by

L 1 /L}
FOI’; <C Cg= o'y[] —Zz_(?)]

©E
(L/p)?

where ¢ = (2nE/s,)'"?. The equation does not reflect any safety factors
or particular restrictions which may be implied by specific design codes.

(1)

L
FOY"-"ZC Oy =
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3 WOOD INTERACTION CURVES

Column design equations for wood members are usually viewed as
cmpirical equations for the compressive strength as a function of slender-
ness. Zahn'® develops a column design equation for timber columns by
viewing column failure as the interaction between crushing and bucklipg.
In his analysis, Zahn uses the Ylinen'” equation to model the interaction
and develop a universal design equation. Zahn compares the Ylinen
column design formulation with other column design equations such as
Rankine-Gordon, Perry-Robertson, Neubauer and the fourth-pqwer
parabola formulations (reviewed in detail by Zahn'®). In the Ylinen
equation, the parameter ¢ can be viewed as controlling the amount of
interaction between crushing and globai (Euler) buckling. Zahn states that
the parameter ¢ accounts for the effects of nonlinear compression and
inhomogeneity of the material. Zahn goes further to state that the para-
meter ¢ may also be used to automatically include the effect of crooked-
ness as long as the column test specimens are randomly selected from an
appropriate sample of columns. Due to its versatility, the Ylinen equation
surpasses other empirical equations in which all interaction is assumed to
be equivalent to load eccentricity.
The column design equation presented by Zahn is

’=l+l//1’_\/(l+l/lz)2__l_ o)
2c 2c c,{z

where

__ actual strength
rupture strength

(3)

and 4 is a universal slenderness ratio, independent of material properties.
defined as

1L [F,
= VE “
where F, is the compressive strength. Note that by this definition
e (5)
r
where

o= actual strength
" buckling strength

(6)



Phenomenological design equation for FRP columns 121

This shows that slenderness is the controlling parameter in the interaction
of the two modes.
Note that by the definition of r and s, linear interaction is defined as

r+s=1 M

Linear interaction is a conservative approximation for design purposes.
But using available column data, Zahn points out that the sum of r and s
should exceed one. Thus, another term is added to eqn (7. In order to
preserve symmetry, the product of 7 and s is added, and eqn (7) becomes

r+s=1+ecrs (8)

Equation (8) models linear interaction if ¢ = 0 and the noninteraction case
if ¢ = 1. Interaction between crushing and Euler buckling results in an
intermediate value of ¢ to be found experimentally. This equation was
presented first by Ylinen'” and later adopted by Zahn'® to model wood
columns: Zahn also proposed to interpret ¢ as an interaction parameter.

4 PULTRUDED I-BEAM INTERACTION CURVES

Unlike wood and steel, FRPs remain linear for large values of strain. The
interaction occurs between local and global modes uniess the column is so
short that material crushing also occurs. Following the approach of
Zahn,'s a phenomenological column design equation for puitruded I-
beams is developed to account for the interaction between the local and
global buckling observed in this experimental program. The buckling
strength ratios ¢ and s are defined as follows:

_ actual failure load actual strength
9= Jocal buckling load  local buckling strength

9)

s= actual failure load actual strength
= Euler buckling load  Euler buckling strength

(10)

Equation (8) can now be applied to represent interaction of local and
global modes in FRP columns (note that ¢ replaces r in Zahn's formuia-
tion). The controlling parameter ¢ is used to model the amount of inter-
action between local (flange) buckling and global (Euler) buckling. In the
limiting cases, if ¢ = 0 linear interaction results. and if ¢ = | the case of
noninteraction is recovered (Fig. 1).



12 Ever Barbero, John Tomblin

!

0 02 04 06 038 !
$ 3P / Pruw

Fig. 1. Vaiious values for the interaction constant c.

A universal slenderness ratio for puitruded I-beam columns can be
defined as

= kL. | Plocal 11

A=kLy\| 5= (11)
where & is the effective length coefficient, L is the column length, D is the
bending stiffness and P, is the theoretical local buckling load. The
effective length coefficient k is given by analytical formulation for
columns with various end conditions found in many strength of materials
textbooks and design manuals. Since Pgyer = 2D/ L°, using eqn (11) we
obtain Pee = Piocyi/4? Which when substituted into eqn (8) gives

A —-(1+ig+1=0 (12)
The root of this equation is
-2 / N
g Lo LVE 1A 1 1)
Procy 2 2c cA

which represents actual values of ¢ determined experimentally and descri-
bed by the interaction parameter ¢ with A given by eqn (11). Therefore,
eqn (13) can be used as a design equation over the entire range of column
slenderness, short, intermediate, and long. The bending stiffness D of a
FRP column is computed from the information provided by the manu-
facturer for each section following the methodology developed by
Barbero'® for pultruded composite beams. This information includes the
type of fibers and matrix material. the local and orientation of the fibers
and the fiber content in the cross-section (Fig. 2). Table | shows the flange
and web bending stiffness components for a 102mm x {02mm x 6-4 mm
4" x 4" x1/4) and 152mm x 152mm x 6:4mm (6" x 6" x 1/4")
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Fig. 2. Creative Pultrusions schematic for the 152mm x 152mm x 6-4mm (6" x 6" x [/4")
WF l-beam.

puitruded WF [-beam, respectively, for bending about the weak axis. The
local buckling loads were predicted based on the same information using
the analysis presented by Barbero and Raftoyiannis'®. The maximum
interaction between local and global buckling occurs when ¢ = 5. Using
A=1 in eqn (11), the column length for which maximum interaction
occurs is

1 /D1t2
L=~/ —— 14
k Plocal ( )

TABLE 1
Weak Axis Bending Stiffness Components of the Flanges and Web for Each of the WF
[-Beam Sections Tested (note: Dy = Dy = 0 for each section)

Stiffness 102mm x 102mm x 6-4 mm 152mm x [52mm x 6.4 mm
Component
Flanges Web Flanges Web
(M N-cm) (k N-cm) (M N-cmy (k N-cm)
Dy 13-176 43.720 30-295 46217
Dqy 4.958 20-747 11628 21052
Dy, 1.878 8-181 1.435 8-267

Des 1.652 6-603 3852 6-736
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TABLE 2

Maximum Interaction Length L’ for Each Puitruded WF
I-Beam Section
Section L’ Pw D
(mm) (cm) (kN)  (MN cm’)
102 x 102 x 6-4 105-9 223-25 253-71
152 x 152 x 64 21.5 175-12 872-31

Table 2 shows the value of L° along with the local buckling load and the
weak axis bending stiffness D for each WF I-beam section considered in
this paper. L* corresponds to a length in which maximum interaction
between local and global buckling is expected. Therefore, experimental
data to obtain the interaction constant should be gathered at this length.

Using the universal slenderness ratio and the ratio of ¢ = Pcr/ Piocai, the
theoretical buckling envelopes for ail WF I-beam sections can be collapsed
into one universal curve (shaded area in Fig. 3).

5 EXPERIMENTAL RESULTS
The intermediate column tests were performed on the following puitruded

WF I-beams: 152mm x 152mm x 6-4mm (6" x 6" x 1/4") and
102mm x 102mm x 6-4mm (4" x 4” x 1/4"). More tests were done on

1.2

Buckling Enveiope

0.9

.Oo 4

Fig. 3. Buckling envelope accounting for locat-global buckling interaction.
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the former I-beam because it has a wider range of lengths where interac-
tion occurs. The testing procedure for the intermediate column lengths
consisted of loading the specimen with controlled axial displacement. The
load, the axial displacement, and the transverse deflection at the midspan
were measured by a load cell and two LVDTs. The data was filtered from
noise and recorded using a data acquisition system and a moving average
technique.” The test was continued until the ultimate load of the column
was achieved. The uitimate load was also recorded with a peak indicator
on the Materials Testing System (MTS) control console. The data reduc-
tion simply consisted of obtaining the maximum load the column was
capable of supporting, as recorded by the peak indicator on the MTS
control console.

Since the span of the intermediate column range had not been
previously established, the exact column lengths in the intermediate range
were unknown. Hence, the testing lengths were taken between the longest
local buckling test available and the shortest Euler buckling test
previously performed."z' All tests were conducted with the weak axis of
the section in the pinned-pinned configuration. A larger number of
samples correspond to lengths close to the predicted L*. At lengths suffi-
ciently far from L’, only one test was done.

5.1 152mm x 152mm x 6-4mm (6" x 6" x 1/4") WF I-beam resuits

Intermediate column tests were performed on the puitruded
152mm x 152mm x 6-4mm (6" x 6" x 1/4") WF I-beam. An increased
number of tests were performed around the value of L predicted in Table
2. The starting column length was 3-27m (1297). This length was chosen
due to the known Euler behavior apparent when testing a 3-58m (1417)
specimen.*?' Hence, column lengths were cut from 3-58m (141%)
progressively shorter in 30-5cm (12”) increments.

Figure 4 shows the data acquired during the test of a
152mm x 152mm x 6-4mm (6" x 6" x 1/4") WF I-beam (deflection—
load plot). Table 3 shows the lengths, theoretical local buckling load,
theoretical Euler buckling load and maximum experimental load for each
length tested. As seen in Fig. 4, once the maximum load was reached, the
lateral deflection increased with decreasing compressive load, indicating 2
drastic loss of stiffness. As seen from Table 2, a significant decrease in
critical load is obtained around the value of L°. This indicates interaction
between the local and global buckling modes. This interaction was also
physically apparent during the test in which local flange buckling occurred
in combination with lateral deflection. It must be noted that local-global
interaction could be observed during the test because of the closely
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Fig. 4. Experimental intermediate test data on the 152mm x 152mm x 6-4mm
(6" x 6" x 1/4") WF I-beam (length = 266-7 cm).

controlled displacement of the column ends obtained by the servo-
controlied actuator.

52 102mm x 102mm x 6-4mm (4" x 4" x 1/4") WF I-beam results

Intermediate column tests were also performed on the puitruded
102mm x 102mm x 6-4 mm (4" x 4" x 1/4”) WF I-beam. Since the range

TABLE 3
Experimental Intermediate Test Data on the
152mm x 152mm x 6-4 mm (6" x 6" x 1/4%)

WF [-Beam
Length Piocai Peuter Pexper.
fcm) (kN) (kN) (kN)
144-8 175-33 418.00 {74-34
175-3 175-33 280-23 148.99
1753 175-33 280-23 15723
1753 178-33 280-23 151-18

1753 175.33 280-23 156-45
205.7 175-33 203.38 136-83
2057 175-33 203-38 133.06

2057 175-33 20338 138-18
236-2 175-33 152-64 116:67
2362 175.33 152-64 115:40
236-2 175.33 152.64 120-10
266-7 175.33 12103 99-23
2972 175-33 97.48 78-19

3277 175-33 80-18 67-13
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TABLE 4
Experimental Intermediate Test Data on the
102mm x 102mm x 6-4mm (4" x 4" x 1/4") WF
[-Beam

Lengih Piocai Peuter Pexper.
(cm) (kN) (kN) (kN)

114.3 223-52 191-68 171-08
114.3 223-52 191.68 161-98

1473 223-52 115-39 98.53
1473 223:52 115-39 95-29
1778 223.52 79-21 71.58

on intermediate column is narrower than that of the
152mm x 152mm x 6-4mm (6" x 6" x 1/4") WF [-beam (which is
apparent from the theoretical curves), only three possible intermediate
lengths were compatible with the testing frame. Therefore, only a limited
numbser of tests were performed on this section with lengths closer to L’
(listed in Table 2) for which the maximum interaction between local and
global buckling was expected.

Figure 5 shows the data acquired during the test of a
102mm x 102mm x 6-4mm (4" x 4" x 1/4") WF I-beam (deflection-
load plot). Table 4 shows the length, theoretical local buckling load and
maximum experimental load for each column tested. As seen from Fig. 5,
a loss of stiffness is also experienced at the maximum compressive load.
As seen from Table 4, a decrease in the experimental load, when compared
to theory, is also experienced, indicating interaction between the local and

100

*1 \
g 60}
- Sectien : 102 x 02 = 6.4
E 40} Lengih : 147.3 cm

20

Q i 2 3 4 S

Central Deflection (cm)

Fig. 5. Experimental intermediate test data on the 102mm x 102mm x 6-4mm
(4" x 4" x 1/4") WF l-beam (length = 147-3 cm).



128 Ever Barbero. John Tomblin

global buckling modes. It was apparent during the test that both local
buckling of the flanges and Euler buckling occurred simultaneously. These
observations can be made because the test is not as catastrophic as a result
of controlling the axial displacement with the hydraulic servo-controlled
MTS.

6 DETERMINATION OF INTERACTION CONSTANT

Figure 6 shows the experimental interaction data plotted on an s versus ¢
plot (P/Peyec VS P/Poq) for the 152mm x 152mm x 6-4mm
(6" x 6" x 1/4" and 102mm x 102mm x 6-4mm (4" x 4" x 1/4")
pultruded WF I-beams. As seen from Fig. 6, symmetry appears to exist
between the experimental failure loads. Thus, the use of eqn (8) as an
interaction equation appears to be valid. Using the data in Tables 3 and 4,
the interaction constant ¢ was determined for the pultruded WF [-beam
sections. The interaction constant physically describes the degree of inter-
action present between the local and global buckling failures. For each
sample, the vaiue of the interaction constant ¢ was found by solving eqn
(8) for c:

c=iiqis-‘_' (15)

The interaction constant ¢ for each type of cross-section was inferred
from the experimental data by averaging the value of ¢ of all samples. For
the [52mm x [52mm x 6.4mm (6" x 6” x 1/4") section, an interaction
constant of «¢=0-85 was obtained. Similarly, for the
102mm x 102mm x 6-4mm (4" x 4" x 1/4") section, an interaction

Q.2 7 e 152 x 152 x 6.4

/ 2 02 % 102 x 6.4 .
// J

Q a.2 0.4 0.6 0.8 )
s = P / Peuer

Fig. 6. Nondimensionai ¢ vs s plot for the combined interaction test data (¢ = 0-84).
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constant of ¢ = 0-83 was obtained. Comparing the values of the interac-
tion constants, it seems that the interaction constant is independent of the
size of the cross-section. However, additional I-beam sections should be
tested to verify this result. Figure 6 also shows an average interaction
constant of ¢ = 0-84 for both sections tested. As seen from the figure, the
value of the interaction constant ¢ = 0-84 fits the experimental data
obtained from the intermediate test.

Using the interaction constant c to approximate the interaction between
local and global buckling, an overall buckling envelope is shown by the
solid line in Fig. 7. Thus, it is proposed to use eqn (13) as a design equa-
tion for the buckling of pultruded composite I-beams. The buckling
envelope shown by a solid line in Fig. 7 is valid for any puitruded I-beam
section (similar to the sections used in this investigation) provided the
values of the bending stiffness D, the local buckling load Pioca and the
interaction constant ¢ are known. Also shown in the figure is additional
experimental data obtained by Barbero and Tomblin* in the Euler column
range. As seen in Fig. 7, the design equation closely approximates the true
value of the failure load obtained in experiments.

Interaction is very pronounced for columns with lengths closer to L', as
seen in the experiments. In this region, column failure occurs and rapidly
induces large deformations and material failure (fiber breakage and dela-
minations). The importance of the interaction curve is evident from a
design viewpoint. If the interaction value were not used. a difference of
approximately 25% between the theoretically predicted local buckling
load and the actual column failure load would be experienced at L'
Furthermore, the proposed design equation is simpler to use than an Euler
equation for long columns and a local buckling equation for short
columns.

192 1 192 « G4
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Fig. 7. Nondimensionai g vs 4 plot with intermediate and globai buckling test data.
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7 CONCLUSIONS

It is apparent that the design equation presented predicts well the actual
critical loads of FRP cclumns of the type used in this investigation. The
value of the interaction parameter ¢ = 0-84 provides a good estimate of
the interaction between local and global buckling for the columns tested.
The buckling envelope ‘or puitruded composite WF I-beams shows good
correlation with the experimental data developed in this investigation.
Although more testing on other WF sections should be done in the future,
the interaction curve and design envelope presented provide a basis for the
design and use of pultruded structural members in engineering applica-
tions. Interaction of local and global buckling modes dominates the
intermediate range of lengths of FRP columns used in this investigation.
The definition of universal slenderness 4 and buckling strength ¢ proposed
in this paper lead to a simple design equation to be used for the buckling
of FRP columns.

The proposed design equation is based on a phenomenological
approach. The interaction constant must be determined experimentaily for
each new section following the procedure presented in this work. All the
sections used in this investigation can be described by the same value of
the interaction constant. However, more experimentation is needed to
determine if the interaction constant is independent of the cross-section.
The validity of the proposed design equation for other types of sections
not included in this investigation should be verified by additional experi-
mentation. Development of a theoretical model for buckling mode inter-
action of FRP columns is underway.
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