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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established in 1986 to
develop and disseminate new knowledge about earthquakes, earthquake-resistant design and seismic
hazard mitigation procedures to minimize loss of life and property. The emphasis of the Center is on
eastern and central United States structures, and lifelines throughout the country that may be exposed
to any level of earthquake hazard.

NCEER s research is conducted under one of four Projects: the Building Project, the Nonstructural
Components Project, and the Lifelines Project, all three of which are principally supported by the
National Science Foundation, and the Highway Project which is primarily sponsored by the Federal
Highway Administration.

The research and implementation plan in years six through ten (1991-1996) for the Building, Nonstructural
Components, and Lifelines Projects comprises four interdependent elements, as shown in the figure
below. Element I, Basic Research, is carried out to support projects in the Applied-Research area.
Element II, Applied Research, is the major focus of work for years six through ten for these three
projects. Demonstration Projects under Element III have been planned to support the Applied
Research projects and include individual case studies and regional studies. Element I'V, Implementa-
tion, will result from activity in the Applied Research projects, and from Demonstration Projects.
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Research under the Highway Project develops retrofit and evaluation methodologies for existing
bridges and other highway structures (including tunnels, retaining structures, slopes, culverts, and
pavements), and develops improved seismic design criteria and procedures for bridges and other
highway structures. Specifically, tasks are being conducted to: (1) assess the vulnerability of
highway systems and structures; (2) develop concepts for retrofitting vulnerable highway structures
and components; (3) develop improved design and analysis methodologies for bridges, tunnels, and
retaining structures, with particular emphasis on soil-structure interaction mechanisms and their
influence on structural response; and (4) review and improve seismic design and performance criteria
for new highway systems and structures.

Highway Project research focuses on one of two distinct areas: the development of improved design
criteria and philosophies for new or future highway construction, and the development of improved
analysis and retrofitting methodologies for existing highway systems and structures. The research
discussed in this report is a result of work conducted under the new highway construction project,
and was performed within Task 112-D-1.1(a), “Establish Representative Pier Types for Comprehen-
sive Study” of the project as shown in the flowchart.

The overall objective of this task is to identify and establish pier designs and details currently
in use throughout the U.S. The task was split into two parts, one focused on collecting and
establishing representative pier types in the eastern U.S. and the other concerned with western
U.S. practice. This report describes bridge pier types and seismic design and detailing
procedures typical of the eastern U.S. since about 1980. The companion report, NCEER-96-
0006, describes pier types and seismic design and detailing procedures representative of the
western U.S. since the mid-1970s.

The states contributing material include Louisiana, New York, North Carolina and Pennsyl-

vania. Pile design issues in pile bents, bent cap design and detailing issues in pile and column
bents, column and pier design and detailing issues, and footing details issues are addressed.
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ABSTRACT

This report describes bridge types and seismic design and detailing procedures typical of the
eastern part of the United States. The report contains examples taken from state bridge plans
and actual bridge designs. Some of the examples comply with current seismic provisions, while
others represent older designs made before these requirements were introduced. Advantages
and disadvantages of various bridge configurations and details with respect to seismic behavior
are discussed. Historical accounts of changes in bridge design and detailing practices are also
included.

The seismic design of bridges in the eastern part of the United States follows the AASHTO
Specifications for Seismic Design of Highway Bridges in conjunction with state specific policies
that address the unique conditions of each state. Most bridges in the east fall in Seismic
Performance Categories A and B, but in many cases part or all of the requirements of Seismic
Performance Category C are also followed.

The bridge pier types included in this report are divided into pile bents, column bents and solid
wall piers. The bent cap types include rectangular caps, inverted T-caps and hammerhead caps.
The report highlights the unique nature of the seismic response of various bridge configurations
and details. Common and dissimilar elements between east and west construction practices are

identified.
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SECTION 1
INTRODUCTION

In the summer of 1993, the National Center for Earthquake Engineering Research initiated a
research program directed at developing improved seismic analysis and design procedures for
highway infrastructure. The research program is sponsored by the Federal Highway
Administration of the U.S. Department of Transportation and consists of a series of special
studies, each focussed on the seismic analysis or design of specific highway system
components (e.g., bridges or tunnels) and structural elements (e.g., foundations or
substructures).

As a basis for developing improved bridge design standards, an early task within this program
was conducted to identify and establish pier designs and details currently in use throughout
the U.S. The task was split into two parts, one focused on collecting and establishing
representative pier types in the eastern U.S. (Task 112-D-1.1(a)) and the other concerned with
western U.S. practice (Task 112-D-1.1(b)).

This report describes bridge pier types and seismic design and detailing procedures typical of
the eastern U.S. since about 1980. The companion report NCEER 96-0006 describes pier
types and seismic design and detailing procedures representative of the western U.S., primarily
focussing on Caltrans practice.

In general, seismic policies regarding the design of the eastern bridges have followed the
guidelines of the AASHTO Standard Specifications for Seismic Design of Highway Bridges
in conjunction with additional state specific requirements. The extent of the AASHTO seismic
design and detailing requirements varies with the Seismic Performance Category (SPC)
assigned to a bridge. The SPC depends on the importance classification of the bridge and the
acceleration coefficient at the site. Most bridges in the eastern part of the United States fall
into either SPC A or B, but in many cases part or all of the requirements of SPC C are also
followed.

The requirements of SPC A pertain only to the connection of the superstructure to the
substructure design (Section 4.6) and the minimum bearing support lengths (Section 4.9.1).
No other consideration of seismic forces is required for the design of structural components.
The requirements of SPC B pertain to the design force requirements for superstructure and
substructure structural members and connections, foundations, abutments and retaining walls
(Section 4.7), and the minimum bearing support lengths (Section 4.9.2). Detailing
requirements for reinforced concrete columns for SPC B are specified in Section 8.3 to ensure
some level of ductility. They include minimum transverse reinforcement requirements at the
top and bottom of a column (Section 8.4.1 (D)) and maximum spacing limits of transverse
reinforcement (Section 8.4.1 (E)). Additional design requirements for foundations and



abutments for SPC B are included in Section 6.3. The requirements for SPC C are more
stringent. They pertain to the design force requirements for superstructure and substructure
structural members and connections, foundations, abutments and retaining walls (Section 4.8)
and minimum bearing support length (Section 4.9.3). Detailing requirements for reinforced
concrete are specified in Section 8.4 for columns, piers, column connections, and construction
joints in piers and columns to ensure adequate ductility capacity. Additional requirements for
foundations and abutments for SPC C are included in Section 6.4.

Historically, due to the low frequency of earthquakes in the eastern United States the
awareness for the need of providing adequate seismic design and detailing guidelines has been
relatively low, and has generally followed the experience of the state of California. In 1973,
after the 1971 San Fernando earthquake when many bridges were damaged, Caltrans adopted
new seismic design criteria that have formed the basis for the modern approach to seismic
design. The Caltrans specifications have been regularly refined and updated to incorporate
technical developments in earthquake engineering and lessons from the 1989 Loma Prieta
earthquake and the 1994 Northridge earthquake. In 1975, AASHTO published a modified
version of the original Caltrans criteria as Interim Specifications, and in 1983 it adopted the
ATC-6 report, a comprehensive state-of-the-art document funded by the Federal Highway
Administration and Caltrans, as an approved alternate Guide Specification for seismic design.
However, it was only in 1991, when AASHTO incorporated the 1983 Guide Specification into
the Standard Specifications as Division I-A, that bridge designers in the low seismic zones of
the eastern United States became fully aware of the various aspects inherent in the latest
seismic design and detailing practices. Today, the bridge engineering community is also
aware of the unique nature of the seismic hazard in the central and eastern United States where
‘the maximum credible earthquake is expected to be significantly larger than the design
earthquake, and many designs are even more conservative than the AASHTO requirements
for the applicable Seismic Performance Category.



SECTION 2
REPRESENTATIVE PIER TYPES (EAST)

Typical piers, connections and details have been identified from the bridge design and
construction practices of several representative eastern states (Louisiana, North Carolina,
Pennsylvania and New York). The pier types include pile bents, column bents and solid wall
piers. Representative examples of bent and pier type details are provided in the figures
presented at the end of each section. The seismic design of bridges in Louisiana follows the
requirements of the AASHTO Specifications for the Seismic Design of Highway Bridges, with
the entire State of Louisiana in Seismic Performance Category (SPC) A. Bridges in North
Carolina, Pennsylvania and New York fall into either the SPC A or B, as shown in figures 2-1,
2-2 and 2-3. The seismic design of bridges in North Carolina, Pennsylvania and New York
is based on the AASHTO specifications for SPC A or B. In Pennsylvania and New York the
SPC B requirements include adjustments that incorporate many of the SPC C requirements
regarding column reinforcement, piers, column connections, foundations and abutments.

2.1 Pile Bents

Description: Pile bents consist of timber, steel or prestressed concrete piles with a cast-in-
place reinforced concrete cap. The piles extend out of the ground to serve as columns and are
embedded into the bottom of the cap. Double row pile bents are included when additional
capacity or stability is needed. A typical trestle bridge layout with pile bents is shown in
figure 2-4. Prestressed concrete piles are most common, but in some states such as North
Carolina steel H-piles are also common, and steel pile bent details are provided. The
minimum number of piles per bent is usually four, with the exterior piles battered in the higher
bents. The reinforced concrete cap is wider than the width of the piles so that the bottom
corner longitudinal reinforcing bars could be continuous along the cap. Wider bent caps are
also provided to allow for possible pile mislocations. The bridge superstructure is connected
to the pile bent cap mainly by elastomeric bearings. Representative pile bent details are shown
in figures 4-1 through 4-10.

2.2 Column Bents

Description: Column bents consist of a reinforced concrete frame attached to a separately
constructed footing. Two or three circular columns of solid cross-section with a rectangular
cap are most common (see figure 2-5). One column bents and columns with a solid
rectangular cross-section are also quite common. The superstructure is supported on bearings
anchored to the top of the cap. In general, column spacings do not exceed 20 feet center to
center of columns. Intermediate struts are usually used on the taller bents. North Carolina
standards, for example, require that column struts be placed at approximately mid height in
columns over 25 feet high and less than 45 feet. Two struts are required in columns in excess



of 45 feet. New York standards require that reinforced concrete struts be provided near the
middle half of a column when the slenderness ratio of the column in a direction parallel to the
support is over 60. The rectangular reinforced concrete caps are most common (see figure 5-
1). Hammerhead type caps are usually used in single column bents (see figure 6-2). Inverted
T-caps are becoming more and more popular in current designs (see figure 6-5). They are
usually used for aesthetic reasons, or when it is necessary to reduce the overall depth of the
cap plus the superstructure. Stepped bent caps (see figure 4-10) are also common. Columns
may have individual or continuous footings, depending on the soil conditions. Representative
column bent details are shown in figures 5-1 through 5-10 and 6-1 through 6-6.

Historical: In the past, column struts were not required in New York, as long as the
slenderness effects were considered in design.

2.3 Solid Wall Piers

Description: A vertical support is considered to be a wall pier when the ratio of the clear
height to the maximum plan dimension of the support is less than 2.5. Full or partial height
pier walls are often used at stream crossings to prevent the accumulation of debris between
columns, and as crash walls in bridges over railways along or near the railroad track. To
accommodate the geometric requirements of the superstructure, solid piers may have a
hammer head type cap, or may be widened at the top (see figures 5-11 and 5-12).
Representative solid wall pier details are shown in figures 5-11 through 5-13.
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SECTION 3
PILE DESIGN ISSUES IN PILE BENTS

3.1 Pile Batter and Maximum Slenderness Requirements

Description: Pile bents are designed according to the AASHTO Specifications with
additional state specific requirements, as described below. Louisiana requires that the exterior
piles be battered when the slenderness ratio L/d is over 12, where L is the unsupported pile
length measured from the ground line, and d is the least dimension, or diameter of the pile
section. The exterior piles are typically battered 1-1/2 on 12. The maximum slenderness ratio
L/d is limited to under 20. North Carolina standards require a minimum number of 4 piles
for the interior bents (bents between abutments or end bents) and a maximum pile center to
center spacing of 10 feet for 12" and 14" concrete piles and 12 feet for 20" concrete piles. The
North Carolina standards also specify timber pile detail requirements and provide standard
steel pile bent details. Pile batter requirements are shown in figures 4-1 through 4-4.

Advantages: Pile bents are usually supported by at least 4 piles and have a larger degree of
redundancy. Vertical multi-pile bents can also allow for some inelastic response, and
therefore AASHTO permits a response modification factor of 3 for these systems. The
response modification factors are intended to account for redundancy and ductility in
structural members. Design forces are obtained by dividing the elastic forces obtained from
analysis by the response modification factors.

Disadvantages: The batter of the exterior piles provides stability and good lateral support,
but it can reduce the ductility capacity of the bent. Therefore, a lower response modification
factor of 2 is recommended by the AASHTO seismic specifications for pile bents with one or
more batter piles.

3.2  Pile-Cap Connection Details

Description: Concrete piles are typically required to penetrate into the bent cap a minimum
of 9". In caps over 2'-3" deep, North Carolina requires a minimum pile penetration of 12".
Pile voids that usually exist in the larger precast prestressed concrete piles (over 20") are
required by Louisiana to be poured monolithic with the cap over the embedded length (see
figure 4-1). To increase the strength of the pile cap connection, North Carolina standards
provide for circular hoops in the cap, around the embedded portion of the piles (see figures
4-6 and 4-7). There are no state standards for positive tension anchor pile connection details
indicated for the time frame being considered herein. However, many designs do provide for
positive tension pile anchorage and a ductile connection to the cap through the use of a steel
cage in the pile void, that extends into the cap (see figure 4-5). Representative pile-cap
connection details are shown in figures 4-1 through 4-9.
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Advantages: The use of a steel cage in the pile voids that extends into the cap can provide
for reliable pile anchorage for tension forces and for some ductility capacity. Additional
reinforcement in the cap around the embedded portion of the pile increases the local strength
of the cap near the pile and improves the capacity and ductility of the pile-cap connection.

Disadvantages: In most cases, the pile connection to the bent cap has very little bending and
pull out capacity and almost no ductility. Seismic damage is likely to occur during larger
earthquake loading in the connection area. Better connection details are needed to improve
strength and ductility, but the cost of providing such details can be high. However, for SPC
A a ductile moment connection of the pile to the cap may not be needed, if properly accounted
for in design.
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SECTION 4
BENT CAP DESIGN AND DETAILING ISSUES IN PILE BENTS

4.1 Cap Dimensions
Description: Rectangular cast-in-place reinforced concrete pile bent caps are most common.
The minimum bent cap depth requirements are generally 2'-6" for single row concrete pile

systems and 3'-0" for double row concrete piles. Louisiana bent cap depth requirements vary
with the pile size, as shown in table 4-1.

TABLE 4-1 Louisiana Bent Cap Depth Requirements

MINIMUM CAP DEPTH PILES UNDER 24" PILES 24" AND OVER
Single Row Bents 2'-0" 2'-3"
Double Row Bents 2'-6" 2'-6"

The minimum bent cap width requirements are given in terms of the pile size. Louisiana
requires that the cap be larger than the pile on each side of the cap by 6" for 18" piles or less,
and 9" for piles over 18". North Carolina minimum cap width requirements are shown in table
4-2.

TABLE 4-2 North Carolina Bent Cap Width Requirements

MINIMUM CAP WIDTH 12" PILES 20" PILES
Single Row Bents 2'-9" 3'-8"
Double Row Bents 4'-0" 5'-8"

A tolerance of 3" maximum mislocation of piles in the cap from the plan drawing is usually
allowed. Saddle cap types are common in North Carolina (see Figure 4-8). The minimum
saddle cap section is 3'-9" wide by 2'-3" deep for 12" piles and 5'-4" wide by 3'-0" deep for 20"
piles. The width of the bent cap is required to allow a minimum distance of 2 1/2" from the
edge of the bearing plate to the side face of the cap for a steel superstructure and a minimum
distance of 5 1/2" from the centerline of anchor bolts to the side face of the cap for a
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prestressed girder superstructure. The minimum bent cap width is also required to meet the
bearing support length requirements of the AASHTO Specifications for Seismic Design,
Section 4.9.1 for various span lengths and column heights. The length of the bent cap is set
so as to provide a minimum of 9" from the side face of the exterior pile to the end of the cap
and a minimum of 9" from the edge or corner of bearing plate to the end of cap for steel
superstructures and from the anchor bolts to the end of cap for prestressed girder
superstructures. Typical bent cap dimensions are shown in figures 4-1 through 4-8.

Advantages: The wider cap section allows for the bottom corner longitudinal reinforcing bars
to be continuous along the cap. It also provides a higher cap flexure capacity and it prevents
damage and plastic hinging in the cap near the piles.

4.2  Longitudinal Cap Steel

Description: Both top and bottom longitudinal reinforcement, of equal area, is required in
bent caps. The amount of reinforcement is determined based on the AASHTO Specifications.
The minimum top and bottom reinforcement required for a rectangular cap in North Carolina
is four No. 9 bars (or equivalent) for a cap width of 3'-0" or less,. five No. 9 bars (or
equivalent) for a cap width greater than 3'-0" but less than or equal to 4'-0", six No. 9 bars (or
equivalent) for a cap width greater than 4'-0" but less than or equal to 5'-0", and seven No. 9
bars (or equivalent) for a cap width greater than 5'-0" but less than or equal to 5'-8". The steel
bar arrangement in a saddle cap section are shown in Figure 4-8. Representative longitudinal
cap steel details are shown in figures 4-1 through 4-10.

Advantages: During seismic loading, load reversal in the cap may occur. Providing top and
bottom reinforcement increases the positive and negative moment capacity of the cap and
helps prevent damage to the cap. The saddle cap section provides steel in addition to that
which is in the main cap section. Also it allows all bottom steel to be continuous along the
cap.

4.3  Cap Shear Reinforcement

Description: The longitudinal steel is placed inside closed shear stirrups. The maximum
stirrup spacing is 12". In Louisiana, the stirrups adjacent to piles are located at a maximum
of 3" from the face of the pile and the first space is under 6". The minimum size of the
stirrups is No. 4 bars. Double stirrups are used in all pile bent caps exceeding 2'-6" in width.
North Carolina uses No. 4 or No. 5 stirrups placed according to AASHTO Specifications that
are made of one U-type stirrup and one tie, both with hooked ends, at each location.
Representative cap shear reinforcement details are shown in figures 4-2, 4-3, 4-9 and 4-10.
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Advantages: The closed stirrups provide good confinement to the longitudinal steel and
increase the cap ductility and torsional capacity. The closely spaced stirrups in the cap near
the piles increase the local cap capacity near the pile locations. The U-shaped stirrups with
hooked ends topped by a straight bar with hooked ends used in North Carolina allows for
easier construction, and approaches a closed stirrup confinement effect.

Disadvantages: The closed stirrup arrangement makes it harder to place the longitudinal
reinforcement and may increase the construction costs. A reinforcing steel cage assembled
on site and set in place on the pile bent with all the cap reinforcement in is usually used.

4.4  Other Cap Reinforcement

Description: In North Carolina, additional reinforcement is required to be placed in the pile
cap connection area. Four No. 4 longitudinal bars are required to be placed at equal spaces
above each row of piles with No. 4 bars at about 4'-0" placed transversely to the cap (see
figure 4-6). Two No. 4 circular hoops around each pile in single row systems and three No.
4 rectangular hoops around piles in double row systems are also required (see figures 4-6 and
4-7). In addition, for interior bents it is required that enough extra U-shaped stirrups be placed
in top of cap so that there will be No. 4 bars at 6-inch centers under bearing areas of each
beam or girder (see figures 4-9 and 4-10). Also, No. 9 U-shaped bars are required to be
placed at the ends of caps for 16" and larger piles (see figure 4-9).

Representative cap reinforcement details used in addition to the longitudinal and transverse
bars are shown in figures 4-6 through 4-10.

Advantages: The additional reinforcement around the embedded portion of the piles
improves the strength and the ductility of the cap at the pile-cap connection and reduces the
potential for localized seismic damage in the cap.

Disadvantages: These additional reinforcement details may increase the construction costs
of bridges in SPC A.
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FIGURE 4-4 Double Row Pile Bent Reinforcing Details
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SECTION 5
COLUMN AND PIER DESIGN AND DETAILING ISSUES

5.1 Column Dimensions

Description: Column bents with circular columns are most common (see figure 5-1). The
minimum diameter required for a circular column is usually over 30". North Carolina limits
the minimum column diameter to 36". Most of the quantitative requirements below are based
on North Carolina practice. Other state requirements were similar, but not as specific. For
larger columns, the diameter is increased in 6" increments. When the cap width exceeds 3'-6"
a minimum column diameter of over 36" is usually required. The ratio of the unsupported
column length to the least column width (L/d) is generally kept under 10. Intermediate
column struts are 2'-6" wide by 2'-9" deep for 36" diameter piles. For larger columns the strut
size is increased accordingly. Rectangular columns of varying cross section are also common
(see figure 5-2). The dimensions of rectangular columns are usually increased towards the
foundation level (see figure 5-2), but sometimes they are decreased towards the base (see
figure 5-3a). The overhang from the end of cap to the face of column does not exceed 4'-0"
and is not less than 3'-0". In some cases column of different heights are used in the same bent
(see figure 5-4a). The requirements for minimum column sizes along with other design
requirements result in relatively low axial stress values. The average axial stress ratio P/f' A,
significantly affects seismic capacity in terms of flexural overstrength, shear strength and
ductile behavior. Representative column bent geometries and dimensions are shown in figures
5-1 through 5-13.

Advantages: Reducing the dimensions of rectangular columns towards the base reduces the
loads transmitted to the footing and the potential of seismic damage in the footing. Square
columns allow for an easier placement of the cap reinforcing bars.

Disadvantages: Providing minimum requirements for column dimensions and increasing the
cross section of rectangular columns towards the base ensures strength and stability but may
force plastic hinging to occur in the cap or the foundation structure first, which is undesirable.
Using different column heights in the same bent results in nonuniform seismic load
distribution and is undesirable and should be avoided where practical. The shorter columns
will attract more load and may fail before plastic hinging can occur in the other columns.

5.2 Column Vertical Reinforcement

Description: Column longitudinal steel requirements generally follow the AASHTO
Specifications guidelines. In Louisiana columns are usually designed as tied columns even
if spiral steel is used. In North Carolina, columns on spread footings are designed for a
column height that is 3'-0" longer than the actual height. The area of the longitudinal
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reinforcement is usually kept between 0.01 to 0.06 of the gross cross-section area of the
column, which satisfies the SPC C vertical reinforcement requirement. In North Carolina, the
minimum longitudinal bar sizes for 36" diameter columns are 8 No. 10 bars for columns under
19"-11", 8 No. 11 bars for columns 20'-0" and over with additional No. 11 bars added in
columns over 45'-0", as per design requirements. In Pennsylvania and New York, the flexural
strength of bridge columns in SPC B is determined based on the AASHTO Seismic
Specification 8.4.1(B), that applies to SPC C. This provision reduces the strength reduction
factor to 0.50 for both spiral and tied columns with high axial stresses (over 0.20f')). This
requirement was introduced to account for the lower ductility capacity of columns with high
axial loads. Representative column vertical reinforcement details are shown in figures 5-1
through 5-5.

Advantages: Providing longitudinal reinforcement as per AASHTO Seismic Specification
8.4.1(B and C) that applies to SPC C to bridges in SPC B, ensures good ductility capacity and
maximizes earthquake resistance.

Disadvantages: The additional reinforcement adds, albeit minimally, to the construction costs
in SPC B.

5.3 Column Transverse Reinforcement

Description: The transverse column reinforcement design and detailing in bridges in SPC A
follows the AASHTO Standard Specification guidelines. In addition, in Louisiana, circular
columns are required to have No. 3 spiral steel at 6" pitch, and are designed as tied columns.
Closed ties are used in square columns. In other states such as Pennsylvania, the use of spiral
reinforcement is not as common. The spiral reinforcement described above does not meet
requirements for seismic reinforcement of plastic hinge zones for SPC C or D.

Bridge columns in SPC B are designed based on AASHTO and additional, state specific,
seismic design and detailing requirements. The additional requirements are often more
stringent than the AASHTO Seismic Specification 8.3 for SPC B which only pertains to the
amount and spacing of transverse reinforcement for confinement at plastic hinges.

Pennsylvania and New Y ork requirements for SPC B are actually very similar to the AASHTO
seismic requirements for SPC C of Sec. 8.4.1(D, E and F), as shown in figure 5-6. Sec.
8.4.1(D) pertains to the column shear capacity and was introduced to account for the reduced
contribution of the concrete to the column shear capacity within the plastic hinge zone at low
axial load levels, and to minimize the potential for column shear failure. Sec. 8.4.1(E) pertains
to the ability of the transverse reinforcement in the expected plastic hinge regions to provide
adequate confinement and prevent buckling of the longitudinal reinforcement. It defines
minimum transverse steel volumetric ratios for spiral and rectangular stirrup reinforcement.
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Sec. 8.4.1(F) specifies maximum spacing and extent of transverse reinforcement for
confinement. The maximum spacing limit in Sec. 8.4.1(F) is the lesser of 4" or one-quarter
of the minimum column dimension, but both Pennsylvania and New York allow a maximum
spacing of 6". The transverse confinement reinforcement is required to extend over a length
from each column end not less then the maximum cross-sectional column dimension or one-
sixth of the clear height of the column, but not less than 18". Lapping of spiral reinforcement
in the transverse confinement regions is not permitted. Connection of spiral reinforcement in
this region must be full yield strength lap length. Similarly, rectangular stirrups must be
adequately anchored by bending ends back into the core at least 135 degrees, with a minimum
extension of 10 bar diameters. Transverse reinforcement outside the plastic hinge regions is
provided as per AASHTO Standard Specifications.

North Carolina transverse reinforcement requirements for SPC B follow the AASHTO Seismic
Specification 8.3, with the additional detailing requirements shown in figure 5-7. All round
columns are required to have No. 4 spiral steel with spacing between spirals set at 3-inch
centers for the whole length of the column. The splice of the spiral column reinforcement is
lapped 24". Representative column transverse reinforcement details are shown in figures 5-6
through 5-9.

Advantages: Using spiral reinforcement in all circular columns, even spiral reinforcement
that does not satisfy the requirements for pitch applicable to the plastic hinge zones in SPC C
and D, improves the confinement of the main longitudinal steel somewhat due to the hoop
stress action. Good confinement of the longitudinal steel, especially in plastic hinge areas,
adds significantly to the ductility capacity of the columns and minimizes the susceptibility to
damage from earthquakes. Keeping the spiral spacing constant for the entire column length
simplifies construction. Closed ties are used in square columns. Square columns allow for
an easier placement of the cap reinforcing bars.

Disadvantages: Providing the additional transverse reinforcing steel requirements in the
plastic hinge areas and keeping the spiral pitch constant along the column length adds to the
amount of steel required.

Historical: During the 1971 San Fernando and the 1989 Loma Prieta earthquakes many
bridge columns failed due to a lack of confinement. Following the 1971 San Fernando
earthquake, column detailing requirements have been changed to ensure adequate
confinement, and after the 1989 Loma Prieta earthquake many states in the eastern U.S. have
added to the transverse reinforcement requirements for SPC B. Bridges in SPC B designed
prior to the current seismic requirements do not have adequate transverse reinforcement in the
plastic hinge regions, but if the axial stress ratio is low (P/f' A, < 0.1) research by Mander et
al. (1993) has shown that the performance should be satisfactory.
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5.4 Column Reinforcement Splices

Description: For bridges in SPC A there are no restrictions regarding the type and location
of splices in column longitudinal reinforcement beyond those of the AASHTO Standard
Specifications. Column reinforcement is usually lapped with dowels at the column base.
Also, the AASHTO Seismic Specifications do not have any special requirements for column
reinforcement splices for SPC B, but Pennsylvania and New York require that the location of
the splices be limited to the center half of the column, as per AASHTO Seismic Specification
8.4.1(F) for SPC C. New York also requires that dowels from the footing extend at least 1/4
of the column height or 10 feet (see figure 5-5) and that splices in the vertical reinforcement
be staggered whenever possible. North Carolina has no restrictions on lap splices for SPC B.
Representative column reinforcement splice details are shown in figures 5-3a, 5-4a, 5-5 and
5-8. '

Advantages: Restricting the location of lap splices away from plastic hinge regions prevents
potential failure due to loss of concrete cover as a result of spalling.

Disadvantages: Splicing the longitudinal steel in the center of the column or using
continuous unspliced column bars from the footing into the bent cap makes the construction
more difficult.

Historical: Splicing the longitudinal reinforcement with dowels cast in the footing at the
column base and the loss of bond during seismic shaking is believed to have been the main
cause of failure of one of the bridges of the Golden-State-Foothills freeway interchange in the
1971 San Fernando earthquake. In most of the existing bridges in the states studied, which
were designed prior to the current seismic requirements, column reinforcement is lap spliced
to the footing dowels near the base of the column, which is a plastic hinge region (see figures
5-3a and 5-4a). In New York and Pennsylvania, this practice has been changed. For frame
pier bents, however, lap splices at the column base may have adequate structure ductility due
to redistribution of moments among the hinges within the frame.

3.5  Extension of Column Reinforcement into Bent Caps and Footings

Description: Vertical reinforcement is required to extend into bent caps for full development
length. Pennsylvania requires that longitudinal reinforcement be developed for its
overstrength capacity of 1.25f, in SPC B columns, as per AASHTO Seismic Specification
8.4.3 for SPC C.

For SPC B Pennsylvania and New York require that column transverse reinforcement for

confinement be continued into the adjoining member for a distance of at least 15" or one half
the maximum column dimension (see figure 5-6), as per AASHTO Seismic Specification
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8.4.3. The spacing of the reinforcement is usually kept the same as that required in the plastic
hinge region. In North Carolina column connections for SPC B are detailed with No. 4 ties
at 3-inch centers for a minimum of one-half the column diameter into the cap and footings (see
figure 5-8). In Louisiana a minimum of four ties are continued into the footing. Extension
of column reinforcement requirements in bent caps and footings are illustrated in figures 5-6
through 5-8.

Advantages: Continuing the column reinforcement into the adjoining members prevents a
plane of weakness at the interface, confines the longitudinal steel beyond the face of the
column and ensures joint ductility.

Disadvantages: The additional steel needed in the bent cap and footing near the column
connection makes the construction more difficult.

Historical: The 1971 San Fernando earthquake when column reinforcement pulled out of
footings, has pointed out the importance of continuing the transverse reinforcement into the
footing. In the past the transverse reinforcement was stopped at the face of the column
connection to the bent cap and the footing. Therefore, many of the existing bridge columns
in SPC A and B lack proper transverse reinforcement extension details into footings and
column bents (see figures 5-3, 5-12 and 6-4). Vertical bars in columns were often required
to extend into cap beams a minimum of 20 bar diameters.

5.6 Column Reinforcing Details at Struts

Description: Struts are sometimes provided in high column bents to reduce the slenderness
ratio and pile loading in the transverse direction. There are no specific design and detailing
requirements for the column strut connection. A typical spiral column reinforcing detail at a
strut joint is shown in figure 5-9. The longitudinal column reinforcement is continuous, and
its confinement is also continued in the strut region. A construction joint in the column is
usually permitted above the strut level. The strut reinforcement is anchored into the column.

Advantages: The column strut connection reinforcing details usually used allow for ease of
construction and, depending on the design criteria used, can be adequate for SPC A and B.
The smaller strut cross section and its lighter reinforcement ensures that damage during larger
seismic loading occurs in the strut first.

Disadvantages: Since the strut reinforcement is not continuous through the column strut joint
and the longitudinal reinforcement is lap spliced right above the strut the column strut
connection can not be regarded as a moment resistant ductile joint, and it can not be expected
to perform well during severe seismic shaking.
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5.7 Pier Wall Design and Reinforcement Details

Description: Piers supporting bridges over railways and located within 25 feet of the
centerline of railroad track are required by AREA Specifications to be protected by a
reinforced concrete crash wall extending to not less than 6 feet above the top of the rail. When
two or more light columns compose a pier, a wall at least 2 feet thick connects the columns.
The face of the crash wall extends a distance of at least six inches beyond the face of the
column on the side adjacent to the track, and is anchored to the column and footing with steel
reinforcement (see figure 5-10). Pier walls used at stream crossings to prevent the
accumulation of debris usually have rounded ends and extend at least one foot above design
flood elevation.

AASHTO Seismic Specification 8.4.1 requires that a vertical support be designed as a column
if the ratio of the clear height to the maximum plan dimensions of the support is equal to or
greater than 2.5, and as a pier if this ratio is under 2.5. A pier may be designed as a wall in
its strong direction and a column in its weak direction. Wall type piers have low ductility
capacity and redundancy in their strong direction and are therefore assigned an R-Factor of
2. There are no special seismic requirements for pier walls in SPC A. For SPC B bridges,
Pennsylvania has adopted the requirements of AASHTO Seismic Specification 8.4.2 (for SPC
C) for the design of pier walls. Sec. 8.4.2 requires a minimum reinforcement ratio of 0.0025
both horizontally and vertically. The maximum reinforcement spacing either horizontally or
vertically is 18", and the shear reinforcement is required to be continuous and uniformly
distributed. Representative pier wall reinforcement details are shown in figures 5-10 through
5-13.

Advantages: Providing minimum requirements for horizontal and vertical reinforcement and
confining ties increases the strength and the ductility of the wall. The ties usually have a 135
degree hook at one end and a 90 degree hook at the other end, so that placing of the tie would
be easier. They are alternately placed on each row of main longitudinal reinforcement to
optimize confinement. Using partial height walls reduces the construction costs.

Disadvantages: It is very hard to predict the response of partial height walls during strong
seismic shaking. Walls are very stiff in their strong direction and attract large forces towards
the connecting columns. Plastic hinging can occur in the columns near the top of the partial
height wall. The shorter columns in the partial height wall will also attract larger seismic
loads. A bent with a partial height wall can receive significantly higher seismic forces than
the other bents that do not have a partial height wall.

Historical: The performance of partial height walls during past earthquakes (especially
during the 1994 Northridge earthquake) has been very poor.
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SECTION 6
BENT CAP DESIGN AND DETAILING ISSUES IN COLUMN BENTS

6.1 Cap Dimensions

Description: There are three basic types of caps that are most common; the rectangular beam
type with the superstructure on top (see figure 6-1), the hammerhead used for the single
column bents (see figures 6-2, 6-3a and 6-4a), and the inverted-T cap (see figures 6-5 and 6-6).
The inverted-T bent cap type is usually used for aesthetic reasons, or when it is necessary to
reduce the overall depth of the cap plus the superstructure. The minimum width of the
rectangular beam caps in Louisiana is at least 4" greater than the column diameter or the
required clearance dictated by the bearing areas. Pennsylvania recommends up to 12" wider
caps than the thickness or diameter of the columns. In North Carolina the minimum size of
the bent caps is 3'-2" wide by 2'-6" deep. The minimum bent cap width is also required to
meet the bearing support length provisions of the AASHTO Specifications for Seismic Design,
Section 4.9.1 for various span lengths and column heights. The cap length is required to
extend at least 9 inches beyond the edge of the extreme bearing plate on steel superstructures
or beyond the anchor bolts on prestressed girder superstructures. Representative bent cap
details are shown in figures 6-1 through 6-6.

Advantages: The wider cap section provides a higher flexure capacity, forcing plastic
moments to develop in the columns. Also, it reduces the conflict between column and bent
cap reinforcement.

6.2 Longitudinal Cap Steel

Description: The longitudinal cap steel is designed in accordance with the AASHTO
Specifications. Both top and bottom longitudinal steel is provided. No. 4 bars at 12" spacing
are required on the vertical faces of caps for shrinkage and temperature. No. 5 bars are
required for massive caps. For hammer head pier caps, Pennsylvania requires that all the
calculated cantilever reinforcement be extended throughout the entire length of the cap. In
deep caps, additional longitudinal bars are placed at intervals throughout the depth of the cap.
No. 5 bars spaced at 12" maximum are required at the bottom of hammer head caps.
Representative longitudinal cap steel details are shown in figures 5-1 through 5-4 and 6-1
through 6-6.

Advantages: When the top and bottom longitudinal reinforcement is made continuous along

the bent the seismic capacity of caps that may be subjected to load reversals is significantly
increased.
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Disadvantages: Continuous reinforcement over the cap makes construction more difficult,
and may result in conflict of steel at column and bent connection.

Historical: Past performance of bent caps during earthquakes has shown that when the
bottom reinforcement stops at the column, cap damage near the column may occur before the
column yields as a result of the high positive moments that can be induced by seismic loading.

6.3  Cap Shear Reinforcement

Description: The maximum stirrup spacing in a bent cap is 12". In Louisiana, the first stirrup
adjacent to the surface of a column is located at a maximum of 3" away from the column and
the first space is under 6". Stirrups are closed, and the minimum size used is No. 4 bars. In
North Carolina, stirrups consist of U-shaped bars with 135 degree hooks ends closed by a tie
with 135 degree hooks. Alternate stirrups are inverted. The end of caps are reinforced with
U-shaped bars. No. 4 U-shaped stirrups at 6-inch centers are placed beneath the bearing area
of each line of girders or beams. Additional reinforcement requirements are specified for the
top reinforcing steel of stepped bent caps (see figure 4-10). For hammer head caps,
Pennsylvania requires that additional stirrups be placed in the cap within the limits of the
shaft. It is recommended that stirrups be closely spaced near the ends of the shaft than in the
interior region. Representative cap shear reinforcement details are shown in figures 5-1
through 5-4 and 6-1 through 6-6.

Advantages: The closed stirrups provide good confinement to the longitudinal steel and

increase the cap ductility and torsional capacity. The closely spaced stirrups near the column
increase the local cap capacity near the column locations.
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INVERTED T EBENT CAP DETAILS
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SECTION 7
FOOTING DETAILS ISSUES

7.1  Footing Design Details

Description: In Louisiana, the most common footings are pile supported, as shown in figures
7-1 and 7-2. Steel H-piles and timber piles are required to penetrate the bottom of the footing
a minimum of 12". The minimum penetration requirement for concrete piles is 6". No
positive pile tension anchorage is required. The minimum spacing of piles is 3'-0" for timber
piles and 3 times the diameter (center to center) for concrete piles 18" and up. A minimum
edge distance from the center of an outside pile to the face of the footing of 1'-6" is required.
The exterior footing piles are sometimes battered to provide the necessary lateral support.
Straps are sometimes used between isolated footings in a column bent to prevent differential
horizontal movement on soft soil or where erosion is possible.

In North Carolina, the footings are either spread footings or pile footings, depending on the
recommendations of the Soils Engineer. The minimum length for interior bent spread footings
is 0.2 times the overall height from the bottom of footing to the crown of roadway to the next
6 inches. Minimum distance centerline to centerline of exterior piles for pile footings is 0.15
times the overall height from the bottom of footing to the crown of roadway to the next 3
inches. The minimum footing thickness in SPC A is 2 feet without piles, and 2 feet 6 inches
with piles. SPC B requires increased footing thickness. The minimum pile penetration
requirement into the footing is 9 inches. No positive pile tension anchorage is required. The
minimum spacing of piles is 2'-6" for timber or steel piles, and 2'-9" for 12" concrete piles.
A minimum of 4 piles per footing is required for pile foundations. If less than six piles are
used, all piles are required to be vertical. Batter piles are used in footings with more than six
piles (see figure 7-3). Struts between footings are required when foundation piles are used
with laterally battered columns.

In Pennsylvania and New York, spread type individual and continuous footings are more
common. Continuous footings are used whenever settlement of any magnitude is possible (see
figure 7-8a).

7.2  Reinforcing Steel Details

Description: In Louisiana, footings are reinforced with a mat of steel 3" above the pile tops.
The bar sizes are determined by design. Sometimes the reinforcing steel is placed between
piles. Vertical dowels anchored into the footing extend into the column. The dowels are
confined in the footing area by a minimum of 4 ties. The length of the dowels above the
footing is determined based on the AASHTO Specifications splice length requirements. No
reinforcement is required for the top of the footing and no shear stirrups are required in the
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footing. In special design cases top footing reinforcement and shear stirrups are provided to
increase footing capacity. Shear keys at the construction joints between the column and the
footing are no longer required and the shear transfer capacity is determined based on dowel
action and friction on a roughened concrete surface as per AASHTO Specifications.

To provide for earthquake forces, North Carolina requires top footing reinforcement consisting
of No. 6 bars at 12-inch centers, except in single column bents in which No. 6 bars at 12-inch
centers or 50% the area of the bottom reinforcement, whichever is greater, is required. These
bars are to be provided in both transverse and longitudinal directions. Confining ties for
longitudinal column reinforcement are provided in SPC B footings (see figure 5-8).

A footing reinforcement layout typical to the Pennsylvania and New York seismic provisions
for SPC B is shown in figure 7-9. The design and detailing requirements for piles are as per
AASHTO Seismic Specification 6.3.1. New York also requires that the minimum top
reinforcement for an individual footing be more than 50% of the area of the designed bottom
reinforcement, but not less than No. 6 bars at 12-inch centers in the transverse and the
longitudinal directions. The minimum top reinforcement for a continuous footing is required
to be at least No. 6 bars at 12-inch centers in the transverse and the longitudinal directions.
All top and bottom reinforcement and footing dowels are required to have 180 degree or 90
degree hooks. Both Pennsylvania and New York require that vertical stirrups connect the top
and bottom mats at a maximum spacing of 48" in both directions. Representative footing
reinforcing steel details are shown in figures 7-1 through 7-9.

Advantages: The requirements for minimum footing width and minimum pile spacing
provide for minimum bent stability. The requirement for confining ties in the footing
improves the dowel pull out capacity. The requirement for top steel reinforcement prevents
cracking of the footing, forcing plastic hinging of the column which is a more desirable failure
mode. The top steel reinforcement and the confining ties in the footing also improve the
column reinforcement pull out capacity.

Disadvantages: When the top of footings has no steel reinforcement, during severe seismic
loading cracking in the footing may occur before column plastic hinging, which is an
undesirable failure mode. Also, in a lightly reinforced footing the column vertical
reinforcement is more likely to pull out of the footing.

Historical: This requirement for ties confining the footing dowels was introduced in the late

1970's as a result of general changes in bridge detailing in California brought about by the
1971 San Fernando earthquake.
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SECTION 8
CONCLUSIONS

The requirements for seismic design of bridges in the eastern states, which are in low to
moderate seismic zones, are not as rigorous as the those used for the design of western bridges.
Most bridges in the east fall in Seismic Performance Categories A and B which have fewer,
and less rigorous, seismic design and detailing requirements. Most bridges in the west fall in
Seismic Performance Categories C and D, where more stringent design and detailing
provisions apply.

Seismic design of bridges in the eastern United States currently follows the AASHTO
Specifications for Seismic Design of Highway Bridges in conjunction with state specific
policies designed to address the unique conditions of each state. Both the AASHTO seismic
specifications and the state policies are constantly refined and updated as technical knowledge
becomes available. The bridge engineering community in the east has become aware of the
nature of the seismic hazard in the central and eastern United States where a very large
magnitude earthquake, larger than the design earthquake, could occur. Engineers in the east
have also become aware of the need to provide reinforcement details that would enhance the
ductility capacity of bridges, even in regions of low seismicity where seismic loads may not
govern lateral load performance and the AASHTO requirements for seismic design are not
very stringent. Therefore, future bridge design and detailing practices in the east and in the
west will have more and more elements in common. At present, similar detailing practices
may be found in superstructures of the same construction type (e.g., concrete box girders), in
bent caps, and to some extent in footings and pier walls. Changes made by several eastern
states in detailing requirements for SPC B, which pertain to the confinement of longitudinal
column reinforcement in plastic hinge regions, the extension of column reinforcement into
bent caps and footings and the provision of top reinforcement in footings will increase the
similarities between east and in the west construction details.

Historically, the development of criteria for seismic design in the east has followed the
developments in the west which has already experienced several damaging earthquakes. It
was only in 1983 that comprehensive seismic criteria have been included as an Alternate
Guide Specification in the AASHTO Specifications, which were adopted by AASHTO in
1991. After the 1989 Loma Prieta earthquake, states like Pennsylvania and New York have
made conservative adjustments to the AASHTO requirements for SPC B to improve resistance
to seismic loading and reduce the potential of catastrophic bridge failure. These adjustments
have resulted in a minimal increase in construction costs.

In the past, most of the bridge designs in the east were made in accordance with previous
standards under which horizontal design loadings were mostly governed by wind, centrifugal
or braking forces.
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The bridge pier types, details and issues outlined in this report are representative of the
practices and seismic policies in the Eastern U.S. In some cases, past practice has also been
discussed. Typical highway bridge designs in the east are different from those in the west.
In the east, most bridge steel or concrete superstructures are supported on piers and single or
multi column bents through bearings. Many of the western bridges have concrete
superstructures that are cast monolithically with single or multi column bents. The bridge pier
types included in the report have been divided into pile bents, column bents and solid wall
piers. They reflect design and construction practices in Louisiana, North Carolina,
Pennsylvania and New York. Many detailing practices in these states are similar, but some
pier types and details are more common in some states than others. In Louisiana, for example
inverted T-caps are very common in current designs and spiral reinforcement in round
columns is a standard detail. Hammerhead caps and continuous footings are more common in
Pennsylvania and New York. North Carolina has standard steel pile bent details. Pile bents
have been addressed separately since they are more common in the east, and the nature of their
response to seismic loads is different. In the past, seismic considerations have not been
included in the design of pile bents in the east. The seismic design of column bents, however,
has been emphasized in design codes, especially after the 1971 San Fernando earthquake when
many column bents were damaged. The seismic design and detailing of pier walls is different
and the report emphasizes the unique nature of the seismic response of partial height walls.
Design and detailing requirements for pile bents, column bents and pier walls are outlined and
example details from actual designs are included. Some of these examples comply with the
current seismic provisions, while others represent older designs made before these
requirements were introduced.
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"Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E.

Richardson and T.D. O'Rourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only
through NTIS (see address given above).
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NCEER-89-0006

NCEER-89-0007

NCEER-89-0008

NCEER-89-0009

NCEER-89-R010

NCEER-89-0011

NCEER-89-0012

NCEER-89-0013

NCEER-89-0014

NCEER-89-0015

NCEER-89-0016

NCEER-89-P017

NCEER-89-0017

NCEER-89-0018

NCEER-89-0019

NCEER-89-0020

NCEER-89-0021

NCEER-89-0022

“A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M.
Subramani, P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465, A06, MF-
A01).

"Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89,
(PB89-218481, A09, MF-AO01).

"Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by
A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229, A06, MF-A01).

"NCEER Bibliography of Earthquake Education Materials,” by K.E.K. Ross, Second Revision, 9/1/89,
(PB90-125352, A05, MF-AO1). This report is replaced by NCEER-92-0018.

“Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D),
Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01).

"Recommended Modifications to ATC-14," by C.D. Poland and J.0. Malley, 4/12/89, (PB90-108648,
Al5, MF-A01).

"Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading,” by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-A01).

"Program EXKAL?2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-AO1).

"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper,
6/1/89, to be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis,” by P.D. Spanos and M.P.
Mignolet, 7/10/89, (PB90-109893, A03, MF-A01).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606, A03, MF-A01).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only
through NTIS (see address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF-A01).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-AQ1). This report
has been replaced by NCEER-93-0011.

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints,” by F.Y.
Cheng and C.P. Pantelides, 8/3/89, (PB90-120445, AO4, MF-A01).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng, T-S. Chang and H-H.M. Hwang,
7/26/89, (PB90-120437, A03, MF-AQ1).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J.
O'Rourke, 8/24/89, (PB90-162322, A10, MF-AQ2).
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NCEER-89-0023
NCEER-89-0024

NCEER-89-0025

NCEER-89-0026

NCEER-89-0027
NCEER-89-0028
NCEER-89-0029

NCEER-89-0030

NCEER-89-0031

NCEER-89-0032

NCEER-89-0033
NCEER-89-0034
NCEER-89—0035
NCEER-89-0036
NCEER-89-0037
NCEER-89-0038
NCEER-89-0039

NCEER-89-0040

"Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-
127424, A03, MF-A01).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S.
Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-A01).

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation,"” by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01). This report is available
only through NTIS (see address given above).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection,”
by A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-
173246, A10, MF-A02).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-A01).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by
H.H.M. Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-A01).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes,” by H.H.M. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-AQ1).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658, A08, MF-AQ1).
"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M.

Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-A01).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89,
(PB90-209388, A22, MF-A03).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by J.M. Bracci,
A .M. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-AO01).

"On the Relation Between Local and Global Damage Indices,” by E. DiPasquale and A.S. Cakmak,
8/15/89, (PB90-173865, A0S, MF-A01).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by A.J. Walker and H.E. Stewart,
7/26/89, (PB90-183518, A10, MF-A0Q1).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese
and L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-A01).

"A Deterministic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294, A03, MF-AO01).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping,” July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB$0-173923, A04, MF-AQ1).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino,
C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-A01).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by J.H.
Prevost, 5/10/89, (PB90-207879, A07, MF-A01).
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NCEER-89-0041

NCEER-90-0001

NCEER-90-0002

NCEER-90-0003

NCEER-90-0004

NCEER-90-0005

NCEER-90-0006

NCEER-90-0007

NCEER-90-0008

NCEER-90-0009

NCEER-90-0010

NCEER-90-0011

NCEER-90-0012

NCEER-90-0013

NCEER-50-0014

NCEER-90-0015

NCEER-90-0016

NCEER-90-0017

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-K. Ho and
A.E. Aktan, 11/1/89, (PB90-251943, A07, MF-A01).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by
T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, A05, MF-A01).

"Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D.
Lutes, 2/28/90, (PB90-251976, A07, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, AQS5, MF-
AQ5). This report has been replaced by NCEER-92-0018.

"Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984,
A05, MF-AQ1).

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3),"
by P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-A01).

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,”
by H.H.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-AQ1).

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station,” by H.H.M. Hwang and C.S.
Lee, 5/15/90, (PB91-108811, A05, MF-A01).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. O'Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-
A01).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829, A04, MF-A01).

"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205, A05, MF-AQ1).

"Program LINEARID for Identification of Linear Structural Dynamic Systems,” by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312, A08, MF-A01).

"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams,"” by A.N. Yiagos,
Supervised by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-AQ2).

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90,
(PB91-110320, A08, MF-A01).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, A11, MF-A(2).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by J.N. Yang and A.
Danielians, 6/29/90, (PB91-125393, A04, MF-AOQ1).

"Instantaneous Optimal Control with Acceleration and Velocity Feedback,” by J.N. Yang and Z. Li,
6/29/90, (PB91-125401, A03, MF-AO01).

"Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,
(PB91-125377, A03, MF-A01).
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NCEER-90-0018

NCEER-90-0019

NCEER-90-0020

NCEER-90-0021

NCEER-90-0022

NCEER-90-0023

NCEER-90-0024

NCEER-90-0025

NCEER-90-0026

NCEER-90-0027

NCEER-90-0028

NCEER-90-0029

NCEER-91-0001

NCEER-91-0002

NCEER-91-0003

NCEER-91-0004

NCEER-91-0005

"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S.
Lee and H. Hwang, 8/10/90, (PB91-125427, AQ9, MF-A01).

"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation
System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-
AO01). This report is available only through NTIS (see address given above).

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a
Spherical Surface,” by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419,
A05, MF-AQ1).

"Dynamic Interaction Factors for Floating Pile Groups,” by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PB91-170381, A05, MF-A0Q1).

"Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,” by S. Rodriguez-Gomez and
A.S. Cakmak, 9/30/90, PB91-171322, AO6, MF-AOL).

"Study of Site Response at a Selected Memphis Site,” by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh,
10/11/90, (PB91-196857, A03, MF-AQ1).

"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and
Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A03, MF-A01).

"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong
and A.H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-AQ1).

"MUMOID User's Guide - A Program for the Identification of Modal Parameters,” by S. Rodriguez-

Gomez and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-A01).

"SARCEF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez,
Y.S. Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-AO01).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris
and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-A01).

"Soil Effects on Earthquake Ground Motions in the Memphis Area,” by H. Hwang, C.S. Lee, K.W. Ng
and T.S. Chang, 8/2/90, (PB91-190751, A05, MF-A01).

"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O'Rourke and M.
Hamada, 2/1/91, (PB91-179259, A99, MF-A04).

"Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee,
1/15/91, (PB91-179242, A04, MF-AQL).

"Seismic Response of Single Piles and Pile Groups,” by K. Fan and G. Gazetas, 1/10/91, (PB92-1749%4,
A04, MF-A01).

"Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91,
(PB92-197235, A12, MF-A03).

"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-AO01). This report
has been replaced by NCEER-93-0011.



NCEER-91-0006

NCEER-91-0007

NCEER-91-0008
NCEER-91-0009
NCEER-91-0010
NCEER-91-0011
NCEER-9 1-0012
NCEER-91-0013

NCEER-91-0014

NCEER-91-0015
NCEER-91-0016
NCEER-91-0017
NCEER-91-0018
NCEER-91-0019
NCEER-91-0020

NCEER-91-0021

NCEER-91-0022

NCEER-91-0023

"A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by
E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-A01).

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for
Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91,
(PB91-210930, A0S, MF-AQ1).

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,”
by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A05, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-
AO1). This report has been replaced by NCEER-92-0018.

"Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile," by N.
Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-AQ1).

"Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C.
Chang, G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02).

"Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers,” by K.C. Chang, T.T.
Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-AQ1).

"Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling,” by S.
Alampalli and A-W.M. Elgamal, 6/20/91, to be published.

"3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures,” by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885, A09, MF-
AQ2).

"Evaluation of SEAOC Design Requirements for Sliding Isolated Structures,” by D. Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602, A1l, MF-A03).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980, A07, MF-A02).

"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar,

R.N. White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-AQ2).

"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar,
R.N. White and P. Gergely, 2/28/91, (PB93-116630, A08, MF-A02).

"Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, A.M. Prasad and W.H. Wu,
7/31/91, to be published.

"Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by I.N. Yang, Z. Li and
A. Danielians, 8/1/91, (PB92-143171, A06, MF-AQ2).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for
U.S. Earthquakes East of New Madrid,” by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742,
A06, MF-A02).

"Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers,” by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998,
Al12, MF-A03).

"A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings,"” by
H.H.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-AQ2).

A-10



NCEER-91-0024

NCEER-91-0025

NCEER-91-0026
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NCEER-92-0005

NCEER-92-0006

NCEER-92-0007

NCEER-92-0008

NCEER-92-0009

NCEER-92-0010

NCEER-92-0011

NCEER-92-0012

NCEER-92-0013

NCEER-92-0014

NCEER-92-0015

"Experimental Verification of a Number of Structural System Identification Algorithms,” by R.G.
Ghanem, H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, ME-A04).

"Probabilistic Evaluation of Liquefaction Potential,” by H:H.M. Hwang and C.S. Lee," 11/25/91, (PB92-
143429, A0S, MF-A01).

“Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers,” by
J.N. Yang and Z. Li, 11/15/91, (PB92-163807, A0O4, MF-A01).

"Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A.
Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03).

“Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese
Case Studies," Edited by M. Hamada and T. O'Rourke, 2/17/92, (PB92-197243, A18, MF-A04).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States
Case Studies,” Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04).

"Issues in Earthquake Education,” Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A02).

"Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited
by I.G. Buckle, 2/4/92, (PB94-142239, A99, MF-A(6).

"Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis,
G. Deodatis and M. Shinozuka, 1/2/92, to be published.

"Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MF-
AQL).

"Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction,” by
M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421, A13, MF-A03).

"A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D.
Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04).

"Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding
Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-AQ2).

"Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J.
Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-AQ2).

"The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, to be
published.

"Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades,
M.C. Constantinou and A.M. Reinhorn, 5/20/92, (PB93-116655, A08, MF-AQ2).

"Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting
and F.A. Cozzarelli, 5/26/92, (PB93-116663, A0S, MF-AOl).

"Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines,” by M.J.
O'Rourke, and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02).

"A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by
M. Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A0S, MF-A0Q1).

A-11



NCEER-92-0016

NCEER-92-0017

NCEER-92-0018

NCEER-92-0019

NCEER-92-0020

NCEER-92-0021

NCEER-92-0022

NCEER-92-0023

NCEER-92-0024

NCEER-92-0025

NCEER-92-0026

NCEER-92-0027

NCEER-92-0028

NCEER-92-0029

NCEER-92-0030

"Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and
Detailing Strategies for Improved Seismic Resistance,” by G.W. Hoffmann, S.K. Kunnath, A.M. Reinhorn
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02).

"Observations on Water System and Pipeline Performance in the Limdn Area of Costa Rica Due to the
April 22, 1991 Earthquake," by M. O'Rourke and D. Ballantyne, 6/30/92, (PB93-126811, A06, MF-AQ2).

"Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.E.K. Ross, 8/10/92,
(PB93-114023, A07, MF-AQ2).

"Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
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"A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and
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9/30/92, (PB93-227783, A05, MF-AOl).
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T.T. Soong, K.L. Shen, J.A. HoLung and Y .K. Lin, 4/12/93, (PB93-198299, A07, MF-AQ2).
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and J-R. Huo, 6/14/94, (PB95-181996, A09, MF-A02).

"Seismic Study of Building Frames with Added Energy-Absorbing Devices," by W.S. Pong, C.S. Tsai and
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(PB96-137161, A08, MF-AQ2).

“Development and Experimental Study of Semi-Active Fluid Damping Devices for Seismic Protection of
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Buckle, 12/1/95, to be published.

“Modeling of Masonry Infill Panels for Structural Analysis,” by A.M. Reinhorn, A. Madan, R.E. Valles,
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