Pendulum Impact Testing of Steel W-Beam Guardrail, FOIL Test Numbers: 94P023-94P027, 94P030, and 94P031
FOREWORD

This report documents the test results from a series of seven pendulum impact tests conducted at the Federal Outdoor Impact Laboratory (FOIL) located at the Turner-Fairbank Highway Research Center (TFHRC). The Federal Highway Administration (FHWA), in cooperation with the Catholic University of America, has been evaluating advanced materials as a possible alternative to conventional steel guardrail systems. Several studies have been sponsored by FHWA to determine the feasibility of composite materials for the use in roadside safety structures. The purpose of this study was to develop a testing procedure for the steel rails that could be used for the comparison testing of composite material rails under development.

This report (FHWA-RD-98-018) contains test data, photographs taken with high-speed film, and a summary of the test results. These tests were full-scale crash tests using a modified pendulum test fixture. The test fixture has been developed as a lower cost alternative to full-scale vehicle crash testing for the comparison and evaluation of composite rail systems.

This report will be of interest to all State departments of transportation; FHWA headquarters; region and division personnel; and highway safety researchers interested in the crashworthiness of roadside safety hardware.

A. George Ostensen, Director
Office of Safety and Traffic Operations Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
PENDULUM IMPACT TESTING OF STEEL W-BEAM GUARDRAIL, FOIL TEST NUMBERS: 94P023 - 94P027, 94P030, and 94P031

5. Report Date
January 1998

6. Performing Organization Code

7. Author(s)
Alrik L. Svenson and Christopher Brown

9. Performing Organization Name and Address
MiTech Incorporated
9430 Key West Avenue, Suite 100
Rockville, MD 20850

10. Work Unit No. (TRAIS)
3A5f3142

11. Contract or Grant No.
DTFH61-94-C-00008

12. Sponsoring Agency Name and Address
Office of Safety and Traffic Operations R&D
Federal Highway Administration
6300 Georgetown Pike
McLean, VA 22101-2296

13. Type of Report and Period Covered
Test Report
October 1994 - November 1994

15. Supplementary Notes
Contracting Officer's Technical Representative (COTR) - Richard K... HSR-20

16. Abstract
This test contains the test results from a series of seven pendulum impact tests conducted at the Federal Outdoor Impact Laboratory (FOIL) pendulum facility located at the Turner-Fairbank Highway Research Center (TFHRC) in McLean, VA. The purpose of this study was to develop an optimal testing procedure to determine the dynamic response for steel guardrail sections so that the behavior of a rail can be evaluated without conducting full-scale vehicle crash tests with automobiles. Standard steel w-beam rail sections were tested in this study; however, the test procedure eventually developed is expected to be used for the evaluation of rails composed of other materials, such as glass fiber-reinforced composite materials.

17. Key Words
Impact testing, pendulum testing, w-beam guardrail, composite materials.

18. Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, Springfield, VA 22161.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
65

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

This form was electronically produced by Etta Federal Forms, Inc.
SI (Modern Metric) Conversion Factors

Approximate Conversions to SI Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>kilometers</td>
<td>km</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>square millimeters</td>
<td>mm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.093</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.836</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.405</td>
<td>hectares</td>
<td>ha</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>square kilometers</td>
<td>km²</td>
</tr>
</tbody>
</table>

Volume

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>milliliters</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>liters</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.765</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>grams</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.454</td>
<td>kilograms</td>
<td>kg</td>
</tr>
<tr>
<td>T</td>
<td>short tons (2000 lb)</td>
<td>0.907</td>
<td>megagrams (or "metric ton")</td>
<td>Mg</td>
</tr>
</tbody>
</table>

Temperature (Exact)

°F Fahrenheit temperature
°C Celsius temperature
°F = 9/5°C + 32

Illumination

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc</td>
<td>foot-candles</td>
<td>10.76</td>
<td>lux</td>
<td>lx</td>
</tr>
<tr>
<td>fl</td>
<td>foot-Lamberts</td>
<td>3.426</td>
<td>candela/m²</td>
<td>cd/m²</td>
</tr>
</tbody>
</table>

Force and Pressure or Stress

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbf</td>
<td>poundforce</td>
<td>4.45</td>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>lbf/in²</td>
<td>poundforce per square inch</td>
<td>6.89</td>
<td>kilopascal</td>
<td>kPa</td>
</tr>
</tbody>
</table>

Length

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.28</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>1.09</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>square millimeters</td>
<td>0.0016</td>
<td>square inches</td>
<td>in²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>10.764</td>
<td>square feet</td>
<td>ft²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>1.195</td>
<td>square yards</td>
<td>yd²</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
<td>2.47</td>
<td>acres</td>
<td>ac</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometers</td>
<td>0.386</td>
<td>square miles</td>
<td>mi²</td>
</tr>
</tbody>
</table>

Volume

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mL</td>
<td>milliliters</td>
<td>0.034</td>
<td>fluid ounces</td>
<td>fl oz</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>0.264</td>
<td>gallons</td>
<td>gal</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>35.71</td>
<td>cubic feet</td>
<td>ft³</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>1.307</td>
<td>cubic yards</td>
<td>yd³</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>grams</td>
<td>0.035</td>
<td>ounces</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
<td>2.202</td>
<td>pounds</td>
<td>lb</td>
</tr>
<tr>
<td>Mg</td>
<td>megagrams (or "metric ton")</td>
<td>1.103</td>
<td>short tons (2000 lb)</td>
<td>T</td>
</tr>
</tbody>
</table>

Temperature (Exact)

°C Celsius temperature
°F Fahrenheit temperature
°C = (°F - 32) * 5/9

Illumination

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>lx</td>
<td>lux</td>
<td>0.0929</td>
<td>foot-candles</td>
<td>fc</td>
</tr>
<tr>
<td>cd/m²</td>
<td>candela/m²</td>
<td>0.2919</td>
<td>foot-Lamberts</td>
<td>fl</td>
</tr>
</tbody>
</table>

Force and Pressure or Stress

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>newtons</td>
<td>0.225</td>
<td>poundforce</td>
<td>lbf</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascals</td>
<td>0.145</td>
<td>poundforce per square inch</td>
<td>lbf/in²</td>
</tr>
</tbody>
</table>

SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

(Revised September 1993)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>TEST MATRIX</td>
<td>1</td>
</tr>
<tr>
<td>PENDULUM MASS</td>
<td>2</td>
</tr>
<tr>
<td>TEST ARTICLE</td>
<td>2</td>
</tr>
<tr>
<td>DATA ACQUISITION</td>
<td>4</td>
</tr>
<tr>
<td>a. Speed Trap</td>
<td>4</td>
</tr>
<tr>
<td>b. Accelerometers</td>
<td>4</td>
</tr>
<tr>
<td>c. Strain Gauge Rosettes</td>
<td>4</td>
</tr>
<tr>
<td>d. Rail Strain Gauges</td>
<td>4</td>
</tr>
<tr>
<td>e. High-Speed Photography</td>
<td>7</td>
</tr>
<tr>
<td>DATA ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>a. Speed Trap</td>
<td>7</td>
</tr>
<tr>
<td>b. Accelerometers and Strain Gauges</td>
<td>8</td>
</tr>
<tr>
<td>c. High-Speed Photography</td>
<td>8</td>
</tr>
<tr>
<td>RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX A. DATA PLOTS FOR TESTS 94P023, 94P024, 94P025, 94P026, 94P027, 94P030, AND 94P031</td>
<td>24</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>59</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Pendulum mass</td>
</tr>
<tr>
<td>2.</td>
<td>Test fixture illustrating strain gauge rosette placement</td>
</tr>
<tr>
<td>3.</td>
<td>Test fixture stress for test 94P030</td>
</tr>
<tr>
<td>4.</td>
<td>Pre-test photographs, test 94P023</td>
</tr>
<tr>
<td>5.</td>
<td>Post-test photographs, test 94P023</td>
</tr>
<tr>
<td>6.</td>
<td>Pre-test photographs, test 94P024</td>
</tr>
<tr>
<td>7.</td>
<td>Post-test photographs, test 94P024</td>
</tr>
<tr>
<td>8.</td>
<td>Pre-test photographs, test 94P025</td>
</tr>
<tr>
<td>9.</td>
<td>Post-test photographs, test 94P025</td>
</tr>
<tr>
<td>10.</td>
<td>Pre-test photographs, test 94P026</td>
</tr>
<tr>
<td>11.</td>
<td>Post-test photographs, test 94P026</td>
</tr>
<tr>
<td>12.</td>
<td>Pre-test photographs, test 94P027</td>
</tr>
<tr>
<td>13.</td>
<td>Post-test photographs, test 94P027</td>
</tr>
<tr>
<td>14.</td>
<td>Pre-test photographs, test 94P030</td>
</tr>
<tr>
<td>15.</td>
<td>Post-test photographs, test 94P030</td>
</tr>
<tr>
<td>16.</td>
<td>Pre-test photographs, test 94P031</td>
</tr>
<tr>
<td>17.</td>
<td>Post-test photographs, test 94P031</td>
</tr>
<tr>
<td>18.</td>
<td>Accelerometer data, acceleration vs. time, test 94P023</td>
</tr>
<tr>
<td>19.</td>
<td>Accelerometer data, velocity vs. time, test 94P023</td>
</tr>
<tr>
<td>20.</td>
<td>Accelerometer data, displacement vs. time, test 94P023</td>
</tr>
<tr>
<td>21.</td>
<td>Accelerometer data, force vs. time, test 94P023</td>
</tr>
<tr>
<td>22.</td>
<td>Accelerometer data, energy vs. time, test 94P023</td>
</tr>
<tr>
<td>23.</td>
<td>Accelerometer data, acceleration vs. time, test 94P024</td>
</tr>
<tr>
<td>24.</td>
<td>Accelerometer data, velocity vs. time, test 94P024</td>
</tr>
<tr>
<td>25.</td>
<td>Accelerometer data, displacement vs. time, test 94P024</td>
</tr>
<tr>
<td>26.</td>
<td>Accelerometer data, force vs. time, test 94P024</td>
</tr>
<tr>
<td>27.</td>
<td>Accelerometer data, energy vs. time, test 94P024</td>
</tr>
<tr>
<td>28.</td>
<td>Accelerometer data, acceleration vs. time, test 94P025</td>
</tr>
<tr>
<td>29.</td>
<td>Accelerometer data, velocity vs. time, test 94P025</td>
</tr>
<tr>
<td>30.</td>
<td>Accelerometer data, displacement vs. time, test 94P025</td>
</tr>
<tr>
<td>31.</td>
<td>Accelerometer data, force vs. time, test 94P025</td>
</tr>
<tr>
<td>32.</td>
<td>Accelerometer data, energy vs. time, test 94P025</td>
</tr>
<tr>
<td>33.</td>
<td>Accelerometer data, acceleration vs. time, test 94P026</td>
</tr>
<tr>
<td>34.</td>
<td>Accelerometer data, velocity vs. time, test 94P026</td>
</tr>
<tr>
<td>35.</td>
<td>Accelerometer data, displacement vs. time, test 94P026</td>
</tr>
<tr>
<td>36.</td>
<td>Accelerometer data, force vs. time, test 94P026</td>
</tr>
<tr>
<td>37.</td>
<td>Accelerometer data, energy vs. time, test 94P026</td>
</tr>
<tr>
<td>38.</td>
<td>Accelerometer data, acceleration vs. time, test 94P027</td>
</tr>
<tr>
<td>39.</td>
<td>Accelerometer data, velocity vs. time, test 94P027</td>
</tr>
<tr>
<td>40.</td>
<td>Accelerometer data, displacement vs. time, test 94P027</td>
</tr>
<tr>
<td>41.</td>
<td>Accelerometer data, force vs. time, test 94P027</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>42.</td>
<td>Accelerometer data, energy vs. time, test 94P027</td>
</tr>
<tr>
<td>43.</td>
<td>Accelerometer data, acceleration vs. time, test 94P030</td>
</tr>
<tr>
<td>44.</td>
<td>Accelerometer data, velocity vs. time, test 94P030</td>
</tr>
<tr>
<td>45.</td>
<td>Accelerometer data, displacement vs. time, test 94P030</td>
</tr>
<tr>
<td>46.</td>
<td>Accelerometer data, force vs. time, test 94P030</td>
</tr>
<tr>
<td>47.</td>
<td>Accelerometer data, energy vs. time, test 94P030</td>
</tr>
<tr>
<td>48.</td>
<td>Accelerometer data, acceleration vs. time, test 94P031</td>
</tr>
<tr>
<td>49.</td>
<td>Accelerometer data, velocity vs. time, test 94P031</td>
</tr>
<tr>
<td>50.</td>
<td>Accelerometer data, displacement vs. time, test 94P031</td>
</tr>
<tr>
<td>51.</td>
<td>Accelerometer data, force vs. time, test 94P031</td>
</tr>
<tr>
<td>52.</td>
<td>Accelerometer data, energy vs. time, test 94P031</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Summary of test conditions</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Summary of camera placement</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Summary of pendulum impact tests</td>
<td>23</td>
</tr>
</tbody>
</table>
BACKGROUND

The Federal Highway Administration (FHWA) in cooperation with The Catholic University of America has been evaluating advanced materials as a possible alternative to conventional steel guardrail systems. One of the alternatives currently under investigation is a rail element composed of fiber-reinforced composite materials. Several studies have been sponsored by FHWA to determine the feasibility of composite materials for the use in roadside safety structures. Energy absorption, localized damage zones, simplified field installation and replacement, low maintenance, and ease of fabrication are some of the advantages of composite materials. The purpose of this research effort is to evaluate the relative performance of steel W-beam guardrail material. The results will serve as baseline data which will be compared to similar tests on the prototype composite rails under development.

SCOPE

This report documents the test results from seven impact tests conducted at the Federal Outdoor Impact Laboratory's (FOIL) pendulum facility located at the Turner-Fairbank Highway Research Center (TFHRC) in McLean, Virginia. The tests were conducted using a modified pendulum test fixture. The test fixture was developed as a lower cost alternative to full-scale vehicle crash testing for the comparison and evaluation of composite rail systems. One of the modifications was replacing the pendulum's crushable nose with a rigid nose. The test article foundation was modified to allow for the testing of a two-post section of guardrail. Strain gauges were attached to monitor the stress in the fixture to ensure that the fixture's structural integrity was not compromised during testing.

was determined during testing that the pendulum did not have adequate travel for the 35-km/h tests; wood spacers were used in between the pendulum mass and the nose. This solved the problem of the pendulum overriding the W-beam rail. The purpose of this study was to develop an optimal testing procedure to determine the dynamic response of steel rails and to compare the response of composite material rails under development. As the testing proceeded, various parameters of the testing conditions were altered to determine the optimal test setup. This approach allowed researchers to solve limitations arising in the setup.

TEST MATRIX

Seven pendulum tests were conducted on a single 1.9-m section of W-beam guardrail. The nominal impact velocities ranged from 10 km/h to 35 km/h. The pendulum mass varied depending on whether spacers were used behind the nose or not. During testing, it was discovered
that the pendulum nose overrode the rail. As a countermeasure, spacers were used to increase the contact time between the pendulum and the rail. The bolt connection between the blockout and the strong post were either real world (i.e., connected in an actual standard guardrail system) or symmetric (i.e., the bolts on the blockout on one end were placed symmetric to those on the other end). Table 1 presents a summary of test conditions for each test in this study.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Test date</th>
<th>Impact velocity (km/h)</th>
<th>Pendulum mass (kg)</th>
<th>Blockout-to-post bolt connection</th>
<th>Spacer behind pendulum nose (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94P023</td>
<td>10-6-94</td>
<td>10</td>
<td>880</td>
<td>real world</td>
<td>none</td>
</tr>
<tr>
<td>94P024</td>
<td>10-7-94</td>
<td>20</td>
<td>880</td>
<td>real world</td>
<td>none</td>
</tr>
<tr>
<td>94P025</td>
<td>10-12-94</td>
<td>30</td>
<td>880</td>
<td>real world</td>
<td>none</td>
</tr>
<tr>
<td>94P026</td>
<td>10-13-94</td>
<td>35</td>
<td>880</td>
<td>real world</td>
<td>none</td>
</tr>
<tr>
<td>94P027</td>
<td>10-18-94</td>
<td>35</td>
<td>880</td>
<td>symmetric</td>
<td>none</td>
</tr>
<tr>
<td>94P030</td>
<td>11-2-94</td>
<td>35</td>
<td>894</td>
<td>symmetric</td>
<td>133</td>
</tr>
<tr>
<td>94P031</td>
<td>11-15-94</td>
<td>35</td>
<td>912</td>
<td>symmetric</td>
<td>325</td>
</tr>
</tbody>
</table>

PENDULUM MASS

The test vehicle was FOIL's 880-kg pendulum. The actual test weight varied depending on the test conditions as shown in table 1. The pendulum consisted of a reinforced concrete mass suspended from a steel structure by four steel cables. Within the concrete mass were two aluminum guide sleeves. A wood nose attached to the two guide tubes was inserted into the guide sleeves. Two accelerometers centered vertically on the rear of the pendulum were used to collect data. The velocity vs. time, displacement vs. time, force vs. displacement, and force vs. time traces were obtained from the accelerometers. Figure 1 depicts the pendulum mass with a solid wood nose.

TEST ARTICLE

The test article was a 1.9-m span of steel w-beam guardrail connected to two strong posts and blockouts. The posts were 711 mm
Figure 1. Pendulum mass.
high, and the center of the guardrail was 533 mm high, which are both typical heights for standard w-beam guardrail systems. Four strain gauges were placed on the middle of the w-beam rail. The strain gauges were placed vertically on the middle of the w-beam and midway laterally between the posts and the impact location.

DATA ACQUISITION

For each of the tests, speed trap, accelerometer, and strain gauge data were collected. In addition, strain gauge rosettes were placed on the support structure of the guardrail posts to measure the stress, and ensure that the integrity of the test fixture was not compromised.

a. **Speed Trap.** A speed trap, consisting of multiple LED infrared scanners placed a known distance apart, were used to measure the pendulum speed before impact. Signals from the sensors were recorded on a Honeywell model 5600 E analog tape recorder. The signals were stored on analog tape for future analysis.

b. **Accelerometers.** Two longitudinal (x-axis) 100-g accelerometers were mounted at the center of the rear face of the pendulum. The accelerometer signals were recorded by the FOIL on-board data acquisition system (ODAS) III/8. The ODAS III/8 is a self-contained data acquisition system providing transducer excitation, signal conditioning, 4000 Hz prefiltering, 12,500 Hz digital sampling, and digital storage for up to eight channels. The data was collected then downloaded to a portable computer.

C. **Stain Gauge Rosettes.** A total of three strain gauge rosettes were placed on the guardrail post mounting fixture to determine loading on the pendulum fixture. The purpose of this was to ensure that the fixture was not stressed beyond its design limit. Figure 2 illustrates the test fixture assembly and rosette placement. The test fixture stress for test 94P030 is shown in figure 3. This figure shows that the peak strain occurring in the test fixture was 80 με, and it is apparent that the fixture performed as intended. For further information on the design of this test fixture, refer to reference 5.

d. **Rail Strain Gauges.** Data from four single-gauge strain gauges were recorded during the pendulum tests. The four single-gauge strain gauges were attached to the w-beam specimen. Two gauges were placed on the front and two gauges were placed on the back of the guard rail. Each front and back pair was placed at the same location vertically and laterally. The gauges were placed at the same locations for each test. The gauges were positioned in the middle of the valley of the w-beam vertically and midway between the impact point and the I-section.
Figure 3. Test fixture strain for test 94P030.
Figure 2. Test fixture illustrating strain gauge rosette placement.
strong posts laterally. The w-beam strain gauge data was recorded by the FOIL ODAS III system.

e. High-Speed Photography. The crash tests were photographed using five high-speed cameras with an operating speed of 500 frames/s. All high-speed cameras used Kodak 2253 daylight film. The high-speed film was analyzed for impact speed data. In addition to the high-speed cameras, one real-time camera loaded with Kodak 7239 daylight film and two 35-mm still cameras were used to document the test. Table 2 summarizes the cameras used and their respective placements.

<table>
<thead>
<tr>
<th>Camera</th>
<th>Type</th>
<th>Film speed (frames/s)</th>
<th>Lens (mm)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LOCAM II</td>
<td>500</td>
<td>100</td>
<td>Right 90° to impact</td>
</tr>
<tr>
<td>2</td>
<td>LOCAM II</td>
<td>500</td>
<td>16</td>
<td>Overall</td>
</tr>
<tr>
<td>3</td>
<td>LOCAM II</td>
<td>500</td>
<td>50</td>
<td>Right side 45° to impact</td>
</tr>
<tr>
<td>4</td>
<td>LOCAM II</td>
<td>500</td>
<td>50</td>
<td>Left side 45° to impact</td>
</tr>
<tr>
<td>5</td>
<td>LOCAM II</td>
<td>500</td>
<td>25</td>
<td>Overhead</td>
</tr>
<tr>
<td>6</td>
<td>BOLEX</td>
<td>24</td>
<td>ZOOM</td>
<td>Documentary</td>
</tr>
<tr>
<td>7</td>
<td>CANNON AB-1</td>
<td>still</td>
<td>ZOOM</td>
<td>Documentary</td>
</tr>
<tr>
<td>8</td>
<td>CANNON AF-1</td>
<td>still</td>
<td>ZOOM</td>
<td>Documentary</td>
</tr>
</tbody>
</table>

DATA ANALYSIS

Data were collected via the FOIL analog tape recorder system, including speed-trap data; the FOIL ODAS III on-board data acquisition system; and high-speed film.

a. Speed Trap. The speed trap consisted of a set of four LED infrared emitter/receiver pairs fastened on opposite sides of the pendulum’s swing path at 152-mm intervals. One set was positioned before the impact area to measure the pre-impact pendulum velocity. As the pendulum passed through the infrared scanners, electronic pulses were recorded on analog tape. The tape was played back through a Data Translation A/D converter and the time between pulses was
determined. The time-distance data was entered into a computer
spreadsheet and a linear regression was performed on the data to
determine the pendulum speed before impact.

b. **Accelerometers and Strain Gauges.** The data from the
accelerometers and strain gauges were digitally recorded and converted
to the ASCII format. The sampling rate during data acquisition was
2000 Hz for data recorded via the FOIL umbilical cable (rosette strain
gauges) and 12,500 Hz for data recorded via the ODAS III on-board
system (accelerometers and w-beam strain gauges). The ASCII files
were processed, which included removal of zero-bias, storing the
region of interest, and digitally filtering the data to 300 Hz (Class
180). The rosette data was filtered at 100 Hz. The data was imported
into a spreadsheet for plotting and analysis.

C. **High-Speed Photography.** Films obtained from the high-speed
cameras were used for visual inspection of the impact event and were
available for use in cases in which there was a failure in electronic
data collection.

RESULTS

A summary of test results is presented in table 3. Included in
the table are the pertinent data from all tests and the maximum front-
and back-rail strain data from tests 94P030 and 94P031. Pre- and
post-test photographs illustrating each test are presented in figures
4-17. Accelerometer data from the tests, including acceleration vs.
time, velocity vs. time, displacement vs. time, force vs. time, and
energy vs. time, are presented for all seven tests in appendix A.

The peak force occurring in tests 94P023-27 is attributed to the
fact that no wood spacer was used for the tests. This inertial ring
was reduced somewhat in the two tests with wood spacers (tests 94P030
and 94P031). The wood spacer also allowed for better contact between
the pendulum and the rail. It was discovered during testing at 35
km/h (tests 94P026 and 94P027) that the pendulum overrides the rail.
Initially, a 133-mm spacer was installed to solve the problem (as in
test 94P030). This was found to be inadequate, so a spacer of 325 mm
was used in test 94P031. Even with this improvement, the rail was not
completely failed by the 35-km/h impact of the pendulum. Instead, a
bolt failed during maximum loading. Testing was halted at this point
in order to reevaluate the test setup.
Figure 4. Pre-test photographs, test 94P023.
Figure 5. Post-test photographs, test 94P023.
Figure 6. Pre-test photographs, test 94P024.
Figure 7. Post-test photographs, test 94P024.
Figure 8. Pre-test photographs, test 94P025.
Figure 9. Post-test photographs, test 94P025.
Figure 10. Pre-test photographs, test 94P026.
Figure 11. Post-test photographs, test 94P026.
Figure 12. Pre-test photographs, test 94P027.
Figure 13. Post-test photographs, test 94P027.
Figure 14. Pre-test photographs, test 94P030.
Figure 15. Post-test photographs, test 94P030.
Figure 16. Pre-test photographs, test 94P031.
Figure 17. Post-test photographs, test 94P031.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Speed Trap Data</th>
<th>Accelerometer Data</th>
<th>Strain Gauge Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impact Speed (km/h)</td>
<td>Peak Force (1000 N)</td>
<td>ΔV (m/s)</td>
</tr>
<tr>
<td>94P023</td>
<td>9.2</td>
<td>29.2</td>
<td>3.2</td>
</tr>
<tr>
<td>94P024</td>
<td>20.2</td>
<td>39.7</td>
<td>5.6</td>
</tr>
<tr>
<td>94P025</td>
<td>29.9</td>
<td>93.4</td>
<td>8.4</td>
</tr>
<tr>
<td>94P026</td>
<td>34.9</td>
<td>102.5</td>
<td>4.4</td>
</tr>
<tr>
<td>94P027</td>
<td>35.2</td>
<td>93.8</td>
<td>4.4</td>
</tr>
<tr>
<td>94P030</td>
<td>34.8</td>
<td>65.0</td>
<td>5.5</td>
</tr>
<tr>
<td>94P031</td>
<td>34.8</td>
<td>87.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>

CONCLUSIONS

From the strain gauge rosette data, it was confirmed that there was no problem in the design of the test fixture foundation in terms of over stressing the fixture. Through the course of testing, it was determined that an optimal spacer length of 325 mm was needed to provide the necessary contact time required for a complete impact of the rail. From resulting test data, it was determined that the single span of rail setup was not sufficient to fail the rail at a pendulum impact of 35 km/h. Therefore, in order to determine the force required to break the rail and determine the dynamic response of the rail, a new test setup needed to be developed. It was proposed that end tension applied to the ends of the rail section would better emulate the actual field conditions of a guardrail impact. Also, the use of three spans of rail for testing would reduce the problems encountered with the posts twisting as seen in these series of tests.
APPENDIX A. DATA PLOTS FOR TESTS 94P023, 94P024, 94P025, 94P026, 94P027, 94P030, AND 94P031

Figure 18. Accelerometer data: acceleration vs. time, test 94P023.

TEST NO. 94P023

Acceleration vs. time

(s, g)
Figure 19. Accelerometer data, velocity vs. time, test 94P023.
Figure 20. Accelerometer data, displacement vs. time, test 94P023.
Figure 21. Accelerometer data, force vs. time, test 94P023.
Figure 22. Accelerometer data, energy vs. time, test 94P023.
Figure 23. Accelerometer data, acceleration vs. time, test 94P024.
Figure 24. Acceleration data, velocity vs. time, test 94P024.
Figure 25. Accelerometer data, displacement vs. time, test 94P024.
Figure 26. Accelerometer data, force vs. time, test 94P024.
Figure 27. Accelerometer data, energy vs. time, test 94P024.
TEST NO. 94P025

Velocity vs. time

Figure 29. Accelerometer data, velocity vs. time, test 94P025.
Figure 30. Accelerometer data, displacement vs. time, test 94P025.
Figure 31. Accelerometer data, force vs. time, test 94P025.
Figure 32. Accelerometer data, energy vs. time, test 94P025.
Figure 33. Accelerometer data, acceleration vs. time, test 94P026.
Figure 34. Accelerometer data, velocity vs. time, test 94P026.
Figure 35. Accelerometer, displacement vs. time, test 94P026.
Figure 36. Accelerometer data, force vs. time, test 94P026.
Figure 37. Accelerometer data, energy vs. time, test 94P026.
TEST NO. 94PC27

Acceleration vs. time

Figure 38. Accelerometer data, acceleration vs. time, test 94PC27.
Figure 39. Accelerometer data, velocity vs. time, test 94P027.
Figure 40. Accelerometer data, displacement vs. time, test 94P027.
Figure 41. Accelerometer data, force vs. time, test 94P027.
Figure 42. Accelerometer data, energy vs. time, test 94P027.
Figure 43. Accelerometer data, acceleration vs. time, test 94P030.
Figure 44. Accelerometer data, velocity vs. time, test 94P030.
Figure 45. Accelerometer data, displacement vs. time, test 94P030.
Figure 46. Accelerometer data, force vs. time, test 94P030.
Figure 47. Accelerometer data, energy vs. time, test 94P030.
Figure 48: Accelerometer data, acceleration vs. time, test 94P031.
Figure 49. Acceleration data, velocity vs. time, test 94P031.
Figure 50. Acceleration data, displacement vs. time, test 94P031.
Figure 51. Acceleration data, force vs. time, test 94P031.
Figure 52. Accelerometer data, energy vs. time, test 94P031.
REFERENCES

