OPTIMAL DESIGN OF MERGE-IN-TRANSIT DISTRIBUTION NETWORKS

MBTC FR-1064

Michael Cole and Mukundh Parthasarathy

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.
OPTIMAL DESIGN
OF
MERGE-IN-TRANSIT DISTRIBUTION NETWORKS

Michael H. Cole, Ph.D.
Assistant Professor

Mukundh Parthasarathy
M.S.I.E. Graduate Student

Department of Industrial Engineering
University of Arkansas
Fayetteville, Arkansas

July 1998
Optimal Design of Merge in Transit Distribution Networks

Michael H. Cole, Ph.D., Mukundh Parthasarathy

Mack-Blackwell Transportation Center
4190 Bell Engineering Center
University of Arkansas
Fayetteville, AR 72701

Mack-Blackwell Transportation Center
4190 Bell Engineering Center
University of Arkansas
Fayetteville, AR 72701

Supported by a Grant from the US Dept of Transportation Centers' program.

Merge-in-transit operations work as follows: a carrier picks up separate loads from two or more different warehouses, transports the loads to a location near their final destination, and then performs a “merge” operation. At the simplest, the merge operation comprises consolidating the loads in a cross-dock operation. In more complex systems, the merge operation comprises consolidation and a value-added process such as assembly.

The report develops a simple optimization model and GIS-based decision support system for determining the number (if any) and location of merge points in a distribution network and determining whether such merge points should perform additional value-added steps such as assembly.

merge-in-transit, transportation, value-added, location, optimization, GIS

25

NA

NA

20. LIMITATION OF ABSTRACT
TABLE OF CONTENTS

TABLE OF CONTENTS ... ii

TABLE OF FIGURES ... iii

TABLE OF TABLES ... iii

CHAPTER 1 – INTRODUCTION .. 1

CHAPTER 2 – LITERATURE REVIEW .. 3
 2.1. Logistics Network Models ... 3
 2.2. Decision Support Systems for Logistics Network Design 4

CHAPTER 3 – MATHEMATICAL MODEL .. 6
 3.1. Assumptions ... 6
 3.2. Notation .. 6
 3.3. Mathematical Formulation .. 7
 3.4. Computation ... 9

CHAPTER 4 – DECISION SUPPORT SYSTEM ... 11
 4.1. Geographic Information System .. 11
 4.2. Database ... 13
 4.3. Solution Package .. 16

CHAPTER 5 – CONCLUSIONS ... 17

REFERENCES .. 18

APPENDIX A – AMPL MODEL FILE ... 20

APPENDIX B – SAMPLE AMPL DATA FILE .. 22

APPENDIX C – PROTOTYPE DATABASE TABLES ... 24
TABLE OF FIGURES

Figure 1 - Conceptual Framework for Decision Support System 11
Figure 2 - GIS Main Screen... 12
Figure 3 - Node Dialog Box .. 13

TABLE OF TABLES

Table 1 – Node Data Table.. 14
Table 2 – Product Data Table.. 14
Table 3 – Merge Formula Data Table... 14
Table 4 – Channel Data Table.. 15
Table 5 – Node-Product Data Table.. 15
Table 6 – Channel-Product Data Table.. 15
Table 7 – Product Data Table (Prototype).. 24
Table 8 – Source Data Table (Prototype).. 24
Table 9 – Customer Data Table (Prototype).. 24
Table 10 – Channel Data Table (Prototype)... 24
Table 11 – Merge Point Data Table (Prototype)................................. 25
Table 12 – Merge Formula Data Table (Prototype)............................... 25
CHAPTER 1 – INTRODUCTION

Merge-in-transit operations work as follows: carriers (e.g., trucks) pick up separate loads from two or more sources (e.g., ports, factories, or distribution centers) and transport the loads to a location near their final destination where a "merge" operation is performed. At the simplest, the merge operation comprises consolidating the loads in a cross-docking operation. In more complex systems, the merge operation includes a value-added step such as assembly. A key advantage of merge-in-transit networks over traditional distribution networks is that merge points can often be opened or closed quickly and cheaply, depending on the type of merge operation being performed. In general, customer service will be improved by having merge points that are closer than existing warehouses. Merge-in-transit is especially useful to companies expanding into new geographical regions that are not well served by their existing distribution network.

This research has two objectives. One, to extend existing production models to account for the merge-in-transit environment. Two, to develop a user-friendly GIS (geographic information system) based decision support system for designing merge-in-transit networks.

The modeling portion of this research involves developing a simple mathematical model for designing distribution networks that enables consideration of merge-in-transit costs simultaneously with production, warehousing, and inventory costs. Outputs of the model include number, location and type of merge points, selection of transportation channels, allocation of customers/retailers to merge points,
and disposition of inventories. This model is a straightforward extension of existing mathematical models.

The user interface portion of this research involves prototyping the model in a user-friendly Microsoft Windows™-based PC environment so that the model will be accessible to industry practitioners. The prototype decision support system enables rapid “what-if” analyses.

The research is useful to both carriers and shippers. Carriers (and third party logistics providers) can use the model to rapidly design their own merge-in-transit networks and to show potential customers the benefits of partnering. Shippers can use the model to consider alternatives to their traditional distribution networks.
CHAPTER 2 – LITERATURE REVIEW

This chapter reviews selected literature related to merge-in-transit distribution. The objective is to detail selected recent and significant material, not to provide an exhaustive review. Section 2.1 details relevant logistics network models. Section 2.2 covers decision support systems (DSS) for logistics network design.

2.1. Logistics Network Models

Glover and Klingman (1977) and Glover et al (1978) are seminal papers on the practical application of generalized networks. Generalized networks differ from pure networks in that they permit commodity transformations on arcs and at nodes. For instance, a group of commodities might be transformed into a different commodity at a node representing an assembly point. A merge-in-transit network is an example of a generalized network.

Garg and Tang (1997) and Lee and Tang (1997) discuss the use of delayed product differentiation to provide relatively inexpensive service to markets that demand high levels of product variety. Their analysis concentrates on inventory levels in a multi-level production process. One of their key findings is that delayed product differentiation can lead to reduced buffer inventories. For further research they
suggest developing models for studying the relationship between the benefits of delayed product differentiation and the costs of distribution.

Van Hoek and Commandeur (1998) describe case study research on the use of postponement strategies that enable “mass customization” of products. They study a number of European and American companies. They conclude that postponement strategies are an important means of improving customer service, but that the anticipated benefits can be hard to obtain. Achieving the benefits requires that management have a firm vision of the future and be committed to process reengineering. As a supplement to their case study research, they recommend development of “calculation models” for cost benefit analysis.

Slats, et al, (1995) cautions that logistics network analysis that starts with the mathematical model can be inadequate. Instead, they suggest starting the analysis with a view to data availability. They also stress the need to be able to rapidly develop new models and extend old ones when working with real-world logistics systems.

2.2. Decision Support Systems for Logistics Network Design

Goeschalckx, et al, (1994) discuss the development of a graphical-based computer system for designing logistics networks. They developed their own simple GIS (geographic information system) and used a flat file database. ESRI provides MapObjects™, a simple geographic information system that can be easily integrated in a user-defined Microsoft Visual Basic™ program. GIS programs such as this are significant in that they enable researchers to develop quality prototypes rapidly and inexpensively.
Fourer, et al (1993) describe AMPL, an algebraic mathematical modeling language. AMPL enables the rapid development and debugging of models that can be easily hooked to commercial database programs. Such capabilities are very important since the design of decision support system is an ongoing process subject to revisions dictated by users.
CHAPTER 3 – MATHEMATICAL MODEL

This chapter details a mathematical model for designing optimal merge-in-transit distribution networks. Section 3.1 lists some basic assumptions. Section 3.2 covers the mathematical notation. Section 3.3 presents the mathematical formulation in traditional form. Section 3.4 discusses computation issues.

3.1. Assumptions

The model is an uncapacitated multicommodity generalized network. There are two classes of products: inputs and outputs. The nodes represent three types of nodes: sources, customers, and merge points. The set of potential sources, potential merge points, and customers is known. Sources supply input products. Merge points assemble input products into output products. Customers consume output products.

3.2. Notation

Sets and Indexes

C – set of customers
I, J, K – sets of nodes (e.g., ports, factories, warehouses, customers)
M – set of potential merge points
S – set of sources
IP – set of input products
OP – set of output products
Parameters

\(r_{jp} \) - units of input product \(p \) required to produce one unit of output product \(\hat{p} \)

\(A_{jp} \) - cost to produce one unit of output product \(p \) at node \(j \)

\(C_{ip} \) - cost to transport one unit of product \(p \) from node \(i \) to node \(j \) (\(p \in IP \cup OP \))

\(D_{sp} \) - demand for output product \(p \) at customer \(c \)

\(S_{jp} \) - supply of input product \(p \) at node \(j \) (\(j \in S \))

\(OpenCost_j \) - cost to open facility \(j \) (\(j \in S \cup M \))

\(CloseCost_j \) - cost to close facility \(j \) (\(j \in S \cup M \))

Independent (Decision) Variables

\(x_{ijp} \) - units of product \(p \) shipped from \(i \) to \(j \) (\(p \in IP \cup OP \))

\(z_j \) - 1 if facility \(j \) is open, 0 if closed (\(j \in S \cup M \))

Dependent Variables

\(w_{jp} \) - units of input product \(p \) consumed at node \(j \) (\(j \in M \))

\(y_{jp} \) - units of output product \(p \) assembled at node \(j \) (\(j \in M \))

3.3. Mathematical Formulation

Minimize:

\[
\sum_i \sum_j \sum_{p} C_{ip} x_{ijp} + \sum_j \sum_{p \in OP} A_{jp} y_{jp} + \sum_j OpenCost_j z_j + \sum_j CloseCost_j (1 - z_j)
\]
Subject to:

\[y_{jp} = \sum_{k} x_{j kp} - \sum_{i} x_{i jp} \quad \forall \ j \in M, p \in OP \] (2)

\[w_{jp} = \sum_{i} x_{i jp} - \sum_{k} x_{j kp} \quad \forall \ j \in M, p \in IP \] (3)

\[w_{jp} \geq \sum_{\tilde{p} \in OP} r_{\tilde{p} p} y_{\tilde{p} p} \quad \forall \ j \in M, p \in IP \] (4)

\[\sum_{j} x_{i jp} \leq S_{i p} z_{i} \quad \forall \ i \in S, p \in IP \] (5)

\[\sum_{i} x_{i jp} = D_{jp} \quad \forall \ j \in C, p \in OP \] (6)

\[x_{i jp} \leq D_{jp} z_{i} \quad \forall \ i \in M, j \in C, p \in OP \] (7)

\[x_{i jp} \geq 0 \quad \forall \ i, j, p \] (8)

\[y_{jp} \geq 0 \quad \forall \ j \in M, p \in OP \] (9)

\[w_{jp} \geq 0 \quad \forall \ j \in M, p \in IP \] (10)

Equation 1 is the objective function which comprises transportation costs, assembly costs, and facility (opening and closing) costs. The transportation cost on a channel is determined by multiplying the total weight shipped by a cost factor. There are no quantity discounts. The assembly cost at a merge point is determined by multiplying the unit assembly cost by the amount of output product assembled. The fixed facility cost comprises two elements: cost to close an existing open facility and cost to open a new (closed) facility. Note that the previous facility state (opened or closed) is not embedded in the model; it must be accounted for in the particular data.
on a case by case basis. For instance, if a particular merge point is currently closed, its closing cost would probably be set to zero.

Equation 2 determines the amount of each output product assembled at a merge point by subtracting the amount that enters a node from the amount that leaves the node. If merge points were allowed to consume or supply (rather than assemble) output products then this constraint would need to be modified. If the assembly process generates substantial scrap, then the related assembly cost in the objective function would need to be modified.

Equation 3 determines the amount of each input product consumed at a merge point by subtracting the amount leaving the node from the amount entering the node. Equation 4 regulates assembly flow conservation. According to this constraint, the amount of input products consumed at a merge point limits the amount of output products assembled.

Equation 5 ensures supply capacity is not exceeded and that supplies come only from open sources. Equation 6 ensures that customer demand is satisfied. Equation 7 states that only open merge points can ship to customers.

Equation 8 prevents negative flows. Equation 9 prevents disassembly. Equation 10 prevents reverse consumption.

3.4. Computation

The time required to solve an uncapacitated problem is often directly related to the problem size. If we let each set name stand for the cardinality of that set, then the problem size is approximately:
Number of variables: number of channel-product combinations

Number of constraints: OP * (M + C) + IP * (2M + S).

Several test cases were run in which the model was programmed using the AMPL modeling language and solved via XLSOL. Appendix B gives a representation of the model in the AMPL modeling language. Appendix C shows a sample AMPL data file. In general, solution times were less than a few minutes. For capacitated problems, solution times can be expected to be longer and much more variable. This is an area for future researchers to examine.
CHAPTER 4 – DECISION SUPPORT SYSTEM

Figure 1 shows the conceptual framework for the DSS (decision support system). The user interacts with the GIS (geographic information system) which functions as a graphical user interface. In the prototype software the GIS is ESRI MapObjects™, an add-on to Microsoft Visual Basic™. The GIS provides an interface to the database, in this case Microsoft Access™. When the data are organized, the GIS interfaces to the math model, in the form of AMPL™. AMPL™ in turn calls the solver, XLSOL™ in the prototype.

4.1. Geographic Information System

The GIS program is based on moView, a sample application program that is included free with ESRI MapObjects. Figure 2 shows the main screen. The user is
able to click on a city (or pair of cities for channels) to input or edit data.

Communication with AMPL is effected via the menu.

![GIS Main Screen](image)

Figure 2. GIS Main Screen

Figure 3 shows the dialog box that pops up when the user clicks on a city. The dialog box enables the user to query the database and edit the database with respect to the node-related data tables. Similar dialog boxes are used to edit the channel and product related data tables.
4.2. Database

The database should be structured in the following tables: Node, Product, Merge Formula, Channel, Node-Product, and Channel-Product. In general, each table is keyed to one or more names. For instance, the Node table is keyed to unique node names and the Channel-Product table is keyed to unique channel names and unique product names.

Table 1 lists the fields of the Node data table. The Status is the only output field; the other fields are inputs. The fields for Fixed Cost have no meaning for customer nodes.
Table 1. Node Data Table

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (source, merge point, customer)</td>
</tr>
<tr>
<td>Location (zip code)</td>
</tr>
<tr>
<td>Fixed Cost if Open</td>
</tr>
<tr>
<td>Fixed Cost if Closed</td>
</tr>
<tr>
<td>Status (open or closed)</td>
</tr>
</tbody>
</table>

Table 2 lists the fields of the Product data table. The part weight is used to calculate transportation costs. All of the fields are inputs.

Table 2. Product Data Table

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (input or output)</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

Table 3 lists the fields of the Merge Formula data table. For each output product, there is a record for each associated input product. The field Number of Inputs tells how many units of the input product are needed to assemble one unit of the output product. In general, each output product requires several different input products. All of the fields are inputs.

Table 3. Merge Formula Data Table

<table>
<thead>
<tr>
<th>Output Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Product Name</td>
</tr>
<tr>
<td>Number of Inputs per Output</td>
</tr>
</tbody>
</table>
Table 4 lists the fields of the Channel data table. All of the fields are inputs.

Table 4. Channel Data Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin node</th>
<th>Destination node</th>
<th>Cost (per weight)</th>
</tr>
</thead>
</table>

Table 5 lists the fields in the Node-Product data table. All of the elements in this table are inputs. The Cost and Amount fields require some explanation. For source nodes, Cost is simply the cost and Amount is the supply capacity. For customer nodes, Cost could represent the revenue and Amount is the demand. For merge nodes, the Cost and Amount fields have no meaning for merge nodes.

Table 5. Node-Product Data Table

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Product Name</th>
<th>Cost ($ per product)</th>
<th>Amount (supply or demand)</th>
</tr>
</thead>
</table>

Table 6 lists the fields in the Channel-Product data table. The Amount is the amount of product that flows on the channel; it is an output of the model.

Table 6. Channel-Product Data Table

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Product Name</th>
<th>Amount</th>
</tr>
</thead>
</table>
An earlier version of the database structure is described in an appendix. The prototype software currently still uses that obsolete version of the database.

4.3. Solution Package

The solution package used in the prototype comprised AMPL+, a mathematical modeling language, and XLSOL, a solver.
CHAPTER 5 – CONCLUSIONS

This research developed a simple mathematical model and decision support system for designing merge-in-transit distribution networks. Such networks are increasingly important in today’s competitive business environment as companies invest in efforts to provide good customer service rather than invest in conventional warehouse-dominated distribution networks.

Future research should include a full parametric analysis of the model to determine how sensitive solutions are to the various parameters. Future research should concentrate on extending the model to account for capacities, additional costs, and different cost structures (e.g., economies-of-scale). Future research should also consider modeling the system dynamically using simulation or multi-period network models. Researchers are advised to keep their models parsimonious since data collection can be a real challenge.
REFERENCES

APPENDIX A – AMPL MODEL FILE

###########
merge-in-transit network design
#
Mike Cole and Mukundh Parthasarathy
June 3, 1998
#

set I_PROD; # input product
set O_PROD; # output product
set PROD := I_PROD union O_PROD;

set S_CITY; # supply points
set M_CITY; # merge points
set C_CITY; # customer points
set CITY := S_CITY union M_CITY union C_CITY;

set LINKS within (CITY cross CITY);

param opening_cost {S_CITY union M_CITY};
param closing_cost {S_CITY union M_CITY};

param prod_weight (PROD) >=0; # product weight
param link_cost (LINKS) >=0; # transportation cost / weight
param link_capy (LINKS) >=0; # transport capacity (weight)

param assy_rate (p1 in I_PROD, p2 in O_PROD) >= 0; # units p1 per p2
param assy_cost (M_CITY, O_PROD) >=0; # unit assembly cost
param assy_capy (M_CITY, O_PROD) >=0; # assembly capacity

param supply {S_CITY,PROD} >= 0; # amt available at supplier

param demand {C_CITY,O_PROD} >= 0; # amt demanded at customer

var Open {i in S_CITY union M_CITY} binary >= 0;

var Ship {((i,j) in LINKS, p in PROD) >= 0;

var Consume {j in M_CITY, p in I_PROD} >= 0;
var Assemble {j in M_CITY, p in O_PROD} >= 0;

minimize Total_cost:
 sum {((i,j) in LINKS, p in PROD)
 link_cost[i,j] * prod_weight[p] * Ship[i,j,p] +
 sum {j in M_CITY, p in O_PROD} assy_cost[j,p] * Assemble[j,p] +
 sum {j in S_CITY union M_CITY} opening_cost[j] * Open[j] +
 sum {j in S_CITY union M_CITY} closing_cost[j] * (1-Open[j])
;
subject to Supply_capacity (i in S_CITY, p in PROD):
 sum ((i,j) in LINKS) Ship[i,j,p] <= supply[i,p] * Open[i];

subject to Amount_assembled (j in M_CITY, p in O_PROD):
 Assemble[j,p] = (sum ((j,k) in LINKS) Ship[j,k,p]) - (sum ((i,j) in LINKS) Ship[i,j,p]);

subject to Amount_consumed (j in M_CITY, p in I_PROD):
 Consume[j,p] = (sum ((i,j) in LINKS) Ship[i,j,p]) -
 (sum ((j,k) in LINKS) Ship[j,k,p]);

subject to Assembly_flow_conservation (j in M_CITY, p1 in I_PROD):
 Consume[j,p1] >=
 sum (p2 in O_PROD) (assy_rate[p1,p2] * Assemble[j,p2]);

subject to Demand_satisfaction (k in C_CITY, p in O_PROD):
 sum ((j,k) in LINKS) Ship[j,k,p] = demand[k,p];

subject to Ship_from_open_merge_points
 (j in M_CITY, k in C_CITY, p in O_PROD; (j,k) in LINKS):
 Ship[j,k,p] <= demand[k,p] * Open[j];
APPENDIX B – SAMPLE AMPL DATA FILE

merge in transit data file
Mike Cole and Mukundh Parthasarathy
June 3, 1998

set I_PROD := i_1, i_2;
set O_PROD := o_1;

set S_CITY := PITT ;
set M_CITY := NE SE ;
set C_CITY := BOS EWR BWI ATL MCO ;

set LINKS :=
(PITT,NE) (PITT,SE)
(NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param: opening_cost closing_cost :=
PITT 1000 200
SE 300 300
NE 1000 100 ;

param: prod_weight :=
i_1 1
i_2 1
o_1 1 ;

param: link_cost link_capy :=
PITT NE 1.5 250
PITT SE 3.5 250
NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100
SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100 ;

param assy_rate: o_1 :=
i_1 2
i_2 1;

param: assy_cost assy_capy :=
NE o_1 2 1000
SE o_1 3 1000 ;

param supply: i_1 i_2 o_1 :=
PITT 12000 10000 0 ;
param demand:

\[
c_{i} :=
\begin{array}{lcr}
\text{BOS} & 90 \\
\text{EWR} & 120 \\
\text{BWI} & 120 \\
\text{ATL} & 70 \\
\text{MCO} & 50
\end{array}
\]
APPENDIX C – PROTOTYPE DATABASE TABLES

The recommended (revised) database structure was detailed in Chapter 3. The actual prototype database consists of (the now obsolete) tables described in Tables 7 through 12.

Table 7. Product Data Table (Prototype)

<table>
<thead>
<tr>
<th>ID Number</th>
<th>Name</th>
<th>Weight</th>
</tr>
</thead>
</table>

Table 8. Source Data Table (Prototype)

<table>
<thead>
<tr>
<th>ID Number</th>
<th>Name</th>
<th>Outgoing Product ID</th>
<th>Outgoing Product Quantity (Supply)</th>
<th>Outgoing Channel ID</th>
</tr>
</thead>
</table>

Table 9. Customer Data Table (Prototype)

<table>
<thead>
<tr>
<th>ID Number</th>
<th>Name</th>
<th>Incoming Product ID</th>
<th>Incoming Product Quantity (Demand)</th>
<th>Incoming Channel ID</th>
</tr>
</thead>
</table>

Table 10. Channel Data Table (Prototype)

<table>
<thead>
<tr>
<th>ID Number</th>
<th>Origin</th>
<th>Destination</th>
<th>Cost</th>
</tr>
</thead>
</table>
Table 11. Merge Point Data Table (Prototype)

<table>
<thead>
<tr>
<th>ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Status (Open/Closed)</td>
</tr>
<tr>
<td>Incoming Product ID</td>
</tr>
<tr>
<td>Incoming Product Quantity</td>
</tr>
<tr>
<td>Incoming Channel ID</td>
</tr>
<tr>
<td>Outgoing Product ID</td>
</tr>
<tr>
<td>Outgoing Product Quantity</td>
</tr>
<tr>
<td>Outgoing Channel ID</td>
</tr>
</tbody>
</table>

Table 12. Merge Formula Data Table (Prototype)

<table>
<thead>
<tr>
<th>Finished Product ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material Product ID</td>
</tr>
<tr>
<td>Units of Raw Material Product Required</td>
</tr>
</tbody>
</table>