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CHAPTER 1
INTRODUCTION

1.1 Background

Transit operations have faced uncertainty both in terms of ridership and funding
subsidies in recent years. creating a tremendous pressure on transit operators to improve the
efficiency and cost-effectiveness of their systems. In a 1985 survéy of 146 transit operators
in the United States, conducted for the Transportation Research Bqard, 65 percent of all
operétors reported on-time performance as essential, critical, highly impoi'tant, or very
important for operational planning and management. Another 35 percent considered it as
important or moderately important [NCTRP91]. Transit managers perceive effective and
efficient bus service control as the most critical task in order to ensure reliable service to the
passengers [NCTRP91]. Passengers want buses that run on time. Passengers are often faced
with uncertain arrival times and the lack of real-time infofmation on actual arrival times as
compared to printed schedules. Such situations increase un;:ertainty, thus eroding their
confidence on the system.

In the past, one of the most important limitations that bus transit operators have faced
is the non-availability of comprehensive information on real-time Operationé. The evaluation
of service performance was often time consuming and did not include data on the entire
network. Hence this lack of continuous monitoring of daily operations affected operational

effectiveness and success of management strategies to improve service reliability and



efficiency. Data for the evaluation of service performance was often manually performed
using supervisors stationed along the routes in the network. In addition, processing of the
data collected took time and effort and was performed off-line. As a result transit
performance evaluation was not useful to the management especially with regards to making
quick and timely decisions regarding implementation of service restoration strategies in order
to minimize the effects of schedule disruptions. Since the evaluation of transit operational
performance is heavily dependent on the availability of timely, accurate, continuous and
comprehensive information on operations, there is an immense potential to use advanced
technologies to collect the required data. The advent of the Advanced Public Transportation
Systems (APTS) program as part of Intelligent Transportation Systems (ITS) has encouraged
transit operators to implement advanced technologies for accurate and real-time monitoring
of their services. These systems are designed to provide the necessary information for
performance evaluation and also timely implementation of appropriate response strategies
in cases of service degradation or disruption. The APTS program was established by the
Federal Transit Adminstration (FTA) to use advanced telecommunications, computer and
other electronic technologies for the purposes of improving the cost-effectiveness and
efficiency of public transportation services.

Advanced technology applications for bus transit operations involve two important
elements, both of which are essential.for achieving higher efficiency and reliability. These
two elements, (i) technological hardware for collection of operational data and (ii) advanced

| management software support systems for intelligent processing of operational data, are

essential for monitoring, operational management of bus transit operations. The
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technological hardware is the critical component for monitoring of everydéy operations. The
most useful and applicable advanced hardware technology vis the Automatic Vehicle
Location (AVL) System, which provides the ability to monitor operations in real time and
with a high level of accuracy and reliability. The AVL system can provide transit
management with information that can result in a reliable bus service in which buses run on.
time along a route and deviances in schedule adherence are minimized. However, this is
possible only if efforts at hardware implementation of an AVL system are complemented by
development of an inteiligent decision support system (IDSS) for real time service control
and operational management. In order to design and implement such automated decision
support systems it is necessary to first develop advanced techniques for real-time
performance analysis and evaluation. The real time operational performance modeling
framework is essential in order to design and implement effective real time service control
strategies. A serious limitation of current practices is that there have been few efforts at
developing techniques for real time performance modeling and service control. The
development of a transit management decision support system will help transit operators
realize the stated benefits from implementation of a real-time monitoring system. Within the
framework of the national ITS system architecture, the IDSS can be construed as an
important component of the Public Transportation Operations user services group. The
intelligent transit management system architecture discussed in Chaptef 7 can serve as a
basic foundation for the detailed development of the transit compoenent of the national ITS

system architecture.



1.2 Problem Statement

Bus transit service control, that includes schedule control, headway control and
dispatching control, is a critical concern of any bus transit management. AVL systems
provide transit operators with the necessary technology to monitor the bus operations in real-

‘time. This opens up a new window of opportunity for intelligent decision-making using
advanced techniques for the purpose of achieving more efficient service control. However,
there are two irnportant observations that are relevant and worth mentioning. First, the large
amounts of data from the AVL system has lead to an information overload on the dispatcher.
Secondly, the large amount of information obtained from the monitoring system is yet to be
effectively utilized for real time performance aﬁalysis and service control. These two
observations make it necessary to address the problem of information explosion and
underutilization of the wealth of information that is obtained from an AVL system. The large
amounts‘ of data provide an opportunity to investigate the development of real time
performance analysis and evaluation techniques using advanced modeling techniques. The
problem of information overload on dispatchers and supervisors can be addressed by
undertakingv the development of an automated system such as an intelligent decision support
system (IDSS) for real-time operational management of bus transit operations. Under the
umbrella of an IDSS, many subsystems have to be developed for various tasks relating to
operé.tional management. For example, a service conﬁol decision support subsystem can be
developed to provide the dispatcher with the best service control strategy for any service

degradation situation. Another example is a fleet management system that provides decision
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support for effective management of vehicles and operators. All these components are
inter-linked and require synchronization, as any changes in real time operation requires time-
critical decision support from both the service control system and the fleet management
system. Any addition of buses to restore services on a given route requires advanced
planning for vehicles and bus operators availability. The problem of developing a detailed |
system design for ﬁe IDSS componeht is beyond the scope of this research effort. Before the
bus transit performance modeling problem is defined and the objectives of this research
effort are enumerated it is important to define the term schedule behavior. The following

section presents a simple definition of schedule behavior.

'1.2.1 What is Schedule Behavior?.

In this research the schedule deviation of a bus at various timepoints along the route
is being used as a primary variable for performance modeling. The schedule deviation is
defined as the difference between actual érrival timeé and scheduled arrival times at a
timepoint. The term scheé’ule’ behavior has been used to indicate bus transit operational
performance which is measured in terms of the schedule deviation of buses. The schedule
behavior modeling problem can be defined és a spatio-temporal problem since the schedule
behavior of a bus on a particular route is dependenf on where the bus is located along the
route as well as on the time of day. The time of day is represented by the lscheduled arrival

time stamp while the location is represented by the timepoint information.



1.2.2 Why Model ?

The real-time monitoring of the bus transit system provides an opportunity to
investigate the application of modeling techniques for the development of an advé.nced
online system performance analysis and evaluation tool. Such techniques have been
successfully used in similar dynamic systems, such as' manufacturing, chemical process,
nuclear power plants etc., that are continuously monitored and require a certain degree of
control of operations [Foster92, Guo92, Chitra92]. In many such systems, performance
models of the system behavior are developed in order to achieve more efficient and cost-
effective control of the system operation. In observation-dependent systems such as bus
transit system performance characteristics are inferred through measurement of the
unfamiliar system from the analysis of a measured time record of its behavior in order to
predict the future system performance characteristics. Hence the performance models are
also referred to as prediction models when used to predict the future behavior of the system.
Models of schedule behavior can Be used in the development and implementation of bus
trénsit service control strategies that attempt to minimize schedule degradation so that a
certain level of service reliability is maintained. The performance models can be used to
develop effective schedule adjustment and headway adjustment plans so that the bus transit
resources, namely buses and drivers, are efficiently managed.

The primary focus of this reseérch effort is on investigating the feasibility of
developing schedule behavior models for buses on a transit route. The central idea of this

research effort is that a schedule behavior model can provide a knowledgeable
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understanding of past system behavior of buses on a route. Such a model has several
potential uses. It can be used to predict schedule deviations at a downstream stop based on
current and past schedule deviations of buses at timepoints in the upstream section. The
predictive model can assist in the design, development and real-time implementation of
service control strategies. The schedule behavior models can alsé be potentially utilized for
updating/modifying schedule plans. The models can be used to speed up and automate the
process of performance analysis énd evaiuation of implemented éervice control strategies.
Currently there are no available automated procedures to evaluate the effect of implemenﬁng
service control strategies. The models can be integrated into an automated decision support
system to assist dispatchers and sﬁpervisors in real time decision making on schedule and
headway adjustments for improving service reliability.

Traditionally, in a number of control problems, forecasting or prediction techniques
are often used to fnodel dynamic system behavior so to as assist in the development of
effective and efficient control strategies. The bus service control problem holds potential for
a similar applicatibn ofa prediction model to assist in the design and development of an
intelligent decision support system for selection of apprépriate service control strategies.
With the availability of a real time monitoring system, it is possible for bus transit
management to explore the developnlent of a schedule behavior prediction model and
ascertain its potentiél utility in real-time service control. The time critical operation of the
service control system requirés the aid of a forecasting tool that essentially predicts schedule
behavior of buses on any route at any given time of the day.

The research problem can be defined as predicting the schedule deviation of a bus



at timepoint k, given the schedule deviations at its previous timepoints and also the time of
day information. The time of day is represented by the scheduled arrival time of a bus at

timepoint k. Mathematically, this is represented as :

Given : SD( k-1), SD( k-2) ....SD( k - n), where SD denotes schedule deviation at
timepoints k-, k-2, ...efc. n denotes the length of the input series or the
number of upstream timepoints whose schedule deviation information will
be included to model.

t( k) : Scheduled Arrival Time at timepoint .
Predict: SD( k) : Schedule Deviation at timepoint £.
The rationale for the above definition of the schedule behavior modeling problem is

presented in Chapter 4.

1.3 Objectives

The objectives of the proposed research are :
¢ To investigate the feasibility of modeling the schedule behavior of buses on a fixed

route bus transit system.

24 To formulate a structure for a schedule behavior model of a fixed route urban bus
service.
¢ To demonstrate the application of AVL data and artificial neural networks for

modeling the schedule behavior of buses on a transit route.
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4 To demonstrate the application of AVL data and time-series models based on the
Box-Jenkins technique for modeling the schedule behavior of buses on a transit

route.

1.4 Purpose and Scope

The purpose of this study is to investigate the feasibility of developing schedule

behavior models which can be potentially useful as tools for the development and
implementation of service control strategies. The utility of new and promising techniques
such as artificial neural networks for modeling and prediction of tﬁe key operational measure
of performance, namely, schedule deviation is investigated. The focus is on using historical
schedule monitoring information for the purpose of developing schedule behavior models
on a specific route in the network and to use the models to -predict the schedule deviations
of a bus at a downstream location based on the schedule deviation information at the current
timepoint 01; location at different times of the day. Modeling at the route level provides an
opportunity to analyze and evaluate service control strategies since service problems surface
at this level of operations and adjustments afe required at this micro level. The forecasting
of the key schedule behavior indicator, schedule deviation, can provide transit ménagément
wnh operatiénal performance characteristics that can be utilized for design, development and
real-time implementation of quick-response service restoration strategies when probleﬁs
such as delays due to recurring and non-recurring events occur on the transit network. The

study performs a comparative analysis of the schedule behavior models developed using
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conventional time-series techniques and new and promising artificial neural network
methods.

The scope of this research effort is limited to the development of relevant models
using schedule monitoring data from a single route of Tidewater Regional Transit. The
reason for choosing a single route was because the objective of this research was to
investigate the feasibility of schedule behavior modeling and hence it is appropriate and
reasonable to look at the problem at the simplest level which in the transit case is aroute. In
addition, while conducting basic research into feasability of a particular modeling a pproach
it is pertinent and necessary to address the problem at the micro level. In addition, the study

focusses on developing schedule behavior models that predict only one timepoint ahead.

1.5 Organization of the Report

Chapter 1 states the problem and motivation for this research, defines the objectives,
purpose and scope of this research.

Chapter 2 presents an overview of current state of the art and practice for bus transit
operational performance analysis and highlights the drawbacks of the current procedures in
order to provide the neccessary justification for tﬁis research effort.

In Chapter 3 the basic concepts relating to the different modeling approaches,
namely, artificial neural networks and statistical techniques are presented. This chapter
presents a detailed background and overview of the three applicable artificial neural network

techniques - Feedforward, Elman and Jordan networks. The chapter also presents an
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overview of ANNs applications to engineering problems highlighting the salient features
that are relevent to this study. The limitations of artificial neural network approach are
discussed. An overview of the Quickprop learning algorithm is also presented. In the second
section of this chapter, the theoretical concepts for statistical modeling are discussed. A
detailed review of the Box-Jenkins models (ARIMA) and the exponentiai smoothing
techniques are discussed. The various features of the ARIMA model and its applicability to
the bus transit performance analysis problem are highlighted.

Chapter 4 describes the general framework for schedule behavior modeling. It
presents a detailed description of the modeling methodology which constitutes the most
important contribution of this research effort . Ihe chapter also dicusses the issue of explicit -
models versus implicit models in order to elucidate the usefulhess 'of the artifical neural
network approach for the bus transit performance analysis problem. This chapter also
discusses the modeling process and presents general guidelines for modeling using artifical
neural networks and the ARIMA modeling technique. The various model structures that are
being investigated for modeling the schedule behavior of buses on an urban transit route are
defined.

In Chapter 5 a detailed description of the case study is presented. The data collection
procedﬁre is discussed and the problems associated with data collection are highlighted. The -
contribution of this chapter is the detailed descripﬁon of data preprocessing and manipulation
technique that is required for developing the schedule behavior models. A sample illustration
of the actual data coming from the AVL system is described. Also, the characteristics of the

TRT’s transit system is described.
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Chapter 6 describes the results of the modeling experiments conducted in order to
develop the schedule behavior models using the preprocessed data from our case study. A
detailed analysis of the results is presented including a comparative analysis of the
performance of the various models. The characteristics of the various models are
highlighted.

In Chapter 7 a potential architecture for application of schedule behavior modeling
concept within an ITS environment is proposed. The usefulness of the schedule behavior
models within the context of an intelligent transit management system is highlighted. The
various implementation related issues and pdtential problems and limitations are described.
Finally the last chapter presents general conclusions, smhmary of results, limitations of this

research effort and suggestions for further work.
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CHAPTER 2
BUS TRANSIT PERFORMANCE

ANALYSIS TECHNIQUES

2.1 Bus Transit Operational Management

Operavtionalb Management of bus transit involves the basic supervision of everyday
systeni operatiéns with focus on service control, fleet management, service supervision,
dispatching control, and incident detection and response. These essential tasks are critical for
transit management to develop suitable mitigating strategies to different problems associated
with operations of buses. The problem identification and implementation of appropriate
problem-solving strategies have to be performed under several constraints notable among
which is time. Effectiv¢ real-time control of bus transit operations is essential to provide the
riders with an efficient and reliable service. Operational management and planning thus
require effective and accurate monitoring of operations in real time. In addition, there is a
need to develop effective performance evaluation procedures. One applicable technique is
to develop models of system behaviolr using the real-time monitoring infofmation that is -

available from the AVL system.
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2.2 What is On-time Performance ?

On-time performance has been defined as "a bus arriving, passing, or leaving a
predetermined bus stop along its route within a time period that is no more than x minutes
earlier and no more than y minutes later than a published schedule time" [Guenthner]. On-
time ﬁerformance has been used as a measure of effectiveness of bus transit operations. A
number of studies have delved into this research topic. The on-time performance is a critical
performance indicator especially for timed-transfer bus transit systems. Typical values for

x and y have ranged from -2 to +2 minutes [Guenthner].

2.3 State of the Art : Bus transit Performance Analysis

Techniques

Previous research on on-time performance (OTP) analysis has focused on three
approaches. The first approach concentrated on ascertaining the shape of the frequency
distribution of schedule deviations [Talley87, Guenthner]. This approach, which essentially
is a static modeling approach, provides a clear picture of on-time performance but does not
syst_ematically measure the effects of underlying causes (causal model, or in other words an
expost approach). The second approach focused on obtaining key indicators; of service
reliability, such as running time and headway variation [Abkowitz83, Abkowitz84]. This
approach did not directly address the on-time performance analysis problem as it only

considered the various factors affecting service reliability in detail. The third approach is
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based on empirical analysis.of on-time performance and essentially attempted to bridge the
two previous approaches [Strathman]. Strathman et al.‘ employed a multinomial logit model
for modeling on-time performance. The logit model related the on-time performance to route,
schedule, driver and operating characteristics. The model results showed that tﬁe probability
of on-time failures increases during AM-PM peak periods and also as buses progress further
along their routes. Strathman’s observation on the influence of the location of the buses
along a route on on-time performance is used as a rationale for formulation of the schedule
behavior modeling approach discussed in Chapter 4.

One important observation that was noted from the literature reviewed is that
previous efforts at developing on-time performance analysis techniques have mainly
concentrated on analytical and simulation techniques. The lack of empirical research on on-
time performance analysis problerri can be attributed to logistical problems in collecting real-
time data. Seneviratne [Senevi90] in his study developed a simulation model using Monte
Carlo technique for analyzing the impact of different opérating strategies (eg. additional time
points, bus priority, and demand profile) on headway variations and degree of adherence to
schedules (on-time perfonnaﬁce).

Current approaches to modeling the schedule pérforrnaﬁce have some important

| drawbacks. First, &ey do not provide a usable framework for real time performance
monitoring and control due to the fact that they employ ex post approach. Another drawback
is that the level at which the models are applicable. Strathman.’s study provides results at the
overall transit route system level. It is intuitive that the service problems relating.to‘ schedule

adherence are often at the route level and which requires mitigating control strategies.



16

Another important drawback is that most models developed for schedule performance haye
not been assesséd for their robustness.

Current methods for on-time performance analysis and eﬂialuation have been based
on static approaches relying heavily on schedule deviation data collected regularly but not
in a continuous fashion. The models were essentially based on empirical analysis methods.
Howeyer a bus transit system can be construed as a non-linear dynamic system. Thus,
dynamic modeling techniques such as ANNs can be investigated for developing schedule
behavior models. This research effort attempts to further the state of the art in bus transit
performance analysis by proposing and developing alternative approaches, using advanced

modeling techniques based on time-series methodology.

2.4 Significance

A detailed discussion of the state of the practice in supervision strategies of bus

routes is presented in the NCTRP Synthesis of Practice Report 15 [NCTRPO1]. This report,

_ in its recommendations for new research directions, pointed the need to determine new

techniques for modifying service control and supervisory practices. However research on
these topics has been limited or none has been repofted so far. Therefore the problem being
attempted by this research effort is of great significance. The proposed research will bring
new relevance to operational management practices and will try to address one of the key
firture research directions noted in the NCTRP report.

The literature reviewed on schedule planning and timetable management of bus
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operations revealed that transit operators have to compromise between several conflicting
objectives that reflected demand, operating costs, quality of service, social ﬁeeds, robustness
of the schedule to disruptions etc. The ideal situation is to see that headway variations are
smooth and also that there should be short transient phases before and after peak hours
[Etschmair]. In addition the bus transit guidelines desire that the waiting time for riders at
transfer points be minimum. Also the guidelines define that the schedules should satisfy a
number of constraints : headway allowances, maximum schedule degradation, stabling and
unstabling procedures etc. Etschmair in his study provided sbme detailed guidelines for
control of bus transif operations. The control variables suggested by many researchers in this
report are : headways, transfer waiting times and time and direction of stabling and
unstabling events. Th¢ overall desire is to perform schedule énd headway adjustment in order
to achieve effective service control. This can be possible only if the changes in schedules are
communicated to the riders through an on-line real-time passenger information system. The
general desire is to go in for automation of the man-machine interface of schedule adjustment
in order fo obtain greafer efﬁciehcy and élso reducing the information load on the dispatcher
[Watanabe]. In order to achieve greater automation of information processing and service
control related decision support, an important step will be to design and develop a
performance model of the real system that would aid management in the design and

development of service control strategies based on schedule and headway adjustment.
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2.5 Summary

Bus transit operational performance analysis and control is a critical problem that
requires more efficient and effective approaches in order to realize the benefits from
implementation of advanced real time monitoring systems. Current techniques for
performance analysis are static in nature and may not be uséful for assisting in efficient real-
tifne control of operations. They are also not suitable for automating the decision support
process for real-time control of operations. If effective real time bus control strategies have
to be designed so that they can be implemented automatically in real-time, then the
applicability and usefulness of alternative system modeling techniques have to be
investigated. This study aims to investigate the applicability and usefulness of conventional
statistical techniques and artifical neural network based modeling approaches for the bus

transit performance modeling problem.
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CHAPTER 3

MODELING TECHNIQUES

3.1 Artiﬁcial Neural Networks

Artificial neural networks are learning systems that have gained some.prominence
in the last decade because they can be trained to identify, classify and predict nonlinear
patterns and can solve complex problems much faster than some conventional methods. They
have beep shown to have a vﬁde range of applicability in areas such as continuous speéch
reéognition and synthesis, pattern recognition, classification of noisy data, nonlinear feature
detection, market forecasting, nonlinear and adaptive control and process modeling. Also
neural network learning systems contribute significantly to analysis, prediction, and
optimization of chemical manufacturing units and power plants performance [Guo92,
Rehbein92, Reins9l, Chitra92]. Most of the applied research oﬁ this subject has
concentrated on the use of ANNS to solve important system performance related problems
or process control problems. An overview of various applications of ANNs is presented in
a later section. One major prbblem in the study of ANNs is that the literature in this area is
scattered over a vast number of publications iﬂ different disciplines. The broad spectrum of
ANN research and its diverse sourcés, make it difficult for researchers to keep pace with
current developments. Mehra and Wah [Mehra92] through their efforts have produced a

comprehensive description of concepts and theory of ANNs that would alleviate the
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aforementioned difficulty.

" Ore of the fundamental drawbacks of applying new and promising techniques such
as artificial neural networks is that most of the research papers on theory recommend the

application of a particular theoretical concept to tackle certain kinds of learning problems.

The majority of articles presenting new theoretical concepts such as a new algorithm do not

answer the following key questions [Prechelt93]:
"For what kind of problems does the new algorithm or architecture work well or not
well 7" and
: Under what conditions should we prefer the new algorithm over previously known
ones 7".
The answers to these fundamental questions is essential for successful development of
applications to real world problems. However for this research effort we are handicapped by
the absence of information on the above questions in the theoretical literature on artificial

neural networks.

3.1.1 Advantages of Artificial Neural Networks

Many researchers have discussed the distinct advantages of artificial neural networks
[Rumel90, Foster92, Weiss90, Guo92, Mehra92, Lippmann]. Artificial neural network have
a highly distributed parallel structure and when combined with powerful hardware digital
technology can make model simulations economical and with relative ease. ANNs mimic

human learning processes and as such hold great potential as adaptive learning systems.
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ANNs can handle complex and nonlinear models that are common to dynamic systems such
as bus transit operations. ANNs offer the promise of being able to extract information from
automatic vehicle location data in an efficient manner. In the case of nonlinear systems
ANNs have the distinct advantage, over a standard regression method, of not having to know
the form of the function a priori. Unlike other mathematical techniques, ANN models
learning can be continuous, so that they can éutomatically adapt to changing characteristics
of the operating environment of buses. The potential advantage of ANN learning method is
that, compared to mathematical simulation models, ANNs can be trained using observed data
only, without requiring any knowledge of the internal structure of the system or of modeling
techniques [Weigend92]. This ability to approximate unknown functions through the
presentation of past states of a system makes ANNs a useful tool for modeliﬁg in engineering
applications, such as for bus transit schedule behavior modeliﬁg. The modeling approach
using neural networks essentially helps to perform two important tasks. First, ii learns the
system performance using past and current AVL data. Secondly, the ANN models can be
used to predict the behavior of the buses. ANNs have the potential to capture the dynamic
and interactive effects of schedule deviations of buses on a route network. In 'addition, they

are able to capture the trend in a time series especially when the relationship is nonlinear.

3.1.2 Drawbacks of Artificial Neural Networks

The literature has pointed out the following drawbacks of Artificial neural networks

: (I) lack of standard guidelines for selection of ANN structures and training methods; (i1)
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with so many processing units (parameters) available there is a tendency to overfit the model.
There is no clear and efficient way to avoid overfitting; (iii) no guidelines for handling
multiple solutions and problem of local minimum; (iv) often take long time to train because
of the necessity of ﬁsing a large number of weights and hence may be slower than other
mafhematical techniques such as regression analysis etc.; (v) it is difficult to incorporate deep
knowledge compared to machine learning techniques; (vi) the processing units and weights
that in a way represent parameters and their values cannot be interpreted physicé.lly as in the
case of statistical techniques [Burke93, Mehra92]. In general, an ANN does not give
confidence intervals for its outputs. Without prior experience with the problem in hand, and
as is the case with the vbus schedule behavior modeling problem, the network topology is
determined by trial and error. A too small netwofk will make learning difficult and a too

large network will generalize poorly.

3.1.3 Applications: An Overview

3.1.3.1 General Applications

Artificial ﬁeural networks provide an effective approach for a broad spectrum on
applications. Essentially ANNSs represent a paradigm for intelligent processing of
information for some specific objective such as classification, pattern recognition or
decision-making. A number of useful applications have been investigated but so far only a
few or negligible number of successful applications have been developed and demonstrated

for real world problems.




23

Artificial neural networks have been proposed recently for nonlinear prediction and
system modeling [Lapedes87, Hernandez, Bhat90]. ANNSs have been shown to have promise
as models for a wide variety of largely deterministic problems in relatively few variables by
Bhat and Avoy [Bhat90],and Lapedes and Farber [Lapedes87]. A number of well
researched articles in application of neural networks in chemical engineering have been
published in [CChEng92]. ANNs have also shown to be successful non-linear signal
predictors in speech recognition by Iso énd Watanabe [Is090], Tebelskis and Waibel |
[Tebel90] and Levin [Levin90]. Neural networks have proven to be a promising alternative
to traditional techniques for nonlinear temporal prediction tasks [Weigand 92, Lapedes87].
Such successful applications makes it imperative that we investigate the feasibility and the
potential usefulness of applying artificial neural networks to our schedule behavior modeling
problem.

Lapedes and Farber [Lapedes87] reported that simple neural networks can outplerforrn
conventional methods. Sharda and Patil [Sharda] concluded from their work on 75 different
time series that the simple neural network model could forecast about as well as the Box-
Jenkins forecasting technique. Tang et al. [Tang91] in their comparative study of the
performance of ANNs and conventional statistical techniques concluded that for short term
memory series, ANNs appear to be superior to Box—Jénkins model. A review of relevant
literature indicated that each of the methods performed better than the other about half of the
time.

Kumar et al. [Kumar91] used Elman's recurrent network to two types of speech

recognition problems. They found in their study that Elman network is capable of learning
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the mapping by developing the appropriate dynamic behavior using context units [Kumar91].
Lambert et al [Lambert] in their investigation of chemical plant predictive modeling using
recurrent networks concluded that recurrent networks are suitable for dynamic modeling
problems. One of the shortcomings of previous research efforts at investigating the
application of recurrent networks is that they usually t—alke up small toy examples to
demonstrate the applicability.

Some researchers have reported that ANNs can be potentially used for economic
forecasting problems [Trippi93, Kamijo90]. A number of studies [Kimoto90, Sharda,
Hoptroff, Refnes93,Varfis] on economic forecasting problems provided a comparative
analysis between ANNs and conventional time series techniques such as ARIMA. ANNs
have also been applied to electrical load forecasting problems [Park91, Bacha92, Connor93].
These studies made some general conclusions on the applicability of the various techniques
to the specific problem but fell short of suggesting that one technique is superior to the other.
Also, it has been stated by researchers that it is perhaps not necessary to make a
comparative study in order to demonstrate that one method is superior to the other but it is
important to investigate the conditions and design specifications under which any parﬁcular
technique is suitable or not suitable to a specific problem under study. However, since there
have been no prior attempts to develop schedule behavior models, the research approach
adopted would also focus on conducting a comparative analysis between the various
techniques selected for this study.

One major problem faced by researchers trying to investigate the application of

ANNs for a specific real world problem is that past studies, if there are any, they do not
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adequately provide any insight and possible éuggestions for network design and other
modeling design considerations. Prechelt et al. through their investigation provided the
primary reason for the caution and inability to use any past studies. The reason cited by
Prechelt et al. is that most researchers conduct ANN modeling experiments with toy
problems and hence any conclusions made on the applicability and usefulness of various
learning algorithms and architectures cannot be used as a selection basis for conducting the
experiments for another problem.

The second type of problem where there has been considerable interest and focus is
control theory applications. The literature reviewed indicated that ANNs can be applied in
two ways in the design of control systems. ANNs can be used to obtain a mathematical
model of the real system to be controlled. They can also be used to design a controller once
a model of the real system is available. Both of these tasks have been studied using ANNs
[Beale92, LeCun88, Simpson, Kawato,Narendra].

In the case of a bus transit system, it is possible and necessary to develop models of
the schedule behavior using the AVL information. However the bué transit system is a non-
physical system where the system’s behavior is affected by human factors such as driver
characteristics, loading/unloading characteristics of passengers. and unpredictable factors
such as traffic characteristics etc. Also, the control of bus transit operations involves human
element (Drivers, Passengers etc) and hence ANN modeling for achieving control is not a

suitable application.
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3.1.3.2 Applications in Transportation

There have been some attempts to apply ANNs to new areas such as transportation

in the past few years. Most applications relate to the use of ANNs for identification and
classification for the purpose of aiding in decision making [Faghri92,Cheu91]. The specific
areas where application of ANNs have been attempted are in traffic management, traffic
signal control and pavement management.

Fagri and Hua [Faghri92] in their study list the potential applications of ANNSs to
various problems in the field of trahsportation, such as traffic management etc. However the
study failed to list potential application of ANNSs in the area of public transportation. Under
the ITS program, new technologies have been proposed in different areas such as ﬁafﬁc
management. However the applicétion of advanced learning systems such as ANNs to public
transportation management has not been proposed and attempted so far. Cheu et al. [CheuS1]
investigated the use of a neural network model for freeway incident detection. Most of the
applications in traffic engineering concentrated on using the standard backpropagation
learning algorithm with feed—forwérd networks [Faghri92, Dough93,Smith95]. Kirby et al.
[Kirby93] in their study on short-term traffic forecasting concluded that neural networks can
be successfully trained to provide short-term traffic forecasts. When they compared the
results from neural networks to that from the conventional AutoRegressive Integrated
Moving Average (ARIMA) technique, they found that neural networks perform as well or
better than the ARIMA models for short-term traffic forecasts involving 30 minute or less

time bands. They also concluded that it is difficult and inappropriate to compare the two
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techniques with a single comparative measure such as a correlation coefficient. The same
conclusion was made by a number of other researchers. However, the literature reviewed
revealed the lack of a suitable scheme for performing a reliable and accurate comparative
analysis between ANNs and ARIMA type of models.

Smith [Smith95] in his research effort on forecasting freeway traffic flow for ITS
applications compared the pefformance of a feedforward netWork with other conventional
techniques such as ARIMA and nearest neighbor and nonparametric regression. Smith’s
research was one of the first attempts to perform a comparative analysis of different
modeling techniques and also investigate the feasibility of deploying the models in a field
environment. Smith’s researéh effort involved using real data sets. He concluded that the
nonparametric regression model outperformed all others for multiple interval forecasting and
also stated that the model was portable and easy to deploy in a field environment
[Smith95].

Faghri et al. In their research study on modeling trip production using ANNSs also
involved the use of real data sets [Faghri%6]. In their research they compared the
performance of the ANNs with the performance of stmd&d regression models. They
concluded that the ANNSs predictions were far more accurate than those based on regression
analysis.

Gilmore et al. developed a Hopfield neural network' model for adaptive traffic signal
control using simulated traffic data [Gilmore95]. In their.study they also proposed a simple
feedforward network model for predicting urban traffic congestion. The drawback of this

study was the use of simulated data for develoi)ing the models. In addition the study did not
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perform any comparative analysis of performance with other potentially applicable
techniques.

Yun et al. investigated the application of a recurrent neural network to traffic volume
forecasting [Yun96]. In their comparative analysis of a recurrent neural network with the
traditional feedforward network and the Finite Impulse Response (FIR) model they observed
that the recurrent neural network model outperformed the other models in forecasting very
randomly moving data. However, the FIR model showed better forecasting accuracy than
other models for the relaﬁvely regular periodic data. The authors concluded that the feedback
mechanism of the previous error through the time learning technique in the time-delayed
recurrent network naturally absorbs the dynamic change of the underlying non-linear
movement.

Zhang et al. developed a macroscopic model of freeway traffic using an artificial
neural network with two hidden layers. However, the study used simulated data to develop
the models [Zhang97]. |

The application of artificial heural networks in transportation has evolved over time
from simple toy applications using simulated data to more sophisticated applications such
as those attempted by Smith, Faghri et. al and Yun et al. [Smith95, Faghri96, Yun96].v A
review of the literature revealed that there has been no detailed implementation of ANNs for
real world transportation related problems. However, there is a growing enthusiasm for the
development of neural network applications to solve complex problems using real data. The
advent of the ITS program has provided the necessary impetus to attempt new and exciting

techniques to solve some critical problems relating to traffic management and transit
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operational management. As the state of the art with respect to ANNSs is bound to improve
over the coming years ANNs can be potentially good techniques for application in certain

class of problems relating to traffic signal control, traffic flow forecasting etc.

3.1.4 Basic Structure of an Artificial Neural Network

Figure 3.1 illustrates the typical architecture of an artificial neural network. In

general, the basic structure of any ANN model [Hecht90] consists of the following features:

B  anetwork of highly distributed and interconnected "processing units" arranged in
different layers,
= an interconnection scheme,i.e..fully int_erconnected, partially/sparsely interconnected;

uni-directional vs bi-directional, esseritially feedforward vs recurrent efc.,

n’ activation functions (for relating output values of a processing unit to its inputs),
L] a cost function that evaluates the network’s outpﬁt (e.g. squared error etc.),

= a2 unique learning law,

u data representgd as training set and test set,

n training algorithm that changes th¢ interconnection parameters (called weights) in

order to minimize the cost function.

How a neural network performs is dependent on the critical task of dividing the data
set into training and test sets. In addition there are some key issues that are critical for the
 successful implementation of a neural network model.

In the development of neural network models, the following fundamental questions
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Fig 3.1: Typical Artificial Neural Network Architecture

need to be answered :

¢ What network architecture should be used ?
An artiﬁcial neural network typically consists of an input layer, one or more hidden layers,
and an output layer. While defining the network topology the specific Question of interest
and importance is: What is the internal structure of the short-term memory networks? The
answer to this question involves the speéiﬁcation of the number of hidden layers and number
of units in each layer, the pattern of connectivity among units, and the activation functions
to be used for the various types of units [Mozer92].

¢ What is the learning paradigm to be used for the selected network architecture?
¢ How is the learning rule executed?

In other words, what optimization technique is to be applied to help in training and its

successful completion? The optimization technique helps define the convergence or
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successful termination of the training process. The learning rule essentially defines the
relationship that governs the training process, i.e the relationship that defines how to adjust
the connection weights. The selection of the connection weights for a neural network can be
viewed as an optimization problem. The objective is to choose a set of connection weights
that will minimize the network prediction error (the selected error function) over all the
training examples. The most often used error functions are the sum of squared errors (SSE)
or mean squared error (MSE) of thé training data set.

With the neural network approach, the issues of archifecture, network dynamics,
training procedure, and representation are intricately related. They are viewed as different
perspectives on the same underlying problems. Mozer [Mozer92] stated that a given choice
of representation may demand a certain neural net architecture or a particular type of learning
algorithm to compute the representation. He also stated that a given architecture or learning
algorithzﬁ may constrain the class of rei)resentations that can be adapted for application with
that particular ar‘chitecture or learrﬁng algorithm. This is especially important for spatio-
temporal sequencing problems such as the bus transit schedule behavior modeling and
prediction. The folldwing section describes three important architectures that will be applied

for modeling the schedule behavior of buses.

3.1.5 Network Architectures

Artificial Neural Networks can be classified as Feedforward Networks (FFN) and

Recurrent Networks (RNN). Recurrent networks can be further classified as fully recurrent
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networks and partial recurrent networks. The main distinction between the feedforward and
the partial recurrent nets is in the network topology. The two types Qf partial recurrent nets,
namely, Jordan and Elman nets have memory layers in addition to the basic architecture of
a feedforward network. These network architectures are discussed briefly in the following

sections.

3.1.5.1 Feedforward Networks (FFN)

Feedforward networks are the most commonly used network architectures for neural
network modeling. Dei)ending on the representation scheme feedforward networks can be
.different types. Figure 3.2 illustrates the schematic architecture of a feedforward network
with an input window. The distinct feature of this type of architecture is that the information
propagates only in one direction (as indicated by the arrows). Each processing unit
(represented as a circle) is called a neuron, and the interconnections between neurons are
called synapses. The neuron first calculates the weighted sum of all synaptic signals from the
previous layer plus a bias term, and then generates an output through its activation function.
A detailed description of feedfor@ard networks can be found in a number of research
publications including [Su92].

The most basic approach for handling time series is using an input window that holds
a restricted part of the time series. A feedforward network with an input window has been
shown to be a more superior architecture than a simple feedforward network

[Vemuri93,Ulbricht93,Weigend92]. The input window provides the network with
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Figure 3.2: Architecture of a Feedforward Network

With Input Windows

information on previous states in the form of units in the input layer. This allows for
incorporating knowledge on previous states or past values of a time-series. Therefore such -
an architecture is suitable for modeling spatio-temporal sequencing problems such as
modeling the bus transit schedule behavior. Time-delayed FFNs (Feedforward with input
windows)v have been shown by a few researchers to perform as well as .recurrent networks
but Without the p;oblems of lengthy training and the susceptibility of recurrent nets to be

easily trapped into a local minimum [Vemuri93,Ulbricht93, Weigend92].
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3.1.5.2 Partial Recurrent Neural Networks

Another approach to modéling using a neural network is to incorporate an internal
state to enable it to learn the relationship of an indefinitely large set of past inputs to future
states. This is achieved via recurrent connections and hence such a network is known as a
recurrent network. If the recurrent networks are updated like feedforward networks (with a
single update per time step) they are known as "partial recurrent network;" [Hertz91].
Partial recurrent networks are networks‘ with characteristics of embedding memory in their
architecture.

Partial recurrent networks have been suggested and proven to be applicable by many
researchers [Jordan86,Elman90] for dynamic problems involving temporal sequencing. The
bus transit schedule behavior prediction problem can be considered as a spatio-temporal
préblem. The schedule deviation at a timepoint is affected by the schedule deviation at the
previous timepoint(s). The spatio-temporal sequencing of the schedule deviation information
can be modeled and investigéted for the purpose of predicting the schedule deviations at a
timepoint downstream in the route network. This sequential information, regarded as short
term memory of the system performance, can be an effective approach for developing an
intelligent model of the bus transit schedule behavior. Partial recurrent networks through
their architecture have the ability to store and utilize information about the previous state and
hence are appropriate for the bus transit schedule behavior modeling problem.

A partial recurrent network has an input consisting of two components. The first

component is the pattern vector, which was also the only input to the partial recurrent
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network. The second component is a state vector. This state vector is given through the next-
state function in every step. In this manner the behavior of a partial recurrent network can
be simulated with a feedforward network that receives the state not implicitly through
recurrent links, but as an explicit part of the input vector [J ordan86]. These networks are
regarded to have memory as the recurrent connectidns allow the network's hidden units to
see their own previous output. Therefore, subsequent behavior can be shaped by previous
responses. This network memory concept can be utilized to model the schedule behavior of
buses. The knowledge of schedule deviation of a bus at the previous timepoint (or stop) can
be useful for developing a model of the system performance. The adoption o“f such a
structure to the ANN model is appropriate for the bus schedule behavior problem because
the schedule deviation at a timepoint has a strong relationship to the schedule deviations at
the previous timepoints. The extent, in terms of how faf back or how many previous

timepoints one should consider, is a yet to be researched. .

3.1.5.2.1 Elman Networks

An Elman network is a type of partial recurrent network that is also commonly used
for learning to recognize and generate sequences of inputs. The Elman network cogsists of
a single hidden layer feedforward network and in addition a set of additional units at the
input level. These additional units are called context units and are responsible for the
dynamic behavior of the network. Figure 3.3 illustrates a typical architecture of an Elman
Network. The number of context units equals the number of hidden units. The output values

of the hidden units at time step t are copied to the context units just prior to the forward
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Figure 3.3: Architecture of an Elman Network

computation at time step t+1. The context units thus have the characteristics of providing the
network with memory, and the internal representations that the network develops are
sensitive to temporal context. Thus the effect of time are implicitly represented in the internal
state of the network [Elman88]. Mathematically the network representations can be

described as follows:

Let

x](t) yl(t) Zl(l')

ORI SO R I O 3.1)
%0 740 2,0
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be the vectors representing the input, output of the net@ork, and output of the hidden units
to the network respectively, at time index t. Let the matrix A contain the feedback weights
which are the weight connections from the context units to the hidden units. Matrix B
contains the input weights (ffom the input units to the hidden units), C contain the output
weights (from the hidden units to the output units), and ¢ and d be constant column vectors

representing bias values. Then the Elman network can be mathematically described by

[Elman88, Kumar91]:
2(t) = flAz(t-1) + Bx(f) + c] (3.2)
Where,
y(@® = glCz(®) + 4] (3.3)
LO) g,(®
Ji = ; 20 = (3.4)
JAC g,

The Elman network has the followingv properties [Elman88]:

¢ The layer I is fully connected to the layer I+1.

14 Each context layer is fully connected to its hidden layer. A hidden layer is connected
1o its context layér with recurrent 1-to-1 connections.

¢ Each context unit is connected to itself.

+ If there is a context layer assigned to the output layer, the same connection rules as
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for hidden layers are used.

3.1.5.2.2 Jordan Networks

A Jordan Network [Jordan86] is a type of partial recurrent neural network. The
general architecture of a Jordan network is dynamic in the sense that the effects of temporal
evolution are captured in the "state” of the network. Jordan networks can model sequential
performance and hence are suitable for the bus schedule behavior modeling problem. A key
feature of a Jordan net is that there is no explicit representation of temporal order and no
explicit representation of action sequences [J ordan86].

A typical Jordan network as illustrated in Figure 3.4 has the following properties:

4 The input layer is fully connected to the hidden layer. The hidden layer is fully
connected to the output layer (connections are shown in dark arrow lines).

¢ Output units are connected to context units by recurrent 1-to-1 connections. Every
context unit is connected to itself and also to every hidden layer unit (illustrated as
grey arrow lines in the figure).

L4 The number of context units (denoted as "state unit" in Figure 3.4) are equal to the
number of output units. The entities- plans, stafes, and outputs- are all assumed to be
fepresented as distributed patterns of activation on separate sets of processing units
[Jordan86]. The plan units and the state units together serve as the input units for a
multi layer network. The network can perform arbitrary sequences by taking a plan
as input and producing the corresponding sequence. There are two key functions that

define the way the network is constructed. The first function f determines the output
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action x, at time to be chosen. The second function g determines the state s,.;. Both

these functions depend on the constant plan vector as well as the current state vector.

SD'(k) Estimated

Output Layer

Hidden Layer

"State Unit”

Time T(k) Timepoint (k)  Timepoint (k-1}  SD(k-1} Input Layer
6 Units 6 Units

Figure 3.4: Architecture of a Jordan Network

fis referred to as the output function, and g is referred to as the next-state function

[J 0rdén86]. Mathematically this can be described as :

%, = f5,P); Sy = 8(5,P) 6

The output function is generally nonlinear. The next-state function is implemented with
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recurrent connections from the state units to themselves, and from the output units to the

 state units. This allows the current state to depend on the previous state and on the previous

output (which is itself a function of the previous state and the plan) [Jordan86].

3.1.5.2.3 Applicability of Partial Recurrent Networks to Schedule Behavior

Modeling
Partial recurrent networks have the distinct characteristics of being able to incorporate

past memory and hence can be deemed suitable for modeling the bus transit schedule

behavior. There ability to process sequential data is the key reason for their suitability to

model the schedule behavior of buses on a transit route. The journey of a bus through a series
of timepoints or stops can be considered as a series or sequential information that needs to
be incorporated in any modeling of the behavior in terms of schedule deviations. The reason
being that bus schedule deviation at a timepoint or stop is influenced by the schedule

behavior at the upstream timepoints or stops.

3.1.6 Learning Algorithms

Learning Algorithms (also known as learning rules or learning paradigms) are applied
to adjust the connection weights of neural networks. Essentially, a learning paradigm or rule
is a procedure for adjusting the weights W so as to make the actual outputs SD'(k)
approximate the desired outputé SD(k). Most Ieaming algorithms are based on Calculus, For

example, Backpropagation learning uses the delta rule and its variations. Such paradigms use
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a gradient descent technique to adjust the connection weights in order to decrease the
prediction error.

Backpropagation (BP) is a widely used tool in the field of artificial neural networks.
It is an efficient and exact method for calculating all the derivatives of a single differentiable
function that is referred to as a target quantity (such as an error function) with respect to a
Jarge set of input quantities (such as the parameters or weights). Backpropagation assumes
that all processing units (also referred to as neurons) and connections are somewhat to blame
for an erronéous output or response. The output error is propagated backwards through the
connections to the previous layer in order to fix the responsibility for the output error. This
process is repeated until the input layer is reached. The name "BackPropagation” derives
from this method of handling errors.

The standard backpropagation algorithm has been show to have certain dréwbacks.
The standard BP is toé slow to learn and also has a tendency to be stuck at .local minima
points. A number of researchers have concentrated their efforts at improvingbthe standard BP.
One such modified backpropagation was developed by Scott Fahlman [Fahlman88] and is

known as QuickProp. The QuickProp algorithm is described briefly below.

3.1.6.1 QuickProp Learning Algorithm

QuickProp is a faster Jearning algorithm compared to Backpropagation. It is a
second-order method, based loosely on Newton's method, but it is closer to being a heuristic

technique - rather than a formal technique. The key feature of QuickProp is that it uses
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information about the curvature of the error surface. This entails the computation of the
second order derivatives of the error function. QuickProp assumes the error surface to be
locally quadratic and attempts to jump in one step from the current position directly into the
minimum of the parabola. QuickProp computes the derivatives in the direction of each
weight. The Quickprop algorithm was developed using two rﬁaj or assumptions. First, it is
assumed that the error vs. weight curve for each weight can be approximated by a parabola
whose arms open upward. Second, that the change in the slope of the error curve, as seen by
each weight, is not affected by all the other weights that are changing at the same time
[Fahlmang&8].

The procedure involves first computing the gradient with regular backpropagation,

and subsequently attempting a direct step to the error minimum using the following

expression [Fahlman88]:
A@+1)w, = EE%E%):I—; A@w, (3.6)
_ where:
W weight between units i and j
A(t+1) actual weight change
S(t+1) partial derivative of the error function by
S@) ~ the last partial derivative.

Using the update expression given in Equation (3.1), if the current slope is somewhat smaller

than the previous one, but in the same direction, the weight will change again in the same
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direction. The step may be large or small, depending on how much the slope was reduced by
the previous step. If the current slope is in the opposite direction from the previous one, that
means that the minimum has been crossed and that the current position is on the opposite
side of the valley. In this case, the next step will place us somewhere between the current

and previous positions.

QuickProp Learning Parameters

There four key parameters of the Quickprop learning function. These are [Fahlman8'8,

SNNS3.2] :
7 Learning parameter, specifies the step width of the gradient descent.
p: Maximum growth parameter, specifies the maximum amount of weight change

(relative to 1) which is added to the current change.
v Weight decay term to shrink the weights
d_.. : the maximum difference ;=1 - o; between a teaching value t; and an output o of an

output unit which is tolerated, i.e. which is propagated back as d; =0.

3.1.6.2 QuickProp Learning Algorithm for Partial Recurrent Networks

The quickprop learning algorithm described, in the previous section, for a
feedforward network is modified for the training of partial recurrent networks in the
following way [SNNS3.2]:

1. Initialization of the context units. In the following steps, all recurrent links are



assumed to be absent, except in step 2(f).

2. The following steps are executed for each pattern in the training sequence:
(a)  the pattern and forward propagation are inputed through the network,
(b)  The error signals of the output units are calculated by comparing the
computed output and the target (teaching) output,
(c) the error signals are back propagated,
(d)  the weight changes are calculated,
(e) Only on-line training: The weights are adapted,
® the new state of the cbntext units are calculated according to the incoming
links,
3. Only off-line training: weights are adapted.

The parameters for this modified quickprop algorithm are the same as for the regular

feedforward versions of this algorithm described in section 3.1.6.1.

3.1.7 Selection of a Suitable ANN Architecture

The selection of a suitable architecture for a given application depends on the

problem characteristics. Joseph et. al [Joseph92] in their study stated that in order to select

~ a suitable neural network architecture, four basic factors need to be considered. They are:

= The nature of inputs - the schedule behavior data of bus transit systems consists of

continuous values and so only the models that take continuous values as inputs are

considered.
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The knowledge or availability of the desired outputs - This distinction essentially
defines whether supervised or unsupervised neural network architectures are
appropriate. Since the AVL system pfovides information regarding actual arrival
times, information about desired outputs is known. Hence supervised neural
networks are more appropriate.

The number of hidden lavers - The number of hidden layers define the overall

architecture of the artificial neural network. Typically, only one hidden layer is used.
In this study, only one hidden layer is considered.

Non-Linearity : the dynamic operation of buses on a transit route network results in
the assumption that schedule behavior is often non-linear, so the network grchitecmre
selected must be able to handle non-linearity.-On any given day, schedule bebavior
of buses along a particular direction and at specific timepoint TP,/ is often related to
the schedule behavior of buses in the previous timepoint TP, ,'. Hence the spatial

context is also an important consideration.
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3.2 Statistical Techniques

Statistical methods are conventional techniques that are often applied to develop
mathematical models of dynamic systems. The theory behind various statistical techniques
has evolved over several decades and is known to be well developed. Hence it is imperative
that any investigation of modeling of a dynamic system using new and promising techniques
should include a comparison with traditional statistical approaches. A number of statistical
techniques exist and one has to carefully select the appropriate technique or set of techniques
to as a model development strategy. The type of problem and the availability and type of data
are the key issues influencing the selection of the appropriate approach.

There are two important statistical techniques that have been applied to forecasting
problems in the past : Standard regression and Time-series. A time series has been defined
in the literature as a set of observations obtained my measuﬁng a single variable regularly
over a period of time. The state of the art and practice has been well established with both
regression methods and time-series methods. The field of research and theory is mature and
very 4we11 developed. These methods have been used in areas such as process plant control,
weather forecasting, stock market forecasting, predicting or estimating traffic flow
[Makri83,Watson93,Weigend92,Weiss90]. The various time-series methods based on the
Box-Jenkins methodology that are listed in the literature are: Auto Regressive Integrated
Moving Average (ARIMA), Auto Regressive Moving Average (ARMA,
X11ARIMA )etc.These models have been shown to be flexible and successful in modeling

a large variety of time series [Weigend92,Weiss90].
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Conventional techniques for modeling and prediction are almost all based on liﬁear
or linearised models. The literature reviewed indicated that the practical success of these
approaches is limited due to this linearity requirement apart from other drawbacks such as
ravenous data requirements and extensive skills at interpreting the results. Traditional
methods such as regression are also suitable for developing causal models. Makridakis et al.

[Makri83] discuss in detail the traditional techniques for modeling and prediction.

3.2.1 ARIMA Models : Theoretical Background

ARIMA models combine three different types of processes:

¢ autoregression (AR)
+ differencing to strip off the integration (I)
+ moving averages (MA).

Three components are based on the concept of random disturbances or shocks. Between two
: oBservations in a series, a disturbance occurs that somehow affects the level of the series.
Theses disturbances can be mathematically described by ARIMA models. The most general
ARIMA model involves all three components. 'The general ARIMA model is conventionally
written as ARiMA(p,d,q), where p is the order of autoregression, d is the degree of
differencing, and g 1s the ordér of moving average involved.

'Autbregression is a process in which each value in a series is a linear functioﬁ of the
preceding value or values. In a first-order autoregressive process only the single preceding

value is used; in a second order process the preceding two values are used; and so on. An
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autoregressivé process is conceptually shown to be one with a "memory" in the sense that
each value is correlated with all preceding values.

Time series often reflect the cumulative effect of some process. The process is
responsible for changes in the observed level of the series but is not responsible for the level
itself. The levels themselves are the cumulative sum of the changes in each period. A series
that measures the cumulative effect of something is called integrated. The way in which
integrated series are studied is by differencing or in other words by looking at the changes
from one observation to the next. The difference from one observation to the next is often
small for series»that wander. This stationarity of the differences is highly desirable from a
statistical point of view. The integrated process can be viewed as one with a perfect memory
of the previous value- but only the previous value.

In a Moving Average (MA) process, each value is determined by the average of the
current disturbance and one or more previous disturbances. The order of the moving average
process specifies how many previous disturbances are averaged into the new value. A
moving average process is the most difficult of the processes to visualize.

The ARIMA models are developed based on the modeling procedure described by
Box and Jenkins that allows one to construct the best possible model for 2 given series. The
ARIMA models represent data as an explicit structure. The ARIMA models can be

mathematically represented as [Box70]:

PBYD(B HV VL (Z,-c) = B(BYO(B %)q, 3.7)

where
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B: is the Back-shift operator (i.e., BX= X,);

V =1 - B; s = seasonality, a, = white noise ;

@(B) and ®(BS) are nonseasonal and seasonal autoregressive polynomials respectively;
8(B) and ©(BS) are nonseasonal and seasonal moving average polynomials respectively;
Z, = series (transformed if necessary) to be modeled.

The modeling approach is described in the next section.

3.2.2 ARIMA Modeling Process

The Box-Jenkins approach essentially involves the following steps [Box70] :

¢ Model Identification

¢ Parameter Estimation
+ Consideration of Alternative ARIMA models, if necessary
+ Diagnostics

Identification of the processes underlying the series forms the first and most
subjective step. The three integers p,d, and q in the ARIMA(p,d,q) process need to be
determined. The identification process begins with first determining whether the series is
stationary or not. This is done using a plot of the key variable. This is needed as the
identification process for the AR and MA components requires stationary series. A stationary
series has the same mean and variance throughout. When a series is non-stationary, then the
series is transformed until a series that is stationary is obtained. The method of

transformation is differencing. Each value in the original series is replaced with the
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difference between that value and the preceding value. The order of differencing is the
number of times the differencing is done. The typical values are 0 and 1. The next step in
the identification process is to obtain the values p and q. In the case of nonseasonal
processes, the values of p and q are determined from the autocorrelation function (ACF) and
partial autocorrelation function (PACF) of the series. The autocorrelation function calculates
the autocorrelations at lags 1,2, and so on. The partial autocorrelation function gives the
corresponding partial autocorrelations at intervening lags.

Once the series is identified the coefficients of the model are estimated. The
estimation process involves iterative calculations. The maximum-likelihood coefficients are
estimated and a new series is added that represents the fit or predicted value, the error, and
the confidence limits on the fit. The new series (fit and residuals) are used for diagnosis of
the model for selecting the best model.

The diagnosis step involves checking the following [Box70, SPSS]:

4 The ACF and PACF of the error series should not be significantly different from 0.
If the first or second order correlation is large then the model is mis-specified and
hence an alternative model needs to be estimated.

¢ The residuals should be without pattern. A common test for this is the Box-Ljung Q
statistic. Q at a lag of one quarter of the sample size and not more than 50 should be
evaluated and must not be significant.

The ARIMA type of Box-Jenkin models have the following advantages:

¢ Explicit structural relationships that can be clearly understood;

4 Consistent performance compared to ANNS;
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3.2.3 Drawbacks of Statistical Techniques

Parametric statistical approaches have been shown to have difficulty with detecting
important changes in the data. In monitbring high-dimensional time-sefies, explicit
mathematical models that contain parameters of unspecified value are "fit" to the data. The
fitting process than determines statistically significant values for the parameters and these
are used to characterize the time-seﬁes and the underlying phenomenon or system it
represents. However more often model mis-specification limits the ability of the model to
capture essential features of the data-generating mechanism accurately aﬁd with a'high
degree of reliability [Burke93].

The literature reviewed indicated that regression methods are not very good in their
predictive capabilities and usﬁally are more‘ useful for prediction of linear systems. Statistical
methodsvhave poor predictive capabilities for non-linear dynamic systems. These methods
necessitate that a mathematical model be defined and the various parameters be known.
Hence they are often difficult to formulate and do not give a good predictive model.
Mathematical models such as these are never a perfect representation of a dynamic system.
They often lead to underfitting or overﬁtting because of the need to assume the underlying
distribution function and also the need to estimate the various parameters in the mathematical
models. The statistical methods also have to overcome the problem of high correlation that
exists in many problem situations. The standard statistical methods such as test of
significance (t-statistic, R? etc) and correlation tests do not always imply causality or

predictive power. Regression techniques also require that a particular form for the
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distribution function be assumed. Depending on the curve, one can end up in poor predictive

values through underfitting or overfitting of data to a selected function. In addition regression

techniques are computationally intensive. For n inputs, there will be 2n + n (n-1)/2 terms in

the regression model. If there are k terms, 2%-1 regression models are possible [Burke93].

3.2.4 Statistical Modeling Issues

The following modeling issues are raised and addressed while identifying and

selecting the type of statistical technique to be used for developing bus transit schedule

behavior models :

.

Whether to model the schedule deviations at a given timepoint on a given route and
direction of travel as a function of schédule deviations at the previous timepoints on
the same route and direction of travel, i.e. in the form :

SD(k) = ¢ [ SD(k-1), SD(k-2)...SD(k-n) ].

Extensions of the basic Box-Jenkins AR(p) model described in the above equation

to include moving average MA(q) terms, differencing, seasonal components and

other data transforms.

Whether to include spatial information about location of timepoints as predictor
variables within the time series model.

How to tackle missing or erroneous data?

What kind of relationship does the bus schedule behavior data exhibit? Wﬁether it

is linear or nonlinear; stationary or non-stationary; random or seasonal.
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Some of the issues such as the missing or erroneous data are common to both ANN models

and ARIMA model. These issues are addressed in Chapters 4.

3.3 Summary

This chapter provides background information on the different modeling techniques
suitable for the schedule behavior modeling problem. A historical overview of
ANNs,advantages and disadvantages of ANN models was presented. Basic guidelines for
selection of a suitable ANN architecture(s) were discussed. The theoretical background on
two important ANN architectures (i) Feedforward networks, and (iii) Partial recurrent
networks was also presented. This chapter also described the learning alogirthm:
QuickProp. The standard backpropagation élgorithm has been shown to be slow and
inefﬁcieqt and hence a faster vefsion déveloped by Scott Fahlman called Quickpfop was
deemed appropriate and suitable for developing the ANN models.

Partial recurrent networks have the distinct adyantage_of being able to represent
sequences. This key attribute formed the basis for adopting this technique for investigating
the schedule behavior modeling problem: The partial recurrent network architecture

~ incorporates dynamic behavior through its representation structure and hence is suitable fqr
non-linear modeling. Good internal modeling is an important step towards the development-
of efficient bus transit operational control strategies. Partial recurrent networks by virtue of
their structure have the potential for good internal modeling of schedule behavior of buses

on a route. Good internal modeling can be relevant and important for real-time bus transit
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service control. Given sufficient information on the system (location of the bus, schedule

deviation at the current location), which constitutes the inputs to the system, real-time service
control requires some prediction of the schedule deviation of a bus at subsequent timepoints
or stops. Furthermore, the prediction must be able to change as the bus travels along with
other traffic on any given route and whose influence is unknown and unpredictable. |
Therefore, any function approximation that models thé schedule behavior of a bus must be

adaptable. In this study the primary focus is on investigating the application of three

different ANN architectures. They are : (i) Feedforward Networks (ii) Jordan Networks, and

(iii) Elman Networks. The main purpose for including this chapter was to provide a basic
understanding of ANNs. This chapter's main contribution is that it provides a rationale for
choosing the ANN approach for modeling schedule behavior of buses by describing the
advantages and also by providing an overview of past applications.

This chapter's contributioﬁ is also towards providing the fheoretical background on
the ARIMA modeling technique that will be used for modeling the schedule behavior of
buses. This chapter also briefly described the relevant statistical modeling issues that are
important for developing schedule behavior models. The reason for selecting the ARIMA

modeling technique is because of its strong theoretical underpinnings making it more

reliable and robust and therefore suitable for modeling problems. The second reason for

selecting the ARIMA modeling technique was because of the stated objective of this

research effort to perform a comparative analysis with ANN models.
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CHAPTER 4
' SCHEDULE BEHAVIOR MODEL:
.CONCEPTUAL» FRAMEWORK
AND DEVELOPMENT PROCESS

4.1 Introduction

Modeling is a very general mathematical concept that has been used to solve a variety
of engineering problems. Statistical techniques have been often used to develop models to
understand the relationship between an observed phenomena and the factors that affect or
influence its characteristics. The problem of schedule behavior modeling can be construed
as a time series prediction problem. Hence time series modeling and prediction techniques
are applicable. Chapter 3 provided the ﬁeccessary justification for selecting the various
neural network architectures and also the statistical techniques to modél schedule behavior
data. Chapter 3 also provided the theoretical background on a selected set of techniques for
modeling thé bus schedule behavior. The main purpose of this chaptér is to describe in detail
the conceptual' framework for modeling bus transit schedule behavior using the
aforementioned techniques. The queling procedure seeks to investigate the issue of how
many timepoints in the upstream section of the route should one include in the modeling and

hence prediction at a given timepoint? Since the objective of this dissertation is to discern
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the relative performances and hence merits of different approaches, different models are

developed using different lengths of input sequences, i.¢, considering 1,2,3,4 and 5 previous
timepoint schedule behavior information. An important point to note is that schedule
behavior modeling is a very complex and difficult problem requiring spatio-temporal
considerations. A review of the relevant literature indicated thét such a problem has not yet
been researched 1n depth and hence very little or no guidelines are available for developing
the modeling framework and aiso'the appropriate modeling technique for the schedule

behavior problem .

4.2 Modeling Approaches

In prediction modeling there are two basic approaches that have gained prominence and often
adopted. With the fundamental approach, it is believed that the forecasting process should
at least approximately model the mechanisms that underlie the determination of key variable
being predicted [Weigend92]. The key factors that affect schedule behavior and cause
schedule deviations are:
SD (R,j,kT) = ¢ (Traffic,Driver,Vehicle, Environment,(Un)Loading) 4.1
where,

SD = Séhedule Deviation,

R;= Routeli,

j= Direction,

k= Timepoint Location,
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"T= Scheduled Arrival Time, and

(b represents an unknown function that the network would try to ascertain during

the training process.
System behavior modeling on this approach is currently not feasible due to lack of adequate
information in the data set on many of the above factors that affect schedule behavior. For
example, no mformatlon is collected on loading/unloading characteristics at each t1mepo1nt
on a given route. The second modeling approach is to assume that all the mformatlon (onkey
factors affecting schedule behavior) that is available, has already been represented by the
values of the key variable being predicted [Weigend92]. For example, with schedule
deviation predictioh, the values that indicate "early" or "late” have been influenced by the
various factors that affect it, namely traffic conditfons, driver characteristics, passenger
loading/unloading characteristics and vehicle condition. Therefore nothing else is considered
while trying to predict the future of the system behavior except the past states of the key
prediction variable, the schedule deviation. Hence a time-series approach is adopted that is
mathematically represented as :

SD(*) = @[ {SD(k-1), SD(k-2)...SD(k-n) },v{T (k),T(k-1)..}] | (4.2)
where,

SD(k) denotes the schedule deviation at timepoint k on a specific route and a specific
direction of travel. The term n represents the length of the input time series or in other words
the short term memory about the schedule deviations of a bus at timepoints in thé upstream
part of a route (k-1 , k-2 ..etc). In this study the focus is on developing schedule behavior

models using Equation 4.2 for a given route and direction of travel. The various model
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structures investigated in this study are described in later sections of this chapter.

4.3 Explicit Models versus Implicit Models of Schedule

Behavior

One of the key questions while developing models of a particular system is whether
to consider an explicit structure on an implicit one. The claim that is often made is that an
explicit structure to model a system of interest is inherently better than an implicit structure
that an artificial neural network has and that is oftex; referred to as the black box. The various
possibilities for the actual structure of a schedule behavior model are discussed below.

Consider a route which has six timepoints and where the scheduled and actual arrival
times at a timepoint are known. The schedule deviation at timepoint £ is therefore known for
various trips during different times of the day. The conventional time series approach would

propose a relationship of the form:

SDy, =@, SDp,y * @y ySDp,p ¥ E (4.3)

where k indicates timepoint location and £ indicates the different times of the day which in
our context represents the trip number, and SD denotes schedule deviation. However, such
an approach, which essentially has been used in the past to obtain distribﬁtions of schedule
deviations for different times of the day, takes no account of the spatio-temporal or structural
relationship that exists between a measurement at one point and a measurement at another;

namely, that the bus passing through a timepoint moves to the next, in a time that varies
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because of a number of factors such as traffic, loading and unloading characteristics
(reflecting demand), number of bus stops in between, driver characteristics etc. Moreover,
these characteristics are inherently reflected in the arrival time of a bus at subsequent
timepoints. In other words, the lags, p, (in the expressions of the kind @y, SDy..,) should be
regarded as variables that are related to the travel time (or the speed of the bus between two
timepoints) and not as fixed quantities. Consequently, the set of forecasting model equations
become complicated considerably and such a modcl form cannot be ascertained using
existing techniques. Moreover, such an approach does not capture the spatio-temporal
sequencing relationships that the schedule deviation of a bus is believed to have. Hence we
can infer that no matter how well a time series model, as represented by Equation 4.3, might
appear to fit the schedule deviation data, their functional form is not necessarily one that is
consistent with the schedule behavior characteristics of buses on a route. Now consider the

expression given below:

SD,, = Q1 SDyy, * Qpg SDyg, ¥ 777 + € (4.4)

where k indicates timepoint location and ¢ indicates the different times of the day which aléo
refers to the trip number or the scheduled arrival time of the day, and SD denotes schedule
deviation. This expression is used to model the schedule deviations of buses traveling in a
paﬂiqular direétion, at consecutive timepoints on a route and at a specific scheduled time of
tha day at the starting timepoint. This model form captures the inherent relationship thét
exists between the schedule behavior at consecutive timepoints and thus is a more realistic

and useful form that needs to be ascertained. The second approach to overcome the problem
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of inconsistent functional form using the conventional time-series equation,as given by
Equation 4.4, is to develop the schedule behavior models using artificial neural networks.

The basic question of whether explicit representation is better than implicit
representation is quite difficult to answer [Kirby94]. While the traditional mathematical
techniques such as time-series have a very well established theory, the ANN methods are
new and look promising. As discussed in Chapter 3, there are relative merits in using both
the explicit representation as done by the ARIMA model and the implicit model
representation as done by an artificial neural network model. Since no prior work exists at
modeling the schedule behavior of buses using the time-series approach, the best answer is
to investigate both the implicit and explicit modeling techniques and then do a comparative
analysis as to which provides the more accurate and reliable predictions for the schedule
behavior modeling problem. Many researchers have stated that theoretically it may be
proven that a particular model is representationally more powerful than another because it
is capable of representing more complex curves and functions [Foster92,
Pollard92,Weiss90]. However, in practice any learning method or system using a
theoretically less powerful representation may yield better predictions than one with a
potentially stronger and complex representation [Weiss90]. According to Weiss et al.,
[Weiss90] what is important is that for any given representation, a learning method must be
capable of finding good fits within that model. Weiss et al. also state that a method must use
data efficiently and find a compact and often simpler solution at an appropriate level of
complexity.

The model structures proposed in this and the previous section, as defined by
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Equations 4.2 and 4.4, clearly implied that thére are a large number of possible definitions
for SD(k). The model structures chosen for experimentation in this éffort were a compromise
between fully capturing the system status, and keeping the size of number of input
parameters to a minimum. While the basic framework for schedule b¢havior model was as
defined in this section, some modifications of the model structure, in terms of additional
independent variables, was chosen for experimentation during the model development
process. The basic form of the schedule behavior model defined by Equation 4.2 was
selected for model development in this study.

The following sections déscribe the schedule behaviof model development effort
using the two basic techniques described ih Chapter 3 - artificial neural networks and
statistical methods. The description also illustrates the complexities with conducting

experiments for developing ANN based models.

4.4 Artificial Neural Network Models

The development of effective ANN models requires experimentation with network
topology, input variables, learning coefficients etc. It is an exercise in art and science. The
scientific part involves trial and error experimentation using network design guidelines

discussed in Chapter 3. The various steps in the ANN modeling process is described below.

4.4.1 ANN Modeling Process

The artificial neural network models were developed using the following procedure. The
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design of the modeling experiments required a detailed planning and was tedious due to the

fact that there are no standard procedures for developing ANN models. The development of

the ANN models could be done by a trial and error procedure especially with regards to the

selection of the network architectures, learning parameters and network training.

The following is the step by step process for developing the ANN models:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Data Preprocessing

Network Selection

Learning Algorithm/Update Function Selgction
Weights Initialization

Network Training

Network Testing.

In order to develop the ANN models the Stuttgart Neural Network Simulator (SNNS)

was used. The neural simulator had the capabilities to develop all of the proposed ANN

network architectures. It is an X-windows based application developed using the OSF/Motif

class library. It also provided graphic features to trace the propagation of error over each

iteration. The various steps in the modeling process are described in detail in the following

sub-sections.

4.4.1.1 Data Preprocessing

Data preprocessing is the critical step in artificial neural network modeling. It covers
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about half the modeling process. Data preprocessing involved two important steps: (I)
Elimination of outliers or noise, and (ii) Data scaling. A detailed description of data

preprocessing step 18 provided in Chapter 5.

4.4.1.2 Network Architectures

As discussed earlier, three basic neural network architectﬁres are examined in this
study: (D). Feedforward Networks and (ii). Elman Recurrent Networks and (iii) Jordan
Recurrent Networks. All of the above network architectures considered had three layers,
with an input layer, hidden layer and an output layer consisting of units. Since it was required
to préduce contiﬁuous valued output, linear units were used in the output layer. Similarly,
since the inputs were continuous valued, linear units were used iﬁ the input layer. For the -
units in the hidden layer, logistic function was chosen.The number of hidden units was
varied in order to obtain a reasonable performance of the model on the test data set.

For each of the above-méntioned architectures, three different sets of models, as
described below, were experimented depending on the spatial and temporal sequencing
information being considered for input to the artificial pemal n_etwork. These model
structures essentially define the different network topologieé based on the nature of input
information. They also represent networks of different complexities for schedule behavior
model development experiments. ANN architectures are denoted as IxHxO, where ILH, and

O represent number of input, hidden, and output units respectively. The network structures

used in this study are defined in the following section.



4.4.1.3 ANN Model Structures

Different network topologies are considered depending on the number and content
of input variables. The model development process was designed such that different ANN
model structures were experimented with based on the basic framework of the schedule
behavior model defined by Equation 4.2. The different model structures experimented are
referred to as Model Sets in this étudy. In all, two different model sets were designed for
investigation. The important distinguishing characteristics of the three model sets in the
amount of information i.e., inputs included for analysis. In Model Set.I the focus is to
experiment and study the effect of sequencing on learning and neural network modeling. The
notion here is that the schedule deviations at a timepoint k- affect the schedule deviations
at the next timepoint & and hence the sequential information may provide better learning of
the schedule behaviof of the system. This in turn helps in more accurate predictions of
schedule deviations at the subsequent timepoints on é given route and direction of travel.For
Model Set II, the schedule deviation information along with the timepoint information
represented by the timepoint index on a route was also presented as input .to the network.
This was done in order to ascertain if providing the timepoint information would have any
 influence and therefore would affect the model’s accuracy. The scheduled arrival time was
also included as input to the ANN models, since it gives us an indication of the time of the
run, i.e. whether it is during peak hour etc. The basic structure of all the models are

described below.
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CASE INPUT
NUMBER‘ SERIES INPUT UNITS
LENGTH

1A 1 Scheduled Arrival Time (T(k)),Schedule Deviation SD(k-1)

1B 2 Scheduled Arrival Time (T(k)), Schedule Deviation SD(k-2),
Schedule Deviation SD(k-1)

IC 3 Scheduled Arrival Time (T(k)), Schedule Deviation SD(k-3),
Schedule Deviation SD(k-2), Schedule Deviation SD(k-1)

ID _‘ 4 Scheduled Arrival Time (T(k)), Schedule Deviation SD(k-4),
ScheduleDeviation SD(k-3), Schedule Deviation SD(k-2),
Schedule Deviation SD(k-1)

IE 5 Scheduled Arrival Time (T(K)), Schedule Deviation SD(k-5),
Schedule Deviation SD(k-4), Schedule Deyiation SD(k-3),
Schedule Deviation SD(k-2), Schedule Deviation SD(k-1)

Table 4.1 : Artificial Neural Network Model Structures for Model Set I
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Model Set I: Models using only Schedule Deviation Information at previous
Timepoints.
The various models designed and investigated under this model set formed the main

focus and the most important task of this study. The model structures designed and

- investigated under this model set included experimenting with various lengths of the input

series. It was postulated that the behavior observed at an upstream timepoint might be of help
in making such a prediction. The principal goal of such an experimentation was to
investigate the question of how many upstream timepoints, which is described as the length
of the input series, should be included for analysis in order to accurately predict the schedule
deviation at a given site. Four different models with different input series length ranging
from n=1 to n=5 were designed and developed using the various ANN model architectures.
The length of the input series represents a way to define the memory of the schedule
deviation series. Table 4.1 details the various scenarios for the model set I that were
designed based on the length of the input series. For all the five cases IA-IE, only one output
unit,namely, Schedule Deviation SD(k) was used. This means that the ANN models were
designed for predicting only one timepoint ahead. In addition to investigating the impact of
the length of the input series, the impact of providing the timepoint information in the form
of position al information along a route was investigated. The next section briefly describes |
the model structure.

Modei Set II : Models Developed using Schedule Deviation and Timepoint Information
This model‘ set differs from model set I in that the timepoint information (i.e, positions

k, k-1, k-2 along the route) was also provided to the network as inputs. This was done
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in order to investiéate the effect of providing knowledge about the spatial location of the
buses on the route to the ANNs. The following model set was included in the investigation
in order to ascertain if the inclusion of the timepoint information (essentially the position
of the various timepoints along the route) had any impact on model performance. It was
decided to first check if the inclusion of timepoint information had any impact and hence
only two two cases (n = 1,n = 2) were selected for the experiments. If the timepoint
information had any impact on model performance then the cases involving longer input

seriesn = 3 ton = 5 would also be considered for investigation.

CASE INPUT

NUMBER SERIES INPUT UNITS
LENGTH _
A | 1 Scheduled Arrival Time (T(k)), Schedule Deviation
SDk-1), T imepoint (x), Timepoint (k-1);
IIB 2 Scheduled Arrival Tixrie (T(k)), Schedule Deviation

SD(k-2), Schedule Deviation SD(k-1), Timepoint

k), Timepoint (k-1), Timepoint (k-2);

Table 4.2 : Artificial Neural Network Model Structures for Model Set II
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4.4.1.4 Learning Algorithm/Update Functions

Since both the input (time and location,schedule deviation at previous timepoints
etc.) and output (schedule deviation) variables are known quantities, the schedule behavior
modeling using artificial neural networks constitutes a supeifvised learning problem and
hence supervised learning algorithms such aé QuickProp can be applied. QuickProp
described in Chapter 3 is a faster and more efficient version of the standard

Backpropagation algorithm.

4.4.1.5 Weight Initialization

The weights are initialized depending on the type of network architecture selected. The
weights for the connections are randomly chosen between -0.001 and +0.001 for a

feedforward network.

4.4.1.6 Network Training

The networks were trained with the QuickProp learning algorithm until there was no
substantial decrease in the mean square error (MSE) for every 1000 iterations. The TanH
(hyperbolic tangent) activation function was used for the hidden units. Both the MSE and
sum of square errors (SSE) was computed for each iteration of the training process. MSE
was used as a stopping criterion during the training phase. The learning rate parameter was

chosen in the range of 0.0005-0.00001.
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4.4.1.7 Network Testing

The networks were tested on the test data set and the MSE and SSE were
computed. The absoute errors were also computed on the test data set in order to be used

for conducting a comparative analysis between various modeling approaches.

4.5 Statistical Models

The time series model structure selected for investigation was based on Equation
4.4 described in section 4.3. An important point to note is that the time series model does
not use the full set of independent variables included in the definition of SD(k). The
statistical software package’SPSS/PC+ was utilized to develop and test the ARIMA

models.

4.5.1 Exponential Smoothing

The exponential smoothing technique was ﬁrs£ applied on the data set to see if é
- simple rnodel can explain the underlying schedule behavior model structure. The
exponential smoothing parameter o was close to zero indicating that the exponential
smoothing method simply predicts the overall mean and does not use information from the
most recent observations. Hence it is of little uée and a more sophisticated technique such
as the ARIMA method is perhaps a more appropriate modeling technique for the schedule

behavior data set.



70

4.5.2 ARIMA Technique

As described in Chapter 3, the ARIMA model is one of the most advanced time
series models, and therefore was choseﬁ for application in this research effort. In order to
be able to compare statistical modeling with the ANN models, two model structures used
in ANN model development process were selected for the statistical modeling process. In
addition to the average absolute error, the average percentage €rror, and the distribution
of error for the ARIMA models were computed in order to assist in comparative analysis
of the various models. The two modeling structures that were chosen for investigation and
comparative analysis are shown are in Table 4.3. These model structures were selected in
order to be able to conduct a comparative analysis between the ANN modeling approach
and the ARIMA technique. The Model A case is identical to the .model case IC shown
ir; Table 4.1. The results of the best fit ARIMA model was compared with the results of
the IC set of ANN vmodels'.The Model B case is the same as the casé IE shown in Table
4.1. The results of the best fit ARIMA model with thié structure was compared with the
results of the IE set of ANN models. In order to select the best model among the various
ARIMA modeis for a particular model structure the Akaike’s Information Criteria (AIC)
was considered.

The ARIMA model development process involved the resolution of a number of
issues. The primary issue was of missing/erroneous values. Since most data sets invariably
contain missing or erroneous values, an effective technique was required to address this

issue. The simplest approach adopted for this study was to replace the missing values with
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historical averages [Terry]. The risk involved with such extrapolation is that such an
approach can lead to the selection of a wrong form of a model. This complexity of
missing/erroneous values is one of the reasons why time series models appear to be not

well suited for wide-scale application to schedule behavior modeling problem.

. INPUT
MODEL SERIES INPUT UNITS
LENGTH
A ) Scheduled Arrival Time (T(k)), Schedule Deviation
SD(k-3), Schedule Deviation SD(k-2), Schedule Deviation
SD(k-1);
B 5

Scheduled Arrival Time (T(k)), Schedule Deviation
SD(k-5), Schedule Deviation SD(k-4), Schedule Deviation
SD(k-3),

| Schedule Deviation SD(k-2), Schedule Deviation SD(k-1);

Table 4.3 : Time Series Model Structures

4.6 Comparative Analysis

In order to conduct a comparative analysis, a set of measures of performance are
defined. Multiple perfoimance criteria were used in order to fuly evaluate the performance
of the four modeling techniques. Ideally, multiple measures of performance provide a
more realistic, meaningful, and non-relativistic évaluation approach for a comparative

analysis of different modeling approaches [Smith95].
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4.6.1 Measures of Performance

The performance of the modeling techniques was evaluated using the average
absolute error, average percentage error (PE,,), and distribution of absolute error. These
are briefly described below.

The average absolute error is the primary measure of model accuracy. The measure
is an‘indicator of how far the model’s schedule deviation values differ from the actual
schedule deviation values. The average absolute error for the test data set is used as
measure to compare the performance of the various models.

The average percentage error PE,, is calculated for each point in the test data set

(having n patterns in the test data set) using the following expression:

(SDact, - SDpred)
x
SDact,

PEavg = E;Ll

100 (4.5)

where,
SD,, is the actual schedule deviation;
SD

orea 18 the network predicted schedule deviation.

The distribution of absolute error serves as an indicator for evaluating the model’s
ability to underestimate or overestimate the schedule deviations at the next timepoint. In
this study, the distribution of error is measured in terms of the threshold intervals of the
absolute error: The intervals defined are (in minutes): greater than O and less than or

equal to 2, greater than 2 and less than or equal to 3, greater than 3 and less than or equal
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to 4, and greater than 4. The distribution of absolute error is also a criteria that provides
a mechanism to evaluate the potential for practical implementation of the various

approaches.

4.6.2 Statistical Test for Comparison of Average Absolute Error

In order to conduct a comparative statistical analysis of the performénce of various
models the Wilcoxon test was. chosen. Past studies that have compared' ANNs with B
Statistical models had suggested the use of Wilcoxon test for evaluating the statistical
significance of the models’ perfofrﬁance[Smith95]. The Wilcoxon signed-rank test was
used to evaluate the statistical significance of differences between the various ANN and
statistical models. The Wilcoxon test is a nonparametric test that infers from paired
sample cases. In this study, the pairs are the absolute error estimated by two models at a
given scheduled arrival time. The null hypothesis of the Wilcoxon test states that the mean
of the two populations, in this case defined as the absolute errors for the two models, are
equivalent i.e, y; - 4 = 0. The alternate hypothesis is that the mean for model 1 is greater
than the mean for model 2 i.e, g - 1 > 0. The Z statistic is calculated to determine the
level of significance. A detailed description of the Wilcoxon test can be found in any

statistical reference book including in [Brieman73].

4.7 Summary

The main contributions of this chapter is the description of a basic modeling approach
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for the schedule behavior modeling problem and the formulation of the schedule behavior
model development process using the modeling techniques described in Chapter 3. The most
suifable approach for schedule behavior modeling was judged to be the time-series approach
essentially due to lack of sufficient data on causal factors. The relative merits of explicit
versus implicit modeling approaches were also highlighted in this chapter in order to justify
the stated objective of investigating the schedule behavior modeling using both the modeling
approaches.

Different modeling techniques and model structures for developing schedule
behavior model were presented in this chapter. The various modeling techniques selected
required different levels of effort, knowledge, and modifications to the basic model
structures discussed in section 4.3. The model development effort especially in the case
of the ANN paradigm requires a series of trial and error experiments in order to resolve
the issues such as: number of inputs, number of hidden units, initial weights, criteria for
error propagation, number of iterations, learning parameters values etc. Therefore, the
design of the experiments required trial and error approach in the selection relevant
factors. A number of ANN models were developed for each model structure and
architecture using different values for the relevant parameters and the model which showed
the best performance in terms of the MSE and SSE for the test data was selected as the
appropriate model. The next chapter presents a detailed description about the case study

used for investigating the feasibility of developing schedule behavior models.
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CHAPTER S
CASE STUDY : DESCRIPTION AND DATA
SET DEVELOPMENT

5.1 Introduction

Tidewater Regional Transit operates a 170 bus system and has implemented an
automatic vehicle location system for real-time monitoring and supervision. AVL Data was
obtained from the Tidewater Regipnal Transit's AVL system. The headways on TRT's route
network vary on this from 15 minutes to 1 hour during different times of the day and for
different days of the week. There are three different scheduling plans for each route
depending on the day of the week, i.e., Weekday cbvering Monday to Friday; Saturday; and
. Sunday. For this study, we are limiting our scope to weekday operations. Sufficient data
could not be obtained for Saturday and Sunday operations.

| The AVL data is stored on the rrﬁcroVAX system that is the central computer used
for the real-time monitoring of the bus operations. TRT began its installation of the AVL
system in 1989. The AVL system has fac;ed several calibration problems. TRT has been.
using the AVL information for generating schedule adherence reports. The computer system
has had capacity problems because the same computer system has been used for other
inventory, payroll and other in-house personnel managemént tasks. This makes it difficult

for TRT to store AVL data that can be used for the development of intelligent processing
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techniques. The data is stored as history files with a date stamp attached to the file name, eg.
HISTF930319.DAT. These files contain all events taking place from the start of operations
to the last operation in the night. TRT's AVL system records all events ranging from time
point to timepoint update of actual arrival times of buses. The data is represented as record
types and event types. TRT's system consists of nine records and about 75 event types. All
the data pertaining to the different record types and eventypes are stored in one single file,
the history file HISTEXXXXXX.DAT (XXXXXX stands for year, month and date).
Therefore preprocessing was necessary in order to obtain data relating to schedule behavior.
The following data is to be extracted from the history files : Route Number, Route-Block,
Direction, Vehicle Number, TimePoint Location, Schedule Arrival Time, and Actual Arrival
Time at a timepoint, Incident Event Type. In addition, the following information was
collected from TRT's system: Location of Transfer Points, Incident description and route
diversions. One important point to note is that locationAdata updates are available only at
timepoints along any route and not at every bus stop. Currently AVL history data is stored
on magnetic tapes for about two weeks and then erased. The problem has been that the
history data files are very large and TRT's VAX system doesn't have the desired storage
capacity. Data for 26 weekday operations was downloaded from TRT's microVAX system.
The raw data from the AVL system is stored in binary format.

The sample route considered for this study is Rt 23 of TRT's bus transit system.. The
headways on this route are 30 minutes. The bus travel time is 30 minutes. Figure 5.1 shows
an illustration of route 23. The route has six timepoints with one of them being a transfer

point to routes 9 and 23. Tables 5.1-5.2 illustrate the characteristics of the some the
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R(20) Route (23)
G ————
Direction 1’

O: Denotes Transfer Point

TP(k) : Denotes TimePoint k

Figure 5.1: An lllustration of the Sample Test Route 23

important routes on TRT’s network including Rt. 23. This route was selected because of the
simplicity in the route characteristics such as 30 minute headways with 30 minute travel ﬁme
between end points. This means that any given time only one bus exists along a particular
direction of the route. This reduced the complexity in the data preprocessing step. In
addition, the reason for selecting only one route was that it is easier aﬁd less complex to use -
a single route to investigate the feasibility of schedule behavior modeling using advanced
techniques. The second reason is that no prior research work exists on applicable modeling
approaches and hence it is appropriate to first investigate the feasibility of . modeling and
ascertain a suitable modeling approach before any large scale development of schédule
behavior models for a transit route network. Table 5.3 shows a sample data sheet obtained

from TRT’s AVL system.
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Route Start End Point Headway | Headway | Total
# Point Location (Min) * (Max) * BTT
@ ¥
1 Pembroke Monticello/Charlotte 15 60 88/92
East
9 Va Beach Monticello/Charlotte 30 30 30/39
Blvd/Scott
20 Atlantic/ Monticello/Charlotte 15 60 92/97
68th St.
23 Va Beach Medical Tower 30 60 25/18
Blvd/Scott
29 Pleasure Pembroke East 60 60 90/85
Hs/Shore
36 Pembroke Lynnhaven Mall 60 60 28/29
East
Table 5.1 : TRT’s Sample Route Network Characteristics
NQOTE: * : In Minutes

BTT,

k&

- Bus Travel Time for One Direction

: 88/92 indicates BTT in minutes for the two  directions.
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Location Description

~ Transfer Routes Involved

Point #
TP, 1,20,29,36 Pembroke East
TP, 20,29 First Colonial Rd, Laskin Rd
TP, 1,29 Pleasure House Rd, Shore Dr
TP, 1,20,9 Monticello Ave.,Charlotte St.
TP; 9,20, 23 Va Beach Blvd., Scott St.

Table 5.2 : Sample Timed-Transfer Points and the Routes Involved
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EVE |SCH. TIME |ACT. ARR. TIME [ROUTE| BLK# [NODE] DIR |VEH#| SD
56 | 4 40 | 4 47 14| 1 1241300|1580| 2 [2402] -7
56 | 4 44 | 4 55 39| 1 1243300|1580f 2 |1r21] -11
58 |4 45| 4 47 31| 1 2413001580 2 12402| -2
56 |74 B8 | 4 58 34| 1 J244300|1580] 2 | 22 | O
5814 541 5 1783| 1 2433001590} 2 |1721]| -7
555 3 5 5B 1 2433004017 2 (1721 -2
55 |75 . 10| 5 9 BT 1 |243300|1590) 2 1721} O
56 |75 4|5 12 44| 1 |238300)1580f 2 (1951} 1
B5 |5 15 |5 21 34| 1 |243300f1580| 2 |1721] -6
55|75 18 |5 15 13| 1 [244300|1780] 1 | 22 | 2
B8 |5 24|75 T 24 121 1 |238300)1590| 2 |[1951] O
5575 Teg 5 16 143 1 | 25400 [ 1580 2 |2482) 12
56 |75 20| 5 42 44| 1 [235300|1580| 2 f1821] -13
B5 |5 a0 |5 27 42| 1 |244300f8&0)] 1 221 2
85 |5 TE0 |5 30 21| 1 [233300| 1580 2 |1601} O
BB 30538 0| 1 |243300]870f 2 [1721] -8
555 TR 5 33 80| 1 | 238300| 401 | 2 [1951] O
55|75 730|546 17} 1 |235300)1590) 2 [|1821] -7
55 |75 40 |5 37 (15| 1 |238300f1590] 2 1951} 2
B5 15 43757780 (10| 1 |243300|1/80) 2 [1721} -7
55 |75 745 |5 51 46| 1 |238300)1580] 2 |1951| -6
B5 |5 1 48 |5 49 44| 1 1235300f401| 2 1821} -1
55|75 49 |5 44 49| 1 [244300)1580| 1 | 22 | 4
55 |5 53 | 5 B2 7| 1 [241300} 980 | 2 (2402} ©
58|75 B3| B TTES 24| 1 | 26400 | 110 | 1 (2482 -2
59 | B854 |5 748 35| 1 |244300)1590| 1 | 2 } 5
58 |75 B4 |75 49 13| 1 12443001590 2 | 22 | 4
55 | 5 85 |5 @ 53 44| 1 |235300|1590| 2 f1821| 1
58] 5 50 | 6 577381 |233300(1780| 1 ]1601| -15
56 | 5 59| 6 14 1 |239300]1580| 2 2012 -2
55176 0 3 5 251 |238300 1580 2 |81 -5
55 1 6 0 6 6 16| 1 [238300| 870 | 2 1951| -6
551 6 0 67719 42| 1 |233300] 870 | 1 |j1eo1| -19
55 | 6 3 3 2 5§ 1 |244300)401 ] 2 | 2] O
5916 3 8710 151 |243300) 110 | 2 [1721] -7
581 6 5 6 @ 10 241 1 |243300f 110 | 1 1721} -5
5816 9 6 8 7281 1 [230300)15%0| 2 |2012] O
581 6 9 6 8 52| 1 |239300]1590| 2 2012 O
551 6 10| 6 5 3] 1 |244300]1590| 2 | 22 | 4
596 T 12| 6 0 39| 1 |241300|1840) 2 2402} 11

Table 5.3 : Sample data sheet obtained from TRT’s AVL System
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5.2 Data Preprocessing

The data preprocessing task is the most critical one for ANN modeling. Nearly 60 %
of the time is spent on processing the raw data to a format suitable to the modeling procesé.
The data i)reprocessing task involyed the following three important steps:

+ Data Extraction/Conversion
¢ Data Norrnalizaﬁon
¢ Data Representation/Encoding

These three steps are discussed in detail in the following sections.

5.2.1 Data Extraction/Conversion

The raw data from the history files were preprocessed in order to compute the desired
schedule behavior iﬁdicator, namely schedule deviation. bata preprocessing was also
necessary for converting the raw data that is in binary format to an ASCII file and also for
extracting only the event type that stores the actual arriv.al times information. The raw data
or the history files were obtained on TK150 DEC tapes. The data was tl'ansféfred from the
tapes on to the IBM RS6000 Unix based machines using the DEC's tape drives available with

| the VAX system in the Physics Department. This had to be done for two reasons: a)
Academic Computing Center does not have any DEC tape drives, and b) the data was stored
on the tapes using VAX's backup command. The data files had to be first retrieved on the
VAX éystém and then transferred to the RS6000's using File Transfer Protocol (FTP). The

AVL history files were preprbcessed using C programs to extract only the desired data fields
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and for the selected sample route.

5.2.2 Data Normalization

Normalization of inputs has been suggested by many researchers as a way to improve
the performance of the learning algorithm and thus achieve better results [Widrow79]. The
notion being that large magnitude of inputs leads a problem wherein the hidden units get
driven to near their limits and thus leading to the exclusion of nonlinear effects. Therefore
the suggestion is to normalize the inputs to a scale of 0 to 1 or -1.0 to +1.0. The goal is to
keep the magnitudes of the inputs to a hidden layer unit to be around 1 or 2. Normalization
or scaling is an important consideration for gradient descent methods such as standard
backpropagation since they are sensitive to scaling. In this study the main variable, schedule
cieviation was normalized to values in the range -1.0 to 1.0. Momentum, if properly chosen,
alleviates bad scaling to some extent. The main emphasis in the ANN literature on initial
values has been on the avoidance of saturation, hence the desire to use small random values.
How small these random values should be depends on the scale of the inputs as well as the
number of inputs and their corr¢1ations. Standardizing inputs removes the problem of scale
dependence of the initial weights. It has also been stated in the literature that both TanH and
sigmoid are useful in different applications [Mehra92]. If the ends of the data range are
important to define the output then a TanH function is best applied as you will have the most
learning at the ends of the range (-1, 1). If the data increases or decreases unidirectionally

then sigmoid (0,-1) would be a better choice. It's all how the data is encoded and presented
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to the net. When the scaled inputs are around zero, you have very little learning. Researchers
[Mehra92, Prechelt94] have also been able to show that it is possible to substantially
increase learning rates in networks by encoding inputs as binary patterns using -1,1. However
such binary encoding is not suitable to our problem.

The data was normalized using minimum and maximum values of the variables over

the entire data set. The scaling of the variables was accomplished using the expression:

Xnorm = (2.0*——X——) + (( oMy 1) | (6.1)
MAX-MIN MAX~-MIN -

where,

X denotes the variable to be normalized;

MAX and MIN denote the maximum and minimum values of variable X in the data
set.

In this study, for the Scheduled Arrival time (T) variable, MAX = 1440 minutes and
MIN = 300 minutes. The scaling using the above expression converts the data into the [-1,1]
interval. The scaling is important so that the units in which they are given do not effect the
net's output (i.e., the inputs should be either unit-less ratios or else chosen so that percentage
changes are the same a;:ross monotonic transformations of input values). It can speed
convergence to have most or all inputs scaled identically to the output function.
Normalization of the output data to the {-1,1] region prevents the propagation of large error

signals during training, which could force the middle layer nodes to saturate and become
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insensitive to training. The output variable, schedule deviation, was also normalized using
the same expression given in Equation 5.1 but using the corresponding schedule deviation
values. The timepoint data is also transformed into a binary vector. For our case study (Rt.
23) there are six timepoints located on the route. Hence a vector of length six was considered
and the timepoints were transformed in the following manner. For example, timepoint k=1
was binarized as [1 0 0 0 0 0]. The data set consisting of 26 "weekday" AVL data was
divided into three sets. A training set consisting of 24 days of data, and two test sets

consisting of one day's data each.

5.2.3 Data Representation/Encoding Schemes

The training data selection problem is the first problem that needs to be solved when
applying ANNSs using supervised learning techniques. The training data selection problem
essentially entails the selection of an appropriate déta set for training the ANN. Such a
training data set must contain the underlying relationship that the ANN should capture. This
problem is a complex one as in most cases the underlying relationship is unknown. Once a
training set has been selected, the next problem in the sequence that needs to be solved is
classified as representation problem. Representation involves obtaining an answer to the
question of "how to design the ANN structure such that there is at least one solution that
learn the training set" [Nasci94].

The representation problem concerns the following network design issues [Nasci94]:

¢ How many hidden layers are to be used for modeling?
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¢ How many units should Be there in each hidden layer?

+ Which functions should we use for the hidden units?

The problem defines the number of input and output units. In the case of F eedforward neural
networks with input windows, the length of input window defines the number of units in the
input layer.

Once the network input and output representation has been designed to solve the
schedule behavior modeling problem, it is still nécessary to look for the network internal
representation. The representation problem is then to choose the ANN structure such that an
 internal representation exists, ie. that there is at least one set of weights (parameters) that can
reproduce the training data set with a small error. A review of the current literature revealed
that there is very little theory to help in this task. Hence the scheme is to apply a trial and
error procedure to arrive at a good representation.

Hornik et al. established that a feedforward ANN with as few as one hidden layer
using arbitrary squashing activation functions (such as TanH, Sigmoid etc) and no squashing
function at the output layer are capable of approximating virtually any function of interest
from one finite multi-dimensional space to another to any degree of accuracy, provided
sufficiently many hidden units are available. Stinchcdmbe and White extended this result and
showed that evén if the activation function used in the hidden layer is a »rather general
nonlinear function, the same type of feedforward ANN is still a universal approximator.
Funahashi, Cybenko, Ito etc. also obtained similar results.

As can be seen that while there are proofs in the literature to prove that there is a

feedforward ANN with just one hidden layer using squashing or non-squashing function in
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the hidden layer that provides a relationship for the input-output mapping, it is still not
possible to deduce from these proofs the ANN topology (number of hidden layers and
number of units in each hidden layer) or, once the network topology is chosen, how to
determine the network weights (parameters). Another point to note is that the theoretical
literature providing the above proofs, does not provide any clarifications to the question:
which function is more suitable to be used as the activation function for the hidden units
given a specific criterion such as minimum number of hidden units. There is yet to be any
concrete theoretical background to this issue. Hence the only solution to the data
representation problem for our specific ANN modeling of schedule behavior data is to adopt
a trial and error procedure and experiment with various number of hidden units and various

squashing functions.

5.3 Problems with Data Handling and Preprocessing

The AVL system at TRT uses a microVAX system as its central computer for two

way data and voice communication. The systems file Bandling and storage required some

 guessing in order to extract the desired information from the binary files. The field formats

given in the system manuals did not correspond to the actual raw data files stored. Hence a
trial and error method was used to decipher the field format of the history files. The
procedure was automated in the sense that a computer program writtenin C was used rather
than a manual technique and this process saved considerable time. Once the field format of

the data file was known a simple program in C was written to extract the necessary




g7

information for schedule behavior modeling. Figure 5.2 illustrates a flow chart of the data
collection process.

One key problem encountered was the lack of sufficient storage disk space oﬁ the
TRT's computer system. The large size of each days history.ﬁle (approx 1.6 MB) creates .a
storage problem despite the data being in binary format. The large size of the history file
~ demands a hﬁge storage capacity which adds to the cost of system. TRT's solution waé to
store the history files as system backup files on tapes. Even then TRT's data storage capacity
was only two weeks of data. Transit systems need to address this critical problem at the
system implementation stage and should be aware of the data storage needs in order to
develop utilize the data for application of advaqced analysis and evaluation techniques to
enhance system operational performance. In addition absurd/unrealisﬁc values of actual

arrival times had to be replaced by average values.

5.4 Guidelines for AVL Data Storage and Handling

The problems faced and thé expeﬁence gained from the task of collecting AVL data
has led to provide some useful suggestions for data storage and handling. Most transit
systems implementing AVL systems are bound to experience problems of various degreés
with data accuracy, data storage and handling. The large amount of data that is generated
in real-time creates a difficult but solvable data storage and haﬁdling problems. It is
necessary for transit systems to fully understand the importance of the issue right at the

system planning stage. Adequate data storage and handling capabilities must be provided
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along with a fast and reliable computer that forms the heart of the AVL system.

5.5 Summary

The data preprocessing task was the most important .step in the modeling process.
A set Qf C programs were written in order to filter and extract the desired data. The
normalization of the data was performed as suggested in the literature by many researchers
involved in applying ANNSs for modeling and prediction problems. The argurnenf in favor
of normalization of the data set was overwhelming so as not to ignore it. In the case of any
real world application of ANN techniques, how the data is represented is at least as important
as what ANN paradigm is chosen to model. The procedure adopted emphaéizes informative
data representation and encoding and uses generic preprocessing techniques to transform the

raw data into an informative input format.
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CHAPTER 6
MODELING RESULTS AND ANALYSIS

6.1 Introduction

The different types of schedule behavior models described in the previous chapter
were developed using the data set from the case study and their performance analyzed. The
models were developed using the training data set defined in Chapter 5 and the model
performance evaluated using the test data sets. The measures of performance defmgd in
Chapter 4 were used as the criteria for evaluating the performance of the various models.

The first step involved the point-to-point mapping between the schedule deviation
and the time of the day for a specific route and a specific directién. Figure 6.1. shows a
crossplot of the schedule deviation series data. The scattering of the data points indicates that
there is a nonlinear relationship between the time of day and thé schedule deviations. This
suggests that nonlinear modeling techniques are more apprppriate for modeling schedule

behavior and hence justifying our modeling approach.

6.2 Results : Model SetI

The class of models in model set I were developed using the training data set and
their performance evaluated using the test data set. The test data set defined in Chapter 5

allows for an objective analysis of each model’s performance. The training and performance
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Figure 6.1: ScatterPlot of Schedule Deviation vs Time of Day.

6:00 am to 8:00 pm., 03/15/93. Direction 1, Route 23

evaluation characteristics are defined in this section.

6.2.1 Training Characteristics

The Mean Squared Error (MSE) values for model set I after training was completed

for the different ANN architectures are shown in Table 6.1. Although the MSE values are
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fhe erTor measure drops' éigniﬁcantly during the first 100 iterations and then decreases
gradually. In order to minimize the risk of overtraining or undertraining, the following not
zero, theyare relatively small and hence it can be infezred that the training was done
sufficiently in order to provide a reasonably good fit with the training data. Figure 6.2
illustrates the e;rror profile measured error proﬁle measured in terms of MSE after various
iterations during training. The MSE was used as a measureA for monitoring the training

process. It can be noted that procedure was adopted:

Step 1: Select Training Parameters : Initialize Random Weights.
Step 2: Train the network for 100 iterations.
Step 3: Stop Training. Save the network characteristics.
Step 4: Test the model on the test data set and save the MSE and the ﬁetwork.
Step 5: a) Repéat Step 2 to Step 4.
b) Stop Training if there is no change in the MSE values from the previous
iteration cycle.
c) Evaluate all the MSE’s. Select the network characteristics with the lowest

MSE value as the model.

ANN Training Procedure

Figure 6.3 illustrates the distribution of connection weight values. It indicates that the

connection weights are well distributed and approximate a normal [Rathburn93]. Table 6.2



Figure 6.2 : ANN Network Learning Measured as Mean Squared
Error During Training : Model Set IA
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Mean Squared Error

lterations
[—+—Jordan Network -...-- FeedForward network - - .- Elman Network |
MODEL SET 1
ANN MEASURE 1A IB 1C 1D 1IE

FeedForward | Mean Squared | 0.0248 | 0.0195 | 0.0188 | 0.0202 0.0142

Network Error

Elman Mean Squared | 0.0194 | 0.0185 | 0.0179 0.0222 | 0.0095

Network .~ Error

Jordan Mean Squared | 0.0211 | 0.0192 | 0.0185 | 0.0195 | 0.0126

Network Error

Sample Size for Training : 2124
Table 6.1 :  Mean Squared Error for Different ANN Architectures and Model

Structures after Training : Model Set 1
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Figure 6.3 : Connection Weigtht Histogram

Frequency

-1 0 1 1.5 2 More

5 3
Connection Weight Value
ANN Architectures (IxHxO)
ANN Type 1A 1B 1C ID IE
FeedForward 2x5x1> 3x6x1 4x7x1 5x8x1 6x10x1
Network
Elman | 2x5x1 | 3x6x1 | 4x7x1 | 5x8x1 | 6x10xl
Network
Jordan 2x5x1 3x6x1 4x7x1 5x8x1 6x10x1
Network

Table 6.2 : Best ANN Architectures (IxHxO) at the End of ANN Modeling Process :

Model Set 1
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shows the best architectures obtained for the three different ANNSs and distribution. Thus
we can conclude that the network learning process worked appropriately for the five model
structures. The architectures weré obtained after a series of experiments with different
number of hidden units for any given model structure and ANN type. The number of hidden
units for a particular model structure was kept the same in order to allow for unbiased
evaluation of the performance of the different ANN types. The I indicates the number of
input units , the O indicates the number of output units and in this study was constant at 1

since the focus was only to predict one timepoint ahead. The number of hidden units was

 varied and the ANN models were evaluated both for their performance in their training in

terms of mean squared error and also on the test data using the average absolute error. The
number of hidden units that provided the best are shown in the Table. One important point

to note is that it is nearly impossible to obtain a theoretically optimum number of hidden

* units. It would require a large number of experiments and hence would involve a lot of time.

One of thumb rules that was adopted for this ANN modeling experiments was to keep the
number of hidden units not very large (around twice the number of input units) in order to

allow for faster training and also prevent the possibility of too many loose connections that

* have very little influence on the model’s performance but which would increase the value

of the error function.
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6.2.2 Performance Evaluation Characteristics

The measures of performance defined in Chapter 4 were computed for the three ANN
architectures and for the various model structures. The measures of average absolute error
and average percentage error of the ANN models using the five model structures IA-IE are
shown in Tables 6.3. The table indicates that the average percentage errors are rather high
with the highest accuracy achieved being only 79%. One plausible reason can be that the
training data set may not be adequate for providing a good generalization. While the
average pércentage error for the various models seems high it is important to ascertain the
distribution of the absolute error in order to evaluate the model’s practical usgfulness within
a reasonable error distribution. Table 6.4 shows the distribution of error for each of the
models in model set I. The important point to note here is the distribution of absolute error
in the range of less than 1 minute and greater than 3 minutes. In real world application,
absolute érror values less than 1 minute for the schedule deviation will not have much
practical significance while errors greatér than 3 minutes can be potentially important on
operational management and hence it is necessary to see what percentage of the cases that
the models give an estimate for the absolute error greater than 3 minutes.

- Table 6.4 indicates that the performance of the various modéls improves as the input
series length(n) is increased from n=1,ton =3 but then drops out rapidly for n =4, and n=
5. The plausible reason is poor training due to the presence of too many free parameters
(wéights) as a result of greater number of input and hidden units for model structufes ID

and IE (representing n =4 and n =5) compared to model structures IA-IC. The presence of



MODEL SET 1

ANN MEASURE IA IB IC ID IE

FeedForward | Average Absolute | 1.082 | 1.081 0.966 1.066 1.77
Network Error (min)

Average % Error | 3248 | 32.11 21.9 22.44 51.79

Elman Average Absolute | 1.071 | 1.006 1.006 1.002 2.021
Network Error (min)

Average % Error | 32.15 | 29.88 22.84 21.09 59.12

Jordan Average Absolute | 1.132 | 1.044 0.905 1.307 2.298

Network Error (min)

Average % Error | 33.98 | 31.01 20.55 27.52 67.23
Sample Size = 135

Table 6.3 : Model Set I :- Error Measures for Different ANN Architectures and

Model Structures on Test Data Set

greater number of connection weights can lead to white noise which would result in poorer

generalization. One potential way to improve the performance under such conditions is to

“prune” the network by selectively stopping further weight changes on certain network
connections. It can be noted that the distribution of absolute error is not normal justifying
the selection of Wilcoxon test for assessing the statistical significance of differences between

the various models’ average absolute error.
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DISTRIBUTION OF ABSOLUTE ERROR
% Cases with Absolute Error of
MODEL | ANN TYPE 0-1(min) | 1-2(min) | 2-3(min) | >3 (min)
1A FeedForward 60.06 29.24 4.41 6.29
Elman 64.15 25.78 4.41 5.66
Jordan 61.95 26.41 5.03 6.61
IB FeedForward 60.94 29.30 4.29 5.47
Elman 67.19 23.83 3.51 5.47
Jordan 62.89 29.69 1.95 547
IC FeedForward 65.93 25.19 592 2.96
Elman 65.18 26.67 445 3.7
Jordan 69.63 23.71 3.70 2.96
ID FeedForward 62.07 25.29 8.05 4.59
Elman 67.82 20.69 4.59 6.90
Jordan 51.72 34.48 6.90 6.90
IE FeedForward 35.94 34.38 15.62 14.06
Elman 46.88 31.25 7.81 14.06
Jordan 28.12 3125 14.06 26.57

Table 6.4 : Distribution of Absolute Error for various Models :

Model Set I ; Test Data Set
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6.2.4 Analysis
Table 6.5 shows the results of the Wilcoxon signed-rank tests for the model set IC.

Examining the results shown in Tables 6.3-6.5, model structure IC provided the best results

in terms of the measures of performance for all the three different ANN model architectures.

Among the three architectures, the Jordan network performed better than the other two
architectures for the case study. While the average absolute error is shown to be the lowest
for the Jordan Network in Table 6.3, statistical test results shown in Table 6.5 indicate no
significance at the 95 % confidence level. The results presented in Tables 6.3-6.5 for each

model structure and for each ANN architecture are analyzed and discussed in detail below:

Null Alternative Z- Significance | Preferred
Hypothesis Hypothesis | Statistic at 0.05 Model
level?
Ber - Mo =0 | Mg - Ho>0 -1.605 No Jordan
Rg - Wo=0 Ug - Hio>0 -1.01 No Jordan
Uep - =0 | pg - He>0 | -0.709 No FeedForward

Table 6.5 : Wilcoxon Signed-Rank Tests: Model SetIC
where, | |
L : Average Absolute Error for Feedforward Network
Lo : Average Absolute Error forJ ordan Network

ug : Average Absolute Error for Elman Network
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6.2.4.1 Model IA

For the model structure IA, ﬁe Elman network architecture provided the lowest level
of absolute error. However, the pérfonnahces of the three architectures was not significantly
different. The distribution of the absolute error also showed similar behavior. The Jordan
network showed a greater tendency (6.61 % of the cases) to err on its estimates by more than
3 minutes compared to the Elman network (5.66 %). Although Table 6.3 suggests that the
various model’s can’t be expected t§ produce very accurate results, the results from Table
6.4 indicate that the various ANN models should be able to estimate within reasonable

‘range of the actual schedule deviation values. The higher levels of absolute error for the
various model architectures suggests that perhaps tﬂe model structure defined as IA may not
be appropriate for the schedule behavior modeling problem.

The performance of the three ANN architectures for this model structure are shown
in Figures 6.4a-6.4c. In general, the models performed a moderate job of tracking the
fluctuations in the schedule deviation of buses during different times of the day. The models

performed poorly at tracking large schedule deviation values.

6.2.4.2 Model IB

Table 6.3 indicates that the Elman network performed better than the other
two ANN archjtecﬁlres for this model structure. However, the average percentage eﬁors’
were still high (29.68 % to 32.1 1%) for this model structure. But when compared to model
structure IA, the various ANN architectures under model structure IB showed improved

performances. The average percentage timepoint for model structure IA. In addition, the



100

10 ——mem
E — o Act.Sch. Deviation --a--Elman Model
%) 5 _'—
et ;
L 0 b 2 AP , * . .
- Xim s A W g A —m ' P g -
L a8 s, s, /3G 78T 2 S i 955 7 . 105588
Q -5 - g8 Wl € SV A Vo R
o 7 % /\ j o= IR
O 40 4 W L Ly
) ! *>
3
c 15
g
20 - _Sch.Arrival Time (min after 5:30am)

Figure 6.4a : Elman Network Performance on Test Data

:Model IA

—— Act Sch. Devidion

--u-- Jordan Modd

o
e

]
N
o
Fﬁ;l" .\
[y

Schedule Deviation (min
1
(o))

W

Schedued Arrival Time (min after 5:30 AM)

Figure 6.4b : Jordan Network Performance on Test

Data: Model IA




101

Schedule Deviation

-14

_+_ Act.Sch. Deviation —s— Pred.Sch. Deviation ]

|

Sch. Arrival Time (min after 5:30am)

Figure 6.4c : FFN Performance on Test Data : Model

1A



102

better performance of the Elman network error for the Elman network decreased to 29.88 %
from 32.15 % for the model structure IA. The Feedforward network showed very

insignificant change in the average percentage error for model structure IB compared to

structure IA. The Jordan network model also showed a decrease in the average percentage

error from 33.98 % to 31.01 %. This can be explained by the fact that the networks are
provided with a longer input length series. In other words the networks know about the
schedule deviation information from the previous two timepoints instead of just one previous
suggests that a partial recurrent architecture is able to capture and use more information from
the previous two timepoints while training is in progress.
Table 6.4 shows that the Jordan network using structure IB showed a lower tendency
(7.42 % of cases ) to err by more than 2 minutes compared to structure IA (11.64 % of
cases). The Jordan network also showed a lower percentage of cases (7.42%) with wrong
estimates of more than 2 minutes compared to the Elman (8.98%) or the Feedforward
networks(9.76%).
| Figures 6.5a-6.5¢ illustrate the performance of the three ANN architectures under
model structure IB. When comparing Figures 6.4a-6.4c with 6.5a-6.5c it can be inferred that
the networks performed better especially while estimating large schedule deviation values.
The ANN networks are able to capture the fluctuations in the schedule deviation values much

better using the model structure IB compared to IA.
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6.2.4.3 Model IC

Table 6.3 indicates that the models developed using model structure IC were the most
accurate of the five considered. Hence it can be concluded that the model structure IC is the
most appropriate structure for modeling the schedule behavior of buses. With an average
absolute error of 0.905 minﬁtes (20.55 % average percentage error) the Jordan network
model was the most accurate of all the models developed under model set I. Figures 6.6a-
6.6¢ illustrate the performance of the three ANN architectures for this model structure.
The Figures 6.6a-6.6¢ indicate that the Jordan network model performed the best while the
Feedforward network performed the next best. Table 6.5 shows that the Jordan model was
the preferred model based on the Wilcoxon test. However, the performance of the various

models did not differ from each other significantly at the 95 % confidence level.
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Figure 6.6c : Feedforward Network Performance on
Test Data : Model IC

Comparing Figures 6.4a-6.4c, 6.5a-6.5¢ and 6.6a-6.6c¢, it can be pointed out that the
models ﬁn’der IC outperformed the IA and IB. Table 6.3 shows that the average absolute error
for the models using IC structure were significantly less than IB and IA. There was a marked
improvement in the accuracy of the models fér model structure IC when compared to the
IB structure.

As seen in Table 6.4, the tendency of the models to provide erroneous estimates of
greater thén 3 minutes dropped significantly v;/ith model structure IC. For example, the
percentage cases for which the Jordan model erred in its estimates by greater than 3 minutes
dropped from 5.47% for model structure IB to 2.96% for model structure IC. Hence it can

be inferred that the models with structure IC had a significantly lower tendency to show large
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errofs (greater than 3 minutes) in their estimates. This is important because a lower
percentage of cases with wrong estimates of greater than 3 minutes will mean that while
the models are not the most accurate in terms of average percentage error they can be relied
in practical applications to provide results estimates within a reasonable range of the true
schedule deviation values. From a practical standpoint, what is importanf to operational
management and schedule planning are schedule deviation values greater than 3 minutes. If
the models are not able to estimate such large values of schedule deviation correctly in a
significantly greater percentage of the cases than the modeis cannot be effectively used for
practical use as a tool to support the operational managexﬁent and schedule planning

strategies.

6.2.4.4 Model ID

As seen from Table 6.3, the performance of the Elman network was the best using
structure ID. The table also indicates that the average percentage error of the Jordan network
"model increased significantly to 27.52 % for model structure ID from 20.55 % for model
structure IC. The performance of the Elman.network improved slightly in terms of the
average percentage error for model structure ID compared to IC. There was only a
insignificant increase in average percentage error for the Féedforward hetwork model when
the structure changed from IC to ID.

Table 6.4 suggests that the trend towards lower error in estimates of large schedule
deviation values that was seen as the model structures changed from IA to IC was no longer

valid. In fact, the percentage of cases with wrong estimates of greater than 3 minute schedule
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deviations nearly doubled for ali the three ANN model architectures. For example, the Elman
model using ID experienced errors of greater than 3 minutes in 6.9 % of the evaluation test
data cases while the Elman model using structure IC experienced errors 6f greater than 3
minutes only in 3.7 % of the cases. Based on the Average percentage error and thé
distribution of error it can be inferred that ID is not an appropriate structure for modeling the

schedule behavior of buses.

6.2.4.5 Model IE

Tables 6.3 and 6.4 show that the performance of the three ANN architectures

deteriorated significantly when model structure IE was applied. For example, the average

- percentage error of the Feedforward network model was 51.79 % compared to 22.44 % for

the Feedforward network model using structure ID. One plausible reason for such a dramatic
drop in the performance can be that the number of training data sets that provided data on
schedule deviation information for the previous 5 timepoints was significantly lower. In
addition adding more units to the input layer of the ANN can lead to longer training time as
well as the potential for larger errors due to increase in number of connections which result

in the desire of larger training data.

6.3 Results : Model Set 11

Table 6.6 displays the measures of error for the two model structures and for the different

ANN architectures. This model set was developed in order to assess the effect of including
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spatial information on performance of the models. In order to study this effect only two
model structures were developed using the data from the case study. The results were
compared to the model structures IA -IB which have the same structure besides the timepoint

information.

MODEL SET 1I

ANN MEASURE 1A 1B
FeedForward | Avg. Absolute 1.16 1.34
Network Error(min)

Avg. % Eror | 35.01 | 39.80

Elman Avg. Absolute 1.22 1.06
Network Error(min) ‘

Avg. % Error 34.8 31.55

Jordan Avg. Absolute 1.15 1.08
Network Error(min)

Avg. % Error 34.71 32.32
Sample Size = 135

Table 6.6 : Model Set II : Measures of Performance on Test Data Set

6.3.1 Analysis

Table 6.7 shows the results of the Wilcoxon signed-rank tests for comparing the
model sets IA with IIA and IB with IIB. This comparison statistical test was used to assess
the effect of including the location information (spatial information represented by timepoint

on a transit roﬁte). As one can note from the table, there was no statistical significance of
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including the timepoint information. Also by including this extra set of inputs to the network,

the training time increased due to increase in complexity of the ANN architecture. Therefore

it can be inferred that the inclusion of spatial information in the form of timepoints was not

useful in improving the performance of the models. Hence the timepoint information was

excluded from the inputs for investigating larger input series lengths (n = 3ton=>35).

MODEL Null Alternative Z- Significance | Preferred
Hypothesis | Hypothesis | Statistic | at 0.05 level? Model
p’lA -“HA=O p'IA-p'IIA>O ’0.5039 NO IA

FeedForward
Mg -Hyp =0 Hp-Hy>0 | -0.6506 No IB
Hia -Hua= 0 Hia-Hua >0 -1.586 No A
Elman Net
Hip - His =0 st >0 -2.535 Yes 1B
Jordan Net Ba-tia =0 | poa s >0 [ -0.2393 No 1A
bp-Wp=0 | Hp-pp>0 | -0.635 No 1B

Table 6.7 : Wilcoxon Signed-Rank Tests for Comparing Model IA with IIA and

Model IB with IIB.




111

6.4 Statistical Modeling : Test Results

The exponential smoothing technique was first applied on the data set to see if a
simple model can explain the underlying schedule behavior model structure. The exponential
smoothing parameter & was close to zero indicating that the exponential smoothing method
simply predicts the overall mean and does not use information from the most recent

' observations. Hence it is of little use and a more sophisticated technique such as the ARIMA
method is perhaps a more appropriate modeling technique for the schedule behavior data set.

The results of the ARIMA model development approach described in Chapter 4 are

discussed below.

6.4.1 ARIMA Models: Results and Analysis

The ARIMA models were developed for the two model structures described in the
previous section. The various steps in the ARIMA model development process and analysis

of the results are discussed in the following sub-sections.

6.4.1.1 Identification of ARIMA Model Process
The ARIMA models were developed using the modeling process defined in
Chapter 4. The first step in the process involves the identification of the processes underlying
the data series. Figure 6.7 illustrates the series plot of the schedule behavior data. The plot
shows no evidence of trend or séasonality. The schedule deviation series tends to wander.

which in other words implies that the short-term mean level is not constant but varies over
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the course of the series. Hence it can inferred that the series is nonstationary. In order to
transform the series to show stationary behavior differencing was necessary. Figure 6.8
illustrates the series after differencing. The plot indicates that the nonstationary behavior of
the series has been transformed into a stationary behavior as indicated by the fact that the
short term average is always the same.

The next step is to obtain the plots of the ACF and PACF. The ACF and PACF plots
show the correlation coefficients and also the 95 % confidence limits (vertical lines on the
plot). As illustrated in Figure 6.9, the ACF shows a spike (sudden drop in the values) at lag
2 with a few marginally significant correlations scattered through the rest of the plot. The
PACF as shown in Figure 6.10 attenuates rapidly after lag 2. The ACF and PACF plots
indicate an AR(2) and MA(2) process. Siﬂce the series was differenced preliminary
identification of the model can be judged to be ARIMA(2,1,2). However it is important to
note that mixed AR and MA models are more complex and identification often requires that
altemate ARIMA processes be estimated and diagnosed. In this study this approach of
considering alternate ARIMA processes wés deemed nécessary and therefore was adopted
in order to obtain the best fit model. The results and analysis of the model identification are
discussed below for both the structures- Model A and Model B. The AIC criteria

discussed in Chapter 3 was used to identify the best fit model.
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Figure 6.7 : Plot of Schedule Deviation
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Identification of ARIMA process : Model A

Table 6.8 shows the various ARIMA processes investigated for identifying the model
process for model structure A. The ARIMA(0,1,1) process produced the best fit as it had the
lowest value for AIC. Although the preliminary identification using ACF and PACF
indicated an ARIMA(2,1,2) process, Table 6.8 indicates that the ARIMA(0,1,1) process was
a better fit due to its lower AIC value. The ARIMA(2,1,2) process was also rejected because
the estimates for the AR1 and AR2 parameters for the ARIMA(2,1,2) are not statistically
significant at the 95 % confidence limits which leads us to conclude that the autoregression

component may not be required for identification of the process.

Identification of ARIMA process : Model B

A summary of the model fits for model identification and diagnosis is given in Table
6.9. for the model structure B. Comparing the AIC values for the different ARIMA processes
given in Table 6.9, the ARIMA(2,1,1) model provides the lowest value of AIC and hence can
be judged as the best fit quel. Although the preliminary identification using ACF and
PACF indicated an ARIMA(2,1,2) process, Table 6.8 indicates that the ARIMA(2,1,1)
proceés was a better fit due to its lower AIC value. The ARIMA(2,1,2) process was also
rejected because the estimates for the MA2 parameter for the ARIMA(2,1,2) was small
(0.38) and not statistically significant at the 95 % confidence limits which leads us to
conclude that the MA(1) more closely represents the moving average process rather than

MA(2).
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Model Parameters t-statistic AIC
MAl  =0.994 189.3*
SD(k-1) = 0.411 10.64*
©. LD | gp-2)=0.421 10.49* 61049
SD(k-3) = 0.002 -0.05
AR1  =0.028 0.58
MA1  =0.999 43.05%
(1,1,1) | SD(k-1)=0.395 10.21* -605.72
SD(k-2) = 0.427 10.71*
SD(k-3) = 0.0069 0.176
AR1  =0.0289 0.64
AR2 =-0.011 -0.29
MA1 = 0.973 72.59* .
LD | spx-1)=0388 8.03* -600.43
SD(k-2) = 0.425 - 8.68*
SD(k-3) = 0.003 0.08

ARl  =0.2288 0.323
AR2  =-0.025 -0.6609
MAl =1.205 1.93* |
2,1,2) | MA2 = -0.2064 -0.301 -605.02
SD(k-1)=0.398 10.306*
SD(k-2) = 0.432 10.826*
SD(k-3) = 0.0054 0.1378
MAl =0.475 10.49*
MA2  =0.174 4.47*
0,1,2) | SD(-1)=0.131 3.35% -467.18
SD(k-2) = 0.389 8.16*
SD(k-3) = 0.086 2.22%

Note :

Table 6.8: Summary of ARIMA Models Fits : Model Structure A

Model Notation is using standard ARIMA convention. ARIMA(p,d,q) where p is the
order of autoregression, d is the degree of differencing, and q is the orderof moving -
average. SSE denotes sum of squares error, AIC denotes Akaike's Information
criterion. _
* indicates the parameter is significant at the 95 % confidence level. -
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Model Parameters t-statistic SSE AIC

AR1=-0.656 -16.08*
AR2=-0.213 -5.48*
SD(k-1)=0.377 8.52%

(2,1,0) | SD(k-2)=0.228 5.84* 18.275 -540.18
SD(k-3)=-0.034 -0.858
SD(k-4)=-0.021 -0.589
SD(k-5)=-0.033 -0.893
AR1=10.1168 2.798*
AR2=0.2032 5.31%
MA1l=0.984 130.39*
SD(k-1)=0.365 8.27*

2 L1 SD(k-2)= 0.230 5 0% 15.18 -665.55
SD(k-3)=-0.019 -0.48
SD(k-4)=-0.036 -0.99
SD(k-5)=-0.01 -0.28
AR1=0.046 0.24
AR2=0.2122 4.75*
MA1=0.910 4.67*
MA2=0.072 0.38

(2,1,2) | SD(k-1)=0.365 8.28* 15.21 -663.62
SD(k-2)=0.2294 5.87*
SD(k-3)=-0.019 -0.47
SD(k-4)=-0.038 -1.07
SD(k-5)=-0.0094 -0.25

Table 6.9: Summary of ARIMA Models Fits : Model Structure B

Note :

Model Notation is using standard ARIMA convention. ARIMA(p,d,q) where p is the
order of autoregression, d is the degree of differencing, and q is the order of moving
average. SSE denotes sum of squares error, AIC denotes Akaike's Information
criterion. .

* indicates the parameter is significant at 95 % confidence level.
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6.4.1.2 bDiagnosis of ARTMA Models

The models were diagonised using the residual series. To check the residuals, plots -
of the ACF and PACF of the error series was created. The error series plots for the two
models A and B are discussed below.

The error series plots for ARIMA(0,1,1) model,as illustrated in Figures 6.11-6.12,
show that the ACF and PACF appear randomly distributed with only a few scattered |
cvorrelations that exceed the 95 % confidence limits. The 95 % confidence limits are shown
as vertical lines. This is also consistent with the null hypothesis that the population
autocorrelation function is 0 (indicated by the p value in the ARIMA(p,d,q) representation).
The parameters of the model are shown ‘in Table 6.8. The table shows the t-statistic for the
various parameters and it indicates that the parameters for the regressors SD(k-2) and SD(k—
1) are statistically significant at the 95 .% confidence level. It can be inferred that the
schedule deviation values at the previous two timepoints (k-1,k-2) have a significant effect
on the schedule deviation values at timepoint k. Figure 6.13 illustrates the performance of
the ARIMA(0,1,1) model on the test data set. The figures shows that there is a lag of the

model specified values to the actual schedule deviation values. This is clearly a distinct

weakness of the ARIMA modeling approach.
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Model B

The residual plots as illustrated in Figures 6.14-6.15, show that the ACF and PACF
appear randomly distributed and no correlation exceeds the 95 % confidence limits.
Furthermore, the Box-Ljung statistic for the ACF function is not statistically significant at
any lag. From Table 6.9, it is interesting to note that the estimates of parameters
correspbnding to SD(k-1) and SD(k-2) are significant at the 95 % confidence level with
regards to the t-statistic. Thus it can be concluded that the schedule deviation at a timepoirllt
k, is significantly affected by the schedule deviations at the previous two timepoints SD(k-1)
and SD(k-2). Thus the ARIMA(2,1,1) model is the best fit model to describe the schedule
behavior of buses at a timépoint on‘ a specific route using the model structure B. Figure 6.16
illustrates the pefformance of the ARIMA(2,1,1) model on the test data set. The ARIMA
model exhibits a lag in addition to poorly estimating large schedule deviation values.

Table 6.10 shows the distribution of error for the two ARIMA models. The results
suggest that the in the case of model structure B, there was a greater tendency (21.87% of
cases) of the ARIMA model to grossly err in its estimate of schedule deviations greater than
3 minutes. It is clear that the ARIMA model using structure B is poorly suited to model the
scheduie behavior of buses on a roufe. The ARIMA(0,1,1) model also showe;d a greater
tendency (4.16% of cases) to wrongly estimate schedule deviation values greater than 3

minutes when compared to the values (2.96 % -3.9%) for the ANN models shown in

Table 6.4.
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Auto- Stand.
Lag Corr. Ermr.-1 -75 -5 -250.25 .5 .75 1 Box-Ljung Prob.
----------------- S i

1 .002 .038 CE .002 967
2 -.007 .038 . .038 981
3 -.010 .038 Lx 114 .990
4 045 .038 . 1.535 .821
5 -.005 .038 CEL 1.555 907
6 -.019 .038 CE 1.797 .937
7 .051 .038 . E 3.651 819
8 -.044 .038 SR - 5.006 757
9 -.047 .038 . - 6.567 682
10 -.051 .038 . 8.391 - .591
11 -.003 .038 CEL 8.397 677
12 .050 .038 . 8.190 .599
13 -.061 .038 R 12.803 463
14 .023 .037 JEL 13.191 S12
15 .015 .037 LEL 13.342 .576
16 .005 .037 LEL 13.364 646

Figure 6.14 : ACF Plot of the Residual Error Series: ARIMA(2,1,1) Model

Note: The . . . vertical lines indicate the 95 % confidence limits. The * indicate the plot
values.
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Figure 6.16:Performance of ARIMA(2,1,1)
Process : Model B : Test Data Set
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DISTRIBUTION OF ABSOLUTE ERROR

%, Cases with Absolute Error of

Model ARIMA _
0-1(min) | 1-2(min) | 2-3 (min) | >3 (min)
Structure - Model
A (IC) ARIMA(0,1,1) 57.29 33.33 5.2 4.16
B (IE) ARIMA(2,1,1) 43.75 28.12 6.25 21.87

" Table 6.10 : Distribution of Absolute Error for ARIMA Models
Note : The model symbols given in the brackets (IC & 1E) are the corresponding model

structures for the ANN models.

6.5 Comparative Analysis of Models

The various models developed using ANNSs and Statistical methods were evaluated

Based on the measures of error. Table 6.11 summarizes the results of error measures for the

‘various models. It can be seen that the Jordan network model perfonﬁed the best among
all the models for model structure IC. ”I"he ARIMA(0,1,1) models’ performance based on

average absoiute error was the worst among the models for model structure IC. All the

models performed poorly with respect to model structure IE. The Wilcoxbn test results

comparing the ARIMA model with the ANN models for model structure IC are shown in

Table 6.12. The Z- statistic for the ARIMA-Jordan paired comparison was significant at the

95 % confidence level.‘ The result indicates that vthe average absolute error for the ARIMA

model was signiﬁéantly greater than the average absolute error for the Jordan model.
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MODEL STRUCTURE
ANN MEASURE IC IE
FeedForward | Average Absolute Error(min) 0.966 1.77
Network Average % Error 21.9 51.79
Elman Average Absolute Error (min) 1.006 2.02
Network Average % Error 22.84 59.12
Jordan Average Absolute Error (min) 0.905 2.28
Network Average % Error 20.55 67.23
ARIMA Average Absolute Error 1.072 2.28
Average % Error 24.34 66.97

Table 6.11 : Comparison of Error Measures for Test Data Set

Null Alternative Z- Significance | Preferred
Hypothesis Hypothesis | Statistic | at 0.05 level? Model
p‘BJ = !J'JO = 0 !J'BJ - “’JO > 0 '2.47 YES JOI‘dan
}‘LBJ = “‘EL= 0 H’BJ - “’EL> 0 '1.42 NO Elman

where, g

Table 6.12 : Wilcoxon Signed-Rank Tests Comparing the Average Absolute Error of

ARIMA Model with ANN Models for Model Structure IC

Average Absolute Error for Feedforward Network

1o : Average Absolute Error for Jordan Network

pe o Average Absolute Error for Elman Network.

pg © Average Absolute Error for ARIMA .
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Although similar results were obtained for the other paired comparisons, the Z statistic

shows that the difference is not significant at the 95 % confidence level.

6.6 Summary

The model development and testing phase of this research effort yielded some
interesting results. More importantly, it provided some useful and insightful solutidns for
realizing the objectives defined in Chapter 1. First, on the basis of the results a potentially
suitable structure for the schedule behavior model could be defined. What this rneanétis that’
the results provided a potentially ~answer to the basic question of how many upstream
timepoints should be included in estimating the schedule deviation at any particular
timepoint. The model structure IC proved to be the most appropriate structure for the
schedule behavior modeling problemv. From the model structure IC, it can be inferred that the
schedule deviation values at a timepoint k on the route is influenced by the schedule
deviation values at the previous three timepoint locations. Secondly, the results from the
ANN modeling experiments showed that ANNs can be successfully trained to provide a
reasonably accurate, one ﬁmepoint ahead, schedule behavior forecast. The- testing and
analysis of various modeling techniques did not prove in any way that one technique was
better than the other in a sfatistically significant sense. However, it does illustrate that the
Jordan Model holds promise to produce some interesting and reasonable performance. What
is interesting and important is the distribution of error, especially average absolute errors of

greater than 3 min. The results with regard to the distribution of error indicate that the ANN
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models performed very well in that they were able to predict large valﬁes of schedule
deviation much better than the ARIMA modeling approach. Thus it is reasonable to conclude
that the ANN models performance with respect to large values of schedule deviation 1is
encouraging. What can be inferred from the results is that the models can be suitable for
practical application since their performance with respect to larger values of schedule
déviation (greater than 3 minutes) is good. Large values of schedule deviation are the ones

that effect operational performance and require the development of schedule control

strategies. Hence the ability of the schedule behavior model to estimate these values is of

utmost importance. The Jordan model performed well in this regard and only 2.96 % of
cases the errors were greater than 3 minutes. One important observation is that no model was
able to outperform the others in a statistically significant sense.

The investigation of schedule behavior modeling using ANNSs revealed one important
disadvantage of the approach. The accuracy of the ANN models was less than expected
perhaps indicating that the amount of training data used was not sufficient. This leads us to
one of primary problems of modeling using ANNs. The difficulty of determining in advance
how much data is needed. Although it is difﬁcult to estimate a priori how much data is
needed, it stills forms an important step in developing models using ANNs. One approach
is to use an iterative process at developing schedule behavior models using ANNS. First start
with a data set that is available and develop the models. If the models perform poorly then
collect additional data and increase the size of the datg set. The collection of additional data
should be possible for transit systems since they are continuously receiving data on the

schedule performance using the AVL system. This iterative process can be stopped once a
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reasonable performance is obtained from the ANN models. One reason such an approach

seems rationale is because of the fact that ANNs are data driven models. Hence robust ANN

models can be developed only by using adequate déta sets.
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CHAPTER 7
APPLICATION TO ADVANCED PUBLIC
TRANSPORTATION SYSTEMS

7.1 Introduction

The dcvelopment of a schedule behavior model for a transit route is an important and
significant accomplishment. It is intuiﬁvely evident from the role of system behavior
modeling in many complex physical systems that it can play a key role in the task of
scientific operations maﬁgement. Howéver the significance of the schedule behavior model
will ultimately depend on the design and development of an intelligent decision support
system for efficient and effective bus transit operations management. This chapter will
describe a géneral framework that will illustrate the role and utility of schedule behavior
models. In particular, it will show how modeling the schedule behavior of buses will

support the transit operations management task.

7.2 Intelligent Transit Management System Architecture

The architecture developed in this research effort is illustrated schematically in Figure
7.1. The figure illustrates the role of the schedule behavior models in the overall system
architecture. The output from the schedule behavior model serves as the necessary Input to

additional modules such as a Knowledge Based System for service control strategy selection,
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and Advanced Traveler Information System (ATIS) which combine to provide high quality

and desired information to the transit operations decision-makers as well as the passenger.

ATIS Dispatching Dispatcher/Supervisor
. Schedule and .
Presentation Modifications Service Control Decision-Makers
Arrival  Times .
1 Passengers
Level  Actual T g
Knowledge - Performance Fleet Sch. Behavior Inte"_lgent
g9 Ew:::‘a:i:n Management Models . Decision
Information " Reattime Oftfine Support
Analysis Level ~ — DSS Medules Services
- ] B
. L —— Actal Preprocessing Model
Information MOPs Detay Travel .
Level w. | variance | ... | Times Information
BEs)
Measures of Reposito
Performance /7 \ \ p i
Pass. . Bus

Data Level - Databases

AVL System . -

APC

Figure 7.1: Intelligent Transit Management System Architecture

As illustrated in Figure 7.1, the proposed Intelligent Transit Management System has a
layered architecture with each layer dendted as a “Level”. The Levels have been classified
as data, information, knowledge information analysis and decision-making/presentation. A
similar architecture was presented by Smith in study on forecasting freeway traffic flow for

intelligent transportation systems application [Smith95]. These levels are discussed below.

7.2.1 Data Level

The data level consists of the raw AVL Data collected and stored by the monitoring
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system. Therefore, this layer consists of the AVL infrastructure and the central database
storing the historic AVL data. This level is already present in bus transit systems that have

installed an AVL system to monitor the operations.

7.2.2 Informaﬁon Level

The data obtained using the automatic vehicle location system is preprocessed and
stored as information repository in the database. The information repository contains various
measures of performance defined by the transit operator and include actual travel times,

schedule delay etc. This level is already present to a certain extent in existing systems.

7.2.3 Analysis Level

The analysis level forms the core of the intelligent transit management system. Itis
the most important layer where information stored in the information repository can be used
for analysis usingadvanced information processing techniques sﬁch as the schedule behavior
modeling. The principal role of this level is to use various techniques to process information
stored in the repository and present it as kﬁowledge parameters to the decision level. This
level forms the backbone of the intelligent transit management system. Currently only simple
processing suchas converting information into report formats is being done. This level when
developed can assist in the conversion of data into knewledge using automatic processing
techniques and ultimately help in operations management. The schedule behavior model

can be integrated as an important sub-component of the IDSS.
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7.2.4 Decision Level

The decision level can be thought of the layer in the architecture where the results of
the analysis level are presented to the decision-making process and appropriate control
actions are recommended. The output from the analysis level can be used as input to this
decision-making process which can be designed as a knowledge based system for selection
of most appropriate service control strategy. The selected strategy obtained from such an
autmated decision support process can then be presented to the decision-maker /dispatcher
for final implementation. In addition, the modifications to service can be presented to the
rider through the passenger information system. At this level, reliance is on human
operators (i.e. decision-makers/dispatchers) er final decision making. However, as the
system evolves the decision-making process can be automated by developing a suite of
software support syst'ems in order to take some load off the transit operators. One example
application will be to develop a case-based reasoning system for service control strategy
selection. This involves developing a historical database of past cases of service control
strategies and the corresponding evaluation of the operations in terms of measures of
performance. The inteliigent transit management system can then be able to provide
automated service control strategy selection without the need for human operators to make
decisions. The interaction between various components of the intelligent transit system is

discussed in the following section.
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7 3 Basic Information Flow Model

The potential benefits of deployment of AVL technology for monitoring of real-time

bus operations can be fully accrued only if the following tasks are performed using the AVL

information:

mTask1:  Develop aBasic Intelligent Data Processing Environment: AVL information
is intelligently processed for desired operational management task using
advanced techniques such as knowledge-based decision support systems and
artificial neurgl networks.

mTask2:  Develop a Customer Information System that can be integrated into the

Advanced

Traveller Information System (ATIS) component of ITS.
The implementation of AVL technology has led to the important problem of information
overload on the dispatcher. The information overload pfoblem can be addressed by
developing aautomated decision support system that utilize this information and assist the |
dispatcher i’n reai-time control task. Within this framework of decision support will be an
advanced performance évaluation tool that utilizes the real-time location data. The
importance of these critical tasks can be illustrated using a AVL information flow model
discussed in the next section. This model provides an insight into the level éf automation that
is needed for intelligent and effective decision-making regarding real-time bus transit
operations.

Figure 7.2. illustrates the five component conceptual AVL information flow model
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Figure 7.2 : Information Flow Model for Bus Transit Operations

[Kalap92]. The five basic components of this model are :

n Transit Managers

= Operator/Dispatcher

= Intelligeﬁt Decision Support System (IDSS)

= Bus (inclusive of the AVL System).

n Passenger Information System (Advanced Traveller Information System)
Transit manageme

The two-way direct transfer helps senior transit manageme

both in real-time and off-line. The real

_time link between the transit managers and the

nt is in direct link or information transfer with the operator and the IDSS.

nt in operational decision making
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operator/dispatcher can aid in real-time management of bus operations. Problems related to
operations can be addressed in real-time with the help of information links from the IDSS
to thé transit management and also the dispatcher. The direct link between the transit
management and the dispatcher aids in providing and execu‘;ion of decisions made by
managefnerit relating to real-time critical problems associated with operations. The IDSS
acts as an intelligent front-end whose information link can assist management make real-
time decisions for mitigating real-time problems related to operations. The informatio.n'link
between the bus and (i) IDSS and, (ii) the diépatcher_ is direct and is through the AVL
system. The information is both in the form of data and voice messages. The informafion
link between the bus and the IDSS is one way where in AVL information frorh the buses on
the transit network is transferred.to the IDSS for intelligent processing. The one way link
suggests that the control of information transfer is not fully automated and critical decision
making is with the transit management. The role of the IDSS is therefore of aiding the
' management in decision making relating to operations, and the IDSS itself does not have
the direct control to execute or transfer the problem solving strategies to the buses. The one-
way direct link between the IDSS and the passenger information system can provide real-
time operational information to the travelling public. This important and critical informétion
link can act as a catalyst for improved public perception and reliability in the bus transit
systems.

The information flow model provides a general framework for developing an
automated decision support systein for bus transit'managemerit. The various sub-systems

" need be designed individually and integrated into an overall intelligent transit management
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system. In addition the information flow model helps in the identification of the important

components of the overall transit management system architecture.

7.4 Potential Application : An Illustrative Example

In section 7.3 an information flow m odel using various advanced public transit
system components was discussed. The flow model illustrated a suitable relationship
between the monitoring component and other Intellient Transportation System (ITS) related
services such as ATIS (Passenger Information System), and an intelligent transit m
anagement system for automated operational management. This section will illustrate
through an example a pontential application of the bus échedule behavior models within the
framework of an intelligent transit management system.

Figure 7.3 shows an illustrative example of the utility of system behavior models

“to bus transit operations. Service control strategies which essentially involves schedule

control, headway control and load control can be designed and developed for real time
irnplementafion thus assisting in real-time management of operations. The system behavior
models developed can be potentially used for predicting the ‘behavior of the bus transit
system as measured in terms of schedule deviation at any timé of the day and at any location
on the iransit route network. Models of schedule behavior can be potentially useful for
effective service control especially under time constraints relating to implementation of
service control strategies. The prediction models can also be used offline to develop

offective schedule adjustment and headway adjustment plans so that the bus transit resources,
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buses and drivers, are éfﬁciently managed. Since transit service control involves the
management of resources such as buses and drivers it is necessary 10 develop off-line vservice
control strategies that are based on optimal é.nd effective schedul¢ adjustments and headway
adjustments so that they can be implemented in real-time conditions. When combined

with a knowledge-based decision support system, system behavior models can potentially
help in the selection of the best control strategy to minimize delay through efficient and
effective schedule control. Changes in operating environments (traffic conditions etc.),
unpredictable disturbances such as incidents and failures such as vehicle breakdowns are
some of the éharacteristics that necessitate intelligent control. The best choice may be to
achieve adaptive control through thé use of ANN models to predict schedule behavior.

System behavior models can be potentially used to improve dispétching control. One
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important deficiency of current real-time service control practices is that, management has
so far not looked into the use of system behavior modeling to optimize real-time dispatching
decisions based on the predicted vehicle arrival delays at each bus stop on each route and
during different time periods of the day. This lack of predictive capability (also arising from
the lack of suitable models of the system behavior) limits management's ability to streamline

the real-time decision-making process by making consistent and 'knowledge-based’

decisions. The general desire to g0 in for automation of the man-machine interface of

schedule adjustment in order to obtain greater efficiency and also reducing the information
load on the dispatcher. In order to achieve greater automation, a system behavior model such

as a schedule behavior model can be used as a forecasting tool to help in the design and

- development of service control strategies that would then be automatically implemented.

7.5 Summary

This chapter described an arghitecture for developing an intelligent transit
mangement system. Thé role of the schedule behavior model as a subcomponent of the
intelligent transit management system was highlighted. The potential utility of the schedule
behavior model was enumerated using a simple example. In addition, an information flow
model was presented showing the interface between the various components of an overall
intelligent transit management system. The flow model assists in understanding of the
importance of the various components as well as being useful for the development of the

system architecture for bus transit operations.
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CHAPTER 8

'CONCLUSIONS

This research effort focussed on investigating the feasibility of developing a schedule
behavior model. The study attempted to answer the question of how many upstream
timepoints schedule deviation information is needed to provide a reasonable estimate for the
schedule deviation at a particular timepoint. This was the basis for investigating the different
modeling structures. A number of advanced modeling techniques were investigated for
developing the schedule behavior models of buses on a particular route of the transit network
for the five different modeling structures. While bus transit systems are busy focussing on
the implementation of advanced monitoring technologies such as an AVL system, there has
been very little or no research on developing automated data modeling techniques for
making full use of the large amount of monitoring information provided by the system. The
following section highlights the salient contributions of this research to the field of

transportation engineering.

8.1 Salient Contribﬁtions

The research initiative into the notion of modeling the schedule behavior of buses on
a particular route of a transit network has produced some important theoretical as well as

practical contributions to the field of transportation engineering. Some of these salient
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contributions are discussed in this section.

Investioation of the Schedule Behavior Modeling Concept at the Route Level for the First

Time

This research has laid the foundation for the application of system behavior
modeling concepts td the area of transit operations. The research effort did not provide a
robust solution for modeling the schedule behavior of buses. However, this effort provides
a basic foundation for the application of system behavior modeling concepts to a dynamic

system that for the first time is being monitored in real-time using an AVL system.

There have been no previous attempts to apply system behavior modeling concepts
in the area of bus transit systems. By introducing this concept, this research effort as such can
be deemed to have made a successful contribution to the body of knowledge in the area of

transit operations.

Investieation of the Schedule Behavior Model Structure

The research effort also presented a modeling approach as defined by Equation 4.4 in
Chapter 4, that for the first time investigated the effect of the schedule behavior at upstream
timepoints on the schedule behavior at any particular timepoint and given time of the day
on a route. The modeling approach proposed and investigated in this study presents a
theoretical foundation that can be potentially used for future research into the schedule

behavior modeling problem using other modeling techniques.

Investigation of Schedule Behavior Modeling using Partial Recurrent Networks
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Most research efforts into the application of ANNSs in the field of transportation have
focussed only on the Feedforward network using the BP algorithm for learning. This research‘
effort has demonstrated that there are other potentially useful architectures such as partial
recurrent networks that can be used for developing applications. The ANN modeling
approach described here employs simple but powerful architectures. There are several points
worth highlighting. The use of partial recurrent network architectures such as the Jordan
network and the Elman network combined with the scheduie behavior model structures
described in Chapter 4, produced some interesting and important lessons. The bus transit
schedule behavior problem changed its nature when expressed as sequential events in space
and time. The tirﬁe—varying error signal can be used as a clue to temporal structure. Temporal
sequences are not always uniformly structured, nor uniformly predictable. Even when the
network has successfully learned ébout the structure of a sequence, the error may vary. The
error signal is a good measure of where structure exists. The representation of time and
memory is highly task dependent. The networks depend upon internal representations which
have available as part of their input, their own previous state. In this way internal
representations intermix the demands of the task with the demands imposed by carrying out
that task over time. There is no separate representation of time. There is simply the
representation of input patterns in the context of a given output function. It just’ so happens
that those inputs are sequential in space and time. That representation, and thus the
representation of time, varies from task to task. The fact that the performance of the Jordan
network and the Elman network, presented in Chapter 6, was reasonably good suggests that

the schedule behavior modeling approach proposed in this study has contributed positively
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to the notion that ANN techniques hold promise and that they can be viable tools for

schedule behavior modeling. In addition, the results confirm the utility of using networks

such as Jordan and Elman networks that embed memory of the previous state in their

architectures. However, an important point to note is that the results in no way prove the
robustness of the techniques for modeling the behavior of buses. As more research is
conducted with larger data sets, it is possible to perhaps arrive at definitive conclusions on
the robustness of the various techniques investigated in this study for the purpose of

modeling the schedule behavior of buses.

Insicht into Potential Strengths and Weaknesses of Artificial Neural Networks as Modeling

Techniques.

The results presented in Chapter 6, illustrated some strengths and weaknesses of
applying ANNSs for modeling the schedule behavior of buses. The Strength is that they can
reasonably model spatio-temporal sequences that the schedule deviations of a bus along a
route represents. This research effort also proved that ANNs can be successfully trained to

provide for single timepoint forecasting of schedule deviations.

The single most important weakness as illustrated by the results is the dependence
of the models on data sets. bDuring investigation of model development for a real world
problem it is often difficult to obtain large data sets. In the case of bus transit operations , the
problem is overcome by real-time monitoring that can potentially provide continuous data
sets. Since this research was initiated during early part of the implementatibn of a real-time

monitoring system it was difficult to obtain large data sets. Hence the unsatisfactory results
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~can be inferred to be because of this lack of adequate data. The results also illustrated fche
difficulty of determining in advance how much data is needed to obtain reasonably good
ANN models. The implicit modeling approach that an ANN représents presents a practical
difficulty in discerning the actual stfength of the relationships that are inferred. The other
problerﬁ illustrated by fhis research into application of ANN is the requirement of
considerable effort at succéssf\illy training a neural network. A number of issues relating to
ANN modeling are difficult to resolve because bf the lack of sound theoretical knowledge

in the ANN literature.

Presentation_of Simple ITS Architecture for the Development of Intelligent Transit

Manacement System

The current focus the ITS community is on developing systerh architectures for various ITS
user service groups. The architeéture presented in Chapter 7 is an initial attempt at providing
a preliminary. approach to integrating advanced models with real-time monitoring
information to support ITS user se;#vices such as public transportation operaﬁons
management and passenger information systems. The architecture presented illustrates the
role of schedule behavior modeling within the framework of an intelligent decision support

system for advanced bus transit management.

The lessons learned in this research effort can provide the foundation for a more
detailed and comprehensive investigation into the development of a more robust and accurate

schedule behavior model.
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8.2 Limitations

8.3

The research effort had the following limitations.
The feasibility of schedule behavior modeling was investigated using only one route.

The problem of schedule behavior modeling focussed on one timepoint ahead
prediction. For effective service control strategies to be developed and implemented

it would be useful for predicﬁng the schedule behavior at timepoints k+1, k+2 etc.

The use of Wilcoxon signed test may not be the best approach for performing
multiple comparisonsb.; By performing multiple paired comparisons it is likely that the
probability of rejectiﬁg when the null hypothesis is true increases from 0.05 to0 0.15
for three sets of paired comparisons as shown in Table 6.5. One potentially
applicable technique is to use the Bonferroni Inequality. The Bonferroni inequality
allows for multiple comparisons without introducing any errors that are possible
when using the Wilcoxon test. It allows for comparative analysis by not only
indicating if any sample performed the best but also provides a statistical rationale
that no model can be selected as best. A detailed explanation of the technique for

multiple comparisons can be found in [Sheskin97].

Future Research

The schedule behavior modeling experiments performed in this research effort
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involved data from only one route. In order for the fnodeling approaches to become part of
a well defined body of knowledge it is imperative that a more detailed study involving the |
use of data from multiple routes should be attempted. In addition other modeling approéches
such as nearest neighbor, inductive techniques should be included in the research effort. In
addition mﬁltiple data sets are desired for pfoving the robustness of any applicable technique

for modeling the behavior of buses.

The reasons for not very robust results in terms of accuracy can be attributed to the
data set. Only a small data set was available due to the fact that during the time the data was
collected, TRT’s AVL system was still in its initial stages of implementation. Also TRT did
not have the mechanism to store the AVL data for more than 14 days. As transit systems gain
experience at implementation of more advanced AVL systems, it is possible for at_tembting
a detailed study using a larger data set. Since ANNS are data driven modeling techniques, the
lack of adequate training data often leads to poor generalization aﬁd hence poor netWork

performance on the test and validation data sets.

Future research should also focus on how to implement the schedule behavior
modeling technique into a real world application such as a intelligent transit management
system.' The architecture described in Chapter 7 should be explored for development and

practical implementation in a real world scenario.

This research effort focussed on investigating the schedule behavior of buses using
the schedule deviation information as a measure of system performance. Another potential

approach is to build models to predict the distance, velocity or travel time of a bus along a



150

link during different times of the day using real-time location information obtained from the
AVL system. The event data from the AVL system for each | bus gives the location
information with respect to time. If we consider a link between two points pl and p2, then
during the bus’s journey from point p1 to p2 the AVL data would be collected at intervals
dt. Each time t; has a location p; associated with it. A distance between the two points can
then be computed as d;. d; can be termed as a function that measures the distance between
two points p; and p;. The velocity between the two sampled points can also be computed
along vﬁth the distance traveled in time t. The fotal distance between point pl and p2 is
known. Therefore the distance, velocity and travel time data are known for each traversal of
a bus between the two points during different times of the day. Hence models to predict the
these parameters can be attempted using various modeling techniques such as Feedforward
network, Jordan network, Elman network, nearest neighbor and ARIMA. This is an alternate
method for developing performance models of bus transit systems that can be investigated
in the future. The models could be used to predict when a bus would arrive at point p2 given

that it was at point p1.
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