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1 Disclaimer

The contents of this report reflect the views of the authors, who are responsible for

the facts and the accuracy of the information presented herein. This document is

disseminated under the sponsorship of the Department of Transportation, University

Transportation Centers Program, and California Department of Transportation in the

interest of information exchange. The U.S. Government and California Department of

Transportation assume no liability for the contents or use thereof. The contents do not

necessarily reflect the official views or policies of the State of California or the Depart-

ment of Transportation. This report does not constitute a standard, specification, or

regulation.

2 Abstract

In this report we present a methodology to decide capacity expansions for a transporta-

tion network that finds a robust solution with respect to the uncertainty in demands and

travel times. We show that solving for a robust solution is a computationally tractable

problem under conditions that are reasonable for a transportation system. For example,

the robust problem is tractable for a multicommodity flow problem with a single source

and sink per commodity and uncertain demand and travel time represented by bounded

convex sets. Preliminary computational results show that the robust solution can reduce

the worst case cost by more than 20%, while incurring on a 5% loss in optimality when

compared to the optimal solution of a representative scenario.
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5 Introduction

Sizable investments in highway infrastructure are constantly undertaken in order to

alleviate congestion and accommodate the increase in traffic demand across the country.

For example, an estimated $2.4 billion in highway infrastructure projects are planned just

for District 7 (Los Angeles and Ventura Counties) as part of California’s Transportation

Congestion Relief Plan (TCRP), (Caltrans 2002). Traffic congestion in the United States

has a significant economic impact, costing an estimated $69 billion during 2001 (Schrank

and Lomax 2003); in addition the demand for vehicular traffic in the country is expected

to increase steadily, exceeding 4 trillion vehicle-miles by the year 2020 (Department of

Energy 2004).

There exists substantial research on capacity expansion (or capacity planning) prob-

lems in different domains, such as manufacturing (Eppen, Martin and Schrage 1989,

Barahona, Bermon, Günlük and Hood 2004, Zhang, Roundy, Çakanyildrim and Huh

2004), electric utilities (Murphy and Weiss 1990, Malcolm and Zenios 1994), telecom-

munications (Balakrishnan, Magnanti and Wong 1995, Laguna 1998, Riis and Andersen

2004), inventory management (Hsu 2002), and transportation (Magnanti and Wong

1984, Minoux 1989). This diverse body of work includes some common elements: (1)

uncertainty in the problem data is considered and (2) in general terms the problems

can be translated to expanding the capacity of a network flow problem. Uncertainty

in capacity expansion problems can be traced back to Ferguson and Dantzig (1956). A

standard method to represent the uncertainty in the problem is via discrete uncertainty

scenarios, an approach that is used in stochastic optimization (Birge and Louveaux

1997), see (Chen, Li and Tirupati 2002, Ahmed, King and Parija 2003) for examples

in capacity planning, and in robust optimization as introduced by Mulvey, Vanderbei

and Zenios (1995), see (Malcolm and Zenios 1994, Laguna 1998) for examples in ca-

pacity planning. Other methods for robust optimization with scenario uncertainty are

described in (Gutiérrez, Kouvelis and Kurawarwala 1996) for uncapacitated network
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design, in (Ferris and Ruszczynski 2000) for routing in a network with failures, and in

(Paraskevopoulos, Karakitsos and Rustem 1991) for a manufacturing application. A

drawback of uncertainty scenario based methods is the need to solve prohibitively large

optimization problems as the number of uncertainty scenarios increases. Methods that

can address uncertainty represented by continuous intervals have been developed by

exploiting the underlying network flow problem. In particular, when representing the

capacity expansions with integer variables the network flow problem is referred to as

a network design problem (Minoux 1989). For such integer problems Kouvelis and Yu

(1997) introduce robust discrete optimization, which is applicable to a number of dis-

crete network problems. Other combinatorial methods for network design problems with

interval uncertainty in objective function coefficients have been investigated in (Aver-

bakh and Berman 2000, Yaman, Karaşan and Pinar 2001). These approaches to interval

uncertainty either can lead to NP -hard formulations for problems whose deterministic

version is polynomially solvable or use solution techniques that rely on combinatorial

arguments specific to the problem in question, which are not easily generalizable.

In this report we present a method that finds a solution that is robust (as intro-

duced by Ben-Tal and Nemirovski (1998)) with respect to uncertainty in travel times

and demands, and thus can consider the uncertainty due to future value forecasts. We

investigate the complexity of this robust optimization approach and find that, as opposed

to previous methods to deal with uncertainty in capacity planning, this method is poly-

nomially solvable under reasonable assumptions for transportation networks and very

general uncertainty sets. Although we embed our discussion and presentation within a

transportation application, the methodology used is general and exploits the underlying

network flow problem. Thus the results are applicable in principle to other capacity

planning applications. In addition, we present computational results that compare the

robust solution to the deterministic optimal solution for nominal data, i.e. data that is

representative of the uncertainty set. We find that the robust solution can be signifi-

cantly better in the worst case and only slightly worse for the nominal data, than the
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deterministic optimal solution.

The structure of this report is as follows: in the remainder of the introduction section

we describe the robust optimization approach as it pertains to our problem. In Section

6 we present the robust capacity expansion problem and investigate the reason for the

difficulty of this problem. In Section 7 we identify the conditions for solvability of the

robust capacity expansion problem. We present our computational results in Section 8,

and present our concluding remarks in Section 10.

5.1 Robust Optimization methodology

The robust optimization approach was introduced in Ben-Tal and Nemirovski (1998)

for convex optimization and in El-Ghaoui, Oustry and Lebret (1998) for semidefinite

programming. This approach has lead to work on structural design (Ben-Tal and Ne-

mirovski 1997), least-square optimization (El-Ghaoui and Lebret 1997), portfolio op-

timization problems (Goldfarb and Iyengar 2003, El-Ghaoui, Oks and Oustry 2003),

integer programming and network flows (Bertsimas and Sim 2003), and recently supply

chain management problems (Bertsimas and Thiele 2003, Ben Tal, Golany, Nemirovski

and Vial 2003a). In particular, the work by Bertsimas and Sim (2003) considers robust

solutions for network flow problems with box uncertainty in the cost coefficients.

The robust solution is defined as the solution that achieves the best worst case ob-

jective function value. Consider the following optimization problem under uncertainty:

minu,v f(u, v, w)

s.t. g(u, v, w) ≤ 0 ,

where the uncertainty parameter w belongs to a closed bounded and convex uncertainty

set w ∈ U . The robust solution is obtained by solving the following robust counterpart
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problem (RC):

zRC = minu,v,γ γ

s.t. f(u, v, w) ≤ γ for all w ∈ U

g(u, v, w) ≤ 0 for all w ∈ U .

(1)

An attractive feature of this approach is that the complexity of solving problem (RC)

is, for very general cases, the same as the complexity of the original problem. For

example, when the original problem is an LP, Ben-Tal and Nemirovski (1999) shows that

Problem (1) above is equivalent to an LP when U is a polyhedron and to a quadratically

constrained convex program when U is a bounded ellipsoidal set. In addition, the size

of the resulting problem (RC) is bounded by a polynomial in the original problem’s

dimensions, which implies a polynomial method for the robust solution.

The robust counterpart for a stochastic problem with recourse, dubbed the adjusted

robust counterpart problem (ARC), is introduced in Ben-Tal, Goryashko, Guslitzer and

Nemirovski (2003b). In a problem with recourse, some of the decision variables u are

decided a priori, while the rest v can adjust to the outcome of the uncertainty, which

yields the following (ARC) problem:

zARC = minu,γ γ

s.t. for all w ∈ U exists v :

 f(u, v, w) ≤ γ

g(u, v, w) ≤ 0 .

(2)

Clearly zARC ≤ zRC , since selecting one v that is feasible for all w ∈ U is a possibility

for (ARC). However we do not retain the nice complexity results, as Theorem 3.5 of

(Guslitser 2002) shows that the (ARC) problem of an LP with polyhedral uncertainty

is NP-hard.
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6 The Robust Capacity Expansion Problem

We represent the transportation network using a classic network flow formulation where

the system routes the flow to minimize a global measure such as total travel time. We

consider a directed network with n nodes and m arcs, represented by an arc-incidence

matrix N ∈ <m×n, a vector u ∈ <m of current arc capacities, and we denote by the vari-

able x ∈ <m the traffic flow on the system. The demand and supply of this transportation

problem are represented by a vector b ∈ <n, and we assume linear transportation costs

represented by the non-negative cost vector c ∈ <m. Let capacity expansions on this

network be a continuous decision variable y ∈ <m, where expanding arc e incurs in

a de cost per unit capacity. Given a total budget for investment I, we formulate the

deterministic capacity expansion problem, for a given demand b and cost c, as

zD(b, c) = minx,y ctx

s.t. Nx = b

x ≤ u + y

dty ≤ I

x, y ≥ 0 .

(3)

This basic network flow model can be enhanced, using multiple time periods, non-

linear latency cost functions, etc., to be more representative of transportation networks,

see Ahuja, Magnanti and Orlin (1993) for a detailed description of network flows and

different modeling alternatives. In this work we concentrate on Problem (3) above and

its robust counterpart.

We represent the uncertainty in demand and travel times simply using closed, bounded

convex uncertainty sets, i.e. we assume that the demand vector b ∈ Ub and that the

cost vector c ∈ Uc. We assume also that the uncertainty in travel times does not create

a negative cost arc, i.e. if c ∈ Uc then ce ≥ 0 for all arcs e. Given uncertainties in b

and c, it is natural to separate the decision variables by deciding investment variables

y prior to observing the traffic conditions (realizations of b and c), and have the traffic
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flow x adapt to these conditions minimizing the total travel time. Thus, the problem

under uncertainty is a stochastic problem with recourse and the robust capacity expan-

sion problem (RCEP) is the (ARC) Problem (2). Substituting the capacity expansion,

Problem (3) in Problem (2) yields the following (RCEP):

zARC = miny,γ γ

s.t. dty ≤ I

y ≥ 0

for all c ∈ Uc, b ∈ Ub exists x :


Nx = b

0 ≤ x ≤ u + y

ctx ≤ γ .

(4)

Proposition 1. The (RCEP) Problem (4) is equivalent to Problem (5) below, in that

both problems have the same optimal solution y∗ and zARC = zR.

zR = miny maxc,b minx ctx

dty ≤ I c ∈ Uc s.t. Nx = b

y ≥ 0 b ∈ Ub 0 ≤ x ≤ u + y .

(5)

Proof: If zARC = ∞ then for any γ and y ≥ 0, dty ≤ I there are b ∈ Ub and

c ∈ Uc such that the system Nx = b, 0 ≤ x ≤ u + y, ctx ≤ γ is infeasible. Therefore,

the problem minx{ctx | Nx = b, 0 ≤ x ≤ u + y} > γ, which implies that the objective

function of (5) is greater than γ for this y. As γ →∞ this implies zR = ∞. If zARC < ∞,

let (y, γ) be a feasible for (4), therefore for every b ∈ Ub and c ∈ Uc there exists x̄ that

satisfies Nx̄ = b, 0 ≤ x̄ ≤ u + y, and ctx̄ ≤ γ, which implies that the inner-most

minimization in (5) is no greater than γ for any c and b, and consequently zARC ≥ zR.

Note that zR ≥ 0, since c, x ≥ 0. Let y be feasible for (5) such that its objective function

is less than zR + ε, for some ε > 0. Therefore, for any b ∈ Ub and c ∈ Uc there exists x̄

such that Nx̄ = b, 0 ≤ x̄ ≤ u + y, and ctx̄ < zR + ε. If γ = zR + ε then (y, γ) is feasible

for (4). Thus zARC < γ = zR + ε for any ε > 0, completing the proof. �
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6.1 General uncertainty sets

This robust optimization approach models the uncertainty with the simple assumption

that the uncertainty sets Uc and Ub are closed, convex, and bounded. These are rather

mild assumptions, as they do require a particular uncertainty distribution within the

set and such uncertainty sets can represent the confidence intervals with which these

uncertain quantities have been estimated, including known dependencies between the

uncertain parameters. Throughout the report we make the following additional assump-

tion on the uncertainty sets

Assumption 1. For every b ∈ Ub and c ∈ Uc, the network flow problem min{ ctx | Nx =

b, 0 ≤ x ≤ u } is feasible.

This is a reasonable assumption for a transportation system, since for any demand and

cost vectors there always exists a solution that routes the traffic in the system, and there

are no unbounded solutions as all arcs have a finite capacity. Note that since c ≥ 0 for all

c ∈ Uc, the network flow problem is also bounded, thus this LP has an optimal solution.

We now present a few characterizations of closed convex sets for which inclusions can

be evaluated efficiently. We describe polyhedral and ellipsoidal sets in <k. A polyhedral

set in <k formed by the intersection of m hyperplanes is given by U = {x | Mx ≤ g},

where M is a m × k matrix and g ∈ <m. Ellipsoidal uncertainty sets are given by

U = {x | x = x0 +
∑L

l=1 ξlx
l, ξ ∈ X}, with X = {ξ | ∃w,Aξ + Bw ≥K d}. Where the

constraint a ≥K b represents the conic constraint a− b ∈ K, for some regular cone K.

Below we illustrate the generality of ellipsoidal sets with some examples. Let K∗

denote the positive polar of cone K and denote by e ∈ <k the vector of all ones, <k
+ the

k dimensional positive orthant, and Lk+1 = {(x1, x̄) ∈ <k+1 | x̄ ∈ <k, ‖x̄‖2 ≤ x1} the

k + 1 dimensional second order cone, or Lorentz cone.

• U is an ellipse centered at x0 with axes x1, . . . , xL if the set X = {ξ | ‖ξ‖2 ≤ 1},

7



which is given by the conic constraints X = {ξ | ∃w, (w, ξ) ∈ LL+1, −w+1 ∈ <+}.

• U is a box centered at x0, with edges in directions x1, . . . , xL if the set X =

{ξ | ‖ξ‖∞ ≤ 1}, given by the conic constraints X = {ξ | −ξ+e ∈ <L
+, ξ+e ∈ <L

+}.

• U is the convex combination of discrete uncertainties x0, x0 + x1, . . . , x0 + xL if

the set X = {ξ | ‖ξ‖1 ≤ 1, ξ ≥ 0}, given by the conic constraints X = {ξ | ξ ∈

<L
+, − etξ + 1 ∈ <+}.

6.2 Difficulty of solving (RCEP)

Solving (RCEP) seems to be a difficult problem, since it is an instance of the (ARC)

Problem (2) which is NP-hard. We investigate whether the structure of the (RCEP)

can guarantee a polynomial solution. We begin with defining the worst case cost of

investment decision y by φ(y). Thus, problem (RCEP) is simply min{φ(y) | dty ≤

I, y ≥ 0}, and the worst case cost is given by

φ(y) = maxc,b minx ctx

c ∈ Uc s.t. Nx = b

b ∈ Ub x ≤ u + y

x ≥ 0 .

(6)

Theorem 1. Under Assumption 1, φ(y) is a convex function in y.

Proof: The assumption implies that the network flow in the inner most minimization

problem is feasible and has an optimal solution. Therefore the dual of this LP attains

the same objective value. Replacing the inner most minimization problem by its dual

yields the following expression for φ(y):

φ(y) = maxc,b maxλ,π btλ− (u + y)tπ

c ∈ Uc s.t. N tλ− π ≤ c

b ∈ Ub π ≥ 0 ,
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which combining maximizations becomes

φ(y) = maxλ,π,b,c btλ− (u + y)tπ

s.t. N tλ− π ≤ c

b ∈ Ub, c ∈ Uc, π ≥ 0 .

(7)

It is straight forward to show from this last expression that φ(y) is a convex function in

y since the maximum of a sum is less than the sum of maximums. �

Theorem 1 shows that the (RCEP) is the minimization of a convex function over a

simplex, thus it can be NP-hard only when evaluating φ(y) cannot be done in polynomial

time. The non-linear term btλ in the objective of Problem (7) is the challenging aspect

of this problem. For example, for deterministic demand, i.e. Ub = {b}, the objective

becomes linear and computing the value of φ(y), and thus solving (RCEP), can be done

in polynomial time. We study this case in detail in the beginning of the next section.

The following examples, which consider uncertainty in the demand, illustrate that

evaluating φ(y) can indeed be a difficult problem.

Example 1: Consider the network given in Figure 1, with fixed cost vector c and an

investment y that yields the capacities on the figure. In this example the only uncertain

parameter is the total amount of supply and demand at nodes 1 and 3. This demand

and supply pair is parametrized by δ ∈ [−1, 1]. The minimum cost flow for this example

is exactly 4 + 3|δ| and thus it is maximized for δ ∈ {−1, 1}.

Example 2: Consider the network given in Figure 2, where again we have a fixed

cost c and an investment y that yields the capacities on the figure. Now, the demands at

nodes 2 and 3 are parametrized by δ ∈ [−1, 1]. The minimum cost flow of this problem

has an objective function value of 12+4|δ| and thus it is also maximized for δ ∈ {−1, 1}.

Both examples maximize a convex function to evaluate φ(y). Although these are

simple one dimensional examples, they illustrate the potential difficulty in finding the
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Figure 1: Difficult to evaluate φ(y). Multiple sources and sinks, δ ∈ [−1, 1].
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Figure 2: Difficult to evaluate φ(y). Multiple sink uncertainty, δ ∈ [−1, 1].

10



demand b that defines the worst case. Example 1 is based on what is known as the

“more for less paradox”: in increasing the supply in node 1 from 1 to 2 (and increasing

the demand at node 3 accordingly), we actually reduce the total cost as we replace the

expensive flow on (2, 4) with cheaper flow on (1, 4). This stops when the supply at 1

increases above 2 units, since then the arc (1, 4) is saturated and the extra flow is sent

on an expensive arc increasing the total cost. A similar phenomenon occurs in Example

2, where we use the capacity of the low cost arc to switch between decreasing the total

cost to increasing it. Note that now the total flow sent remains constant.

7 Solving (RCEP)

We now present three cases in which we can obtain tractable solutions for the (RCEP).

The first case is when there is fixed demand, in the second case we explore the most gen-

eral conditions under which the general network flow with uncertain demand is tractable,

we also note that these conditions are necessary. Our last case explores conditions un-

der which the multicommodity flow problem with uncertain demand has a tractable

(RCEP). It turns out that these conditions are reasonable for transportation systems.

7.1 Case of deterministic demand

In the case of deterministic demand, in other words Ub = {b}, the set of feasible flows is

fixed since the uncertainty only affects the cost vector. In this case, besides the (RCEP)

obtained from (ARC), we can define the following standard robust problem (RC), as in
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Problem (1), by also deciding the routing x prior to the realization of the uncertainty:

zRC = minx,y,γ γ

s.t. Nx = b

x ≤ u + y

dty ≤ I

x, y ≥ 0

for all c ∈ Uc ctx ≤ γ .

(8)

Recall that Problem (RC) is a tractable problem when the uncertainty set Uc is a poly-

hedral or ellipsoidal set, (Ben-Tal and Nemirovski 1999). In particular, the network

flow problem (I = 0) with box uncertainty Uc = {c | c ≤ c ≤ c + δ̄}, is considered in

Bertsimas and Sim (2004), which shows that the robust counterpart is

minx (c + δ̄)tx

s.t. Nx = b

0 ≤ x ≤ u .

(9)

We now present results showing that Problem (RCEP) is tractable when demand is

deterministic for general uncertainty sets Uc. First, let Uc be a general polyhedral set.

Proposition 2. If Ub = {b} and Uc = {c | Mc ≤ g, c ≥ 0}, then (RCEP) is equivalent

to

miny,x,w gtw

s.t. Nx = b

x ≤ u + y

x ≤ M tw

dty ≤ I

x, w, y ≥ 0

Proof: Under Assumption 1 we can represent the worst case cost φ(y) by Problem

(7), which becomes an LP when Ub is a singleton and Uc = {c | Mc ≤ g, c ≥ 0}. Taking
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the dual of this LP and combining it with the outer minimization in the investment

variables y, yields the result. �

It is surprising to note that for the network flow problem, I = 0, with box uncertainty

Uc = {c | c ≤ c ≤ c + δ̄}, the above characterization of (RCEP) is exactly equivalent

to the robust counterpart (RC) Problem (9) above. The following theorem shows that

this is always true. Problem (RCEP) is equivalent to (RC) for any bounded Uc and

deterministic demand. Therefore (RCEP) is tractable for general uncertainty sets Uc as

it inherits the tractability results of the (RC) problem in this case.

Theorem 2. If Ub = {b} then (RCEP) is equivalent to (RC)

Proof: Similar to Proposition 1 we can show that (RC), defined in Problem (8), is

equivalent to

zRC = miny,x maxc ctx

Nx = b c ∈ Uc

x ≤ u + y

dty ≤ I

x, y ≥ 0 .

Let X(y) = {x ≥ 0 | Nx = b, x ≤ u+ y}. Since the function f(x, c) = ctx is both linear

in x for every feasible c and linear in c for every feasible x, and the convex uncertainty

set Uc is bounded, then a classic result in convex analysis states that for any feasible y

min
x∈X(y)

max
c∈Uc

ctx = max
c∈Uc

min
x∈X(y)

ctx ,

see for example Corollary 37.3.2 in Rockafellar (1997). Substituting this saddle point

equivalence in the expression for (RC) above, we obtain Problem (5) with deterministic

demand. �
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7.2 Uncertain demand

As pointed out in Examples 1 and 2, evaluating the worst case cost function φ(y) can be

a difficult problem when there is demand uncertainty. We now identify the conditions on

the uncertainty set Ub under which we can evaluate φ(y) efficiently. The key observation

for the result presented below is that when routing flow from a single source to a single

sink, the optimal routing sends the flow along the shortest path possible. If the total flow

sent increases so does the value of the minimum cost solution, as the extra flow is routed

along the shortest path with available capacity from source to sink. In conclusion, in

this case there is no “more for less paradox”.

A slightly broader case is to consider multiple sinks and a single source, or equiva-

lently multiple sources and a single sink, with demand uncertainty only in a single source

and sink pair. We describe the methodology in the case with multiple sinks and single

source, and omit the analogous multiple source/single sink case. Let s be the single

source, and assume a demand b̄ with uncertainty in s and one fixed sink node t 6= s.

This implies the following demand uncertainty set

Ub = {b | b = b̄ + δ(es − et), δ ∈ [0, δ̄]} , (10)

where ei ∈ <m is the i-th canonical vector. Note that b̄s ≥ 0 and b̄i ≤ 0 for any i 6= s.

Theorem 3. Consider a network flow problem with a single source s and an uncertainty

set Ub given by Equation (10). Then φ(y) is the following convex optimization problem

φ(y) = maxλ,π,c b̄tλ + δ̄(λs − λt)− (u + y)tπ

s.t. N tλ− π − c ≤ 0

c ∈ Uc

π ≥ 0 .
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Proof: Under the uncertainty set Ub the definition of φ(y) becomes

φ(y) = maxc maxδ minx ctx

c ∈ Uc δ ∈ [0, δ̄] Nx = b̄ + δ(es − et)

0 ≤ x ≤ u + y .

The proof is based in showing that the function

Γ(δ) = minx ctx

Nx = b̄ + δ(es − et)

0 ≤ x ≤ u + y

is an non-decreasing function, i.e. if δ ≤ δ′ then Γ(δ) ≤ Γ(δ′). If Γ(δ) is non-decreasing it

implies that φ(y) = maxc∈Uc Γ(δ̄), and then simply taking the LP dual of Γ(δ̄) we obtain

the result. From Assumption 1 we have that function Γ(δ) is finite for all δ ∈ [0, δ̄]. Let

x′ be the optimal solution for Γ(δ′). From the flow decomposition theorem (for example

Theorem 3.5 in Ahuja et al. (1993)) we have that the arc flow x′ can be represented by

flow along s− i paths Psi, and cycles. In particular, the total flow along the s− t paths

P 1
st, . . . , P

k
st is equal to b̄t + δ′. We can then remove a total of δ′ − δ ≥ 0 units of flow

from these paths. Let xδ′−δ be the flow removed and recall that c ≥ 0 for all c ∈ Uc, then

x̃ = x′− xδ′−δ is a feasible flow for Γ(δ), which means that Γ(δ) ≤ ctx̃ = ctx′− ctxδ′−δ ≤

ctx′ = Γ(δ′). �

Remark 1. The conditions (a) single source s and (b) uncertainty set Ub given by (10)

are necessary and sufficient for φ(y) to be a convex optimization problem.

Proof: The theorem proves the sufficiency of these conditions. For the necessity we

show that if either of the conditions does not hold, then evaluating φ(y) is not equivalent

to solving a convex problem. Example 1 considers a network with multiple sources and

sinks and uncertainty only in a single source and sink pair, i.e. violates only condition

(a). Example 2 considers a network with a single source and uncertainty among the sink

nodes, i.e. only condition (b) does not hold. Both examples show that evaluating φ(y)

amounts to maximizing a convex function, not a convex optimization problem. �
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We now present two corollaries that show that the robust capacity expansion problem

(RCEP) is a tractable problem for a network under these demand uncertainty assump-

tions and fairly general cost uncertainty sets. We omit the proofs of these corollaries as

both of them are proved by taking the dual of the expression for φ(y) from Theorem 3

after substituting the definition of Uc.

Corollary 1. Consider a network flow problem with a single source s and an uncertainty

set Ub given by Equation (10). If Uc = {c | Mc ≤ g, c ≥ 0}, then (RCEP) is equivalent

to

miny,x,w gtw

s.t. Nx = b̄ + δ̄(es − et)

x ≤ u + y

x ≤ M tw

dty ≤ I

x, w, y ≥ 0 . �

Corollary 2. Consider a network flow problem with a single source s and an uncertainty

set Ub given by Equation (10). Let Uc = {c | c = c0 +
∑L

l=1 ξlc
l, ξ ∈ X}, with X =

{ξ | ∃w, Aξ + Bw ≥K d}, and let C = [c1, . . . , cL]. Then (RCEP) is equivalent to

miny,x,z (c0)tx− dtz

s.t. Nx = b̄ + δ̄(es − et)

x ≤ u + y

Ctx + Atz = 0

Btz = 0

dty ≤ I

x, y ≥ 0, z ≥K∗ 0 . �
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7.3 Multicommodity flow

A relevant network model for transportation problems is the multicommodity flow prob-

lem with a single source and single sink for each commodity. Theorem 3 shows that the

single commodity network flow problem, with a single source and sink, has a tractable

(RCEP). In this section we show that the (RCEP) is also tractable for a multicommod-

ity flow problem where each commodity has a single source and sink. This is also true

for the slightly more general conditions of a single source (or sink) per commodity and

uncertainty only on a single source - sink pair per commodity. However we omit this

result here for clarity of exposition.

Assuming that commodity k has a source sk and a sink tk, and the amount to be

sent is uncertain, but bounded, we can define the demand uncertainty set by

Ub =
{
(b1, . . . , bK) | bk = δk (esk − etk) , δk ∈ [δk

l , δ
k
u], for all k ∈ 1, . . . , K

}
, (11)

where we assume that δk
l ≥ 0 for all k = 1, . . . , K. In other words, the demand uncer-

tainty does not allow a supply node to become a demand node.

Theorem 4. Consider the multicommodity flow problem, where each commodity has a

single source sk and single sink tk and that Ub is given by Equation (11). Then φ(y) is

the following convex optimization problem

φ(y) = maxλ,π,c

K∑
k=1

δk
u(λk

sk − λk
tk)− (u + y)tπ

s.t. N tλk − π − ck ≤ 0 k = 1, . . . , K

(c1 . . . cK) ∈ Uc

π ≥ 0 .

Proof: This proof is analogous to the proof of Theorem 3. Under the uncertainty
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set Ub the definition of φ(y) becomes

φ(y) = maxc maxδk...δK minx

K∑
k=1

(ck)txk

(c1 . . . cK) ∈ Uc δk ∈ [δk
l , δ

k
u] Nxk = δk(esk − etk) k = 1 . . . K

K∑
k=1

xk ≤ u + y

xk ≥ 0 k = 1 . . . K .

Therefore the key in the proof is showing that the function

Γ(δ1 . . . δK) = minx

K∑
k=1

(ck)txk

Nxk = δk(esk − etk) k = 1 . . . K
K∑

k=1

xk ≤ u + y

xk ≥ 0 k = 1 . . . K

is a non-decreasing function, i.e. if (δ1 . . . δK) ≤ (δ′1 . . . δ′K) then Γ(δ1 . . . δK) ≤ Γ(δ′1 . . . δ′K).

If Γ(δ1 . . . δK) is non-decreasing it implies that φ(y) = max(c1...cK)∈Uc
Γ(δ1

u . . . δK
u ), and

the result is obtained by taking the LP dual of Γ(δ1
u . . . δK

u ). Let (x′1 . . . x′K) be the

optimal solution for Γ(δ′1 . . . δ′K). The flow of commodity k, x′k can be represented by

flow along sk − tk paths Psktk , and cycles. In particular, the total flow along the sk − tk

paths is equal to δ′k. We can then remove a total of δ′k− δk ≥ 0 units of flow from these

paths. For each commodity k let xk
δ′−δ be the flow removed, define x̃k = x′k − xk

δ′−δ, and

recall that ck ≥ 0. By construction the flow (x̃1 . . . x̃K) is a feasible flow for Γ(δ1 . . . δK).

Therefore Γ(δ1 . . . δK) ≤
∑K

k=1(c
k)tx̃k =

∑K
k=1

(
(ck)tx′k − (ck)txk

δ′−δ

)
≤

∑K
k=1(c

k)tx′k =

Γ(δ′1 . . . δ′K). �

We now present two corollaries that show problem (RCEP) is tractable for the mul-

ticommodity flow problem with single source and sink and for fairly general cost uncer-

tainty sets. We omit the proofs of these corollaries as both just require taking the dual

of φ(y) from Theorem 4 after substituting the definition of Uc.
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Corollary 3. Consider the multicommodity flow problem, where each commodity has a

single source and sink, and that Ub is given by Equation (11). If Uc = {(c1 . . . cK) | Mkck ≤

gk, ck ≥ 0}, then the (RCEP) problem is equivalent to the following LP:

miny,x,w

K∑
k=1

(gk)twk

s.t. Nxk = δk
u (esk − etk) k = 1, . . . , K

xk ≤ (Mk)twk k = 1, . . . , K
K∑

k=1

xk ≤ u + y

dty ≤ I

xk, wk, y ≥ 0 . �

Corollary 4. Consider the multicommodity flow problem, where each commodity has a

single source and sink, and that Ub is given by Equation (11). If Uc = {(c1 . . . cK) | ck =

ck0 +
∑L

l=1 ξlc
kl, ξ ∈ X}, with X = {ξ | ∃w, Aξ + Bw ≥K d}, and let Ck = [c1k, . . . cLk].

Then (RCEP) is equivalent to

miny,x,z

K∑
k=1

(ck0)txk − ztd

s.t. Nxk = δk
u (esk − etk) k = 1, . . . , K

K∑
k=1

(
Ck

)t
xk + Atz = 0

Btz = 0
K∑

k=1

xk ≤ u + y

dty ≤ I

xk, y ≥ 0, z ≥K∗ 0 . �
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8 Computational Experiments

We now present computational experiments that compare the robust solution to the

deterministic solution obtained for nominal data, i.e. data that is representative of the

uncertainty set. These experiments serve to illustrate the conditions under which a

robust solution is preferable to a deterministic solution.

For each experiment described in this section, we compute four values: zD the optimal

value of the deterministic solution, zR the optimal value of the robust solution, zwc

the worst case value of the deterministic solution, and zac the objective value of the

robust solution for the nominal data. We obtain zD = zD(b̄, c̄) as the optimal objective

function value of Problem (3) for the nominal data b̄ ∈ Ub and c̄ ∈ Uc. Let yD be the

optimal investment strategy for the deterministic problem. The value zR is obtained

by solving the appropriate tractable characterization of (RCEP) depending on the form

of the uncertainty sets (either Corollary 1 or 3 in the experiments below). Let yR be

the optimal robust investment strategy. The worst case value zwc = φ(yD) is obtained

from the appropriate tractable characterization of Problem (7) (either Theorem 3 or 4).

Finally the cost of the robust solution for the nominal data, zac, is obtained by solving

min c̄tx

s.t. Nx = b̄

0 ≤ x ≤ u + yR .

We compare the performance of the robust and deterministic solution through the

following two ratios:

rwc =
zwc − zR

zR

and rac =
zac − zD

zD

.

The quantity rwc is the relative improvement of the robust solution in the worst case

and rac is the relative loss of optimality of the robust solution on the nominal data.
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8.1 A 3-node network

Our first example consists of the simple network on three nodes shown in Figure 3.

The values on the arcs represent the nominal travel times, all arcs have capacity 1,

and (d12, d13, d23) = (1, 2, 1). We consider deterministic demand equal to δ units of

flow from 1 to 3, an investment of I, and an uncertainty set on travel times given by

Uc = {c | 0.5c̄ ≤ c ≤ 1.5c̄, 4c12 + 4c23 + c13 ≤ 9.95}. In this experiment, the shortest

path between 1 and 3, given by the arc (1, 3), is subject to greater variability than the

alternate path, (1, 2)− (2, 3).

1

1
1.95

1 2

3

Figure 3: 3-node network.

In Figure 4 we plot rwc and rac for diverse values of δ and I. Note that the robust

solution is able to achieve more than a 20% reduction in the value of the worst case

with a smaller than 2% increase in the value for the nominal data. This occurs for cases

with a flow δ bigger than 2.25; in addition this worst case benefit improves for larger

values of investment budget I. Note that, for a fixed investment I, the benefit of the

robust solution in the worst case, rwc, increases and then decreases with δ. Clearly for

small flows, close to δ = 1, most of the flow can be sent on either of the existing paths,

thus both investment solutions are comparable. As the flow increases however, a larger

investment is needed to route flow on the preferred path between 1 and 3. For flows

large enough, in the example I = 2 for flows larger than δ = 2.5, all the new capacity

is installed in the best path, and as the flow keeps increasing the benefit of the robust

solution decreases, as it must route flow through the other path.
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Figure 4: Comparison of robust and deterministic solutions for 3-node network.

8.2 A 21-node network

Our second example considers a larger network, obtained by repeating the triangular

network of Experiment 1. The purpose here is to study the scalability of the benefits of

the robust solution. The network considers nominal cost values of 1.95 on all diagonal

arcs and 1 on the non-diagonal arcs; it also considers a capacity of uij = 1 for all arcs

and a rate of investments of 2 for all diagonal arcs and 1 for all non-diagonal arcs. This

example considers a deterministic amount of δ flowing from 1 to 21, a total investment

of I and an uncertainty set on travel times given by

Uc =

c | 0.5c̄ ≤ c ≤ 1.5c̄,
∑

(i,j) non−diag

4cij +
∑

(i,j) diag

cij = 149.25

 .

In Figure 6 we plot the ratios rwc and rac obtained for different values of total flow

sent from 1 to 21 and for different total investment budgets I. We note that the robust

solution is still better than the deterministic solution in the worst case, in some cases

by about 20%, while it is never worse than 2.5% of the deterministic solution on the
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Figure 5: 21-node network.

nominal data. Figure 6 also shows that rwc decreases for flows larger than a certain

level and that this drop can be substantial. Similar to the 3-network case, the benefit

of the robust solution begins to decrease when the new capacity in the robust solution

is committed to the preferred paths and the remaining flow has to be routed through

less beneficial paths. For large flows δ, the only feasible investment strategy becomes to

expand the bottleneck arcs near the source and sink nodes, as all the paths from 1 to

21 must use the same two pairs of arcs out of 1 and into 21. Thus as δ increases the

deterministic and robust solutions converge to this only feasible investment strategy.

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

δ

r w
c , 

r ac

I = 10

I = 30

I = 50

I = 70

I = 80

r
wc

r
ac

Figure 6: Comparison of robust and deterministic solutions for 21-node network.
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8.3 A transportation network

Our last example considers a multicommodity flow problem with cost and demand un-

certainty on a planar network. The network is given in Figure 7 with the nominal travel

times depicted. This example represents an evening rush hour scenario, where traffic is

traveling from work at either node 2 or node 5, to their homes in either nodes 1, 4, or

8. The nominal demand values are 1000 units of flow from node 2 to node 4, 500 units

1 2 3

4 5 6

20 20

20

20

15

20

20

20 15 20

7 8
20

ijc
ji

Figure 7: Transportation network problem.

from node 2 to node 1, and 1000 from node 2 to node 8. We also have 500 units of flow

from node 5 to node 8. The network has uniform arc capacity of 900, and there is a total

budget of 2000 units of arc capacity to distribute. We consider that the travel times on

a few arcs are subject to uniform box uncertainty and can vary either up or down by

µ%. Let arcs (2, 5), (5, 4), (5, 7), and (7, 8) have uncertain travel times. The demand is

also under uniform box uncertainty, and all commodities can have their demand/supply

vary by µb% up or down.

If Figure 8 we present the ratios rwc and rac for different values of total investment

budget I as we vary the amount of uncertainty in travel time µ. This example considers

the demand known, i.e. µb = 0. We see that as the uncertainty of travel times increases
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the robust solution becomes more attractive. In fact, for small levels of uncertainty or

small investment budgets the deterministic solution would be preferable, as the improve-

ment in the worst case could be even smaller than the worsening for the nominal data.

This is not surprising, as for small uncertainty levels the effect of the worse case should

be small, and if there is limited budget to invest it should be dedicated to clear needs of

the network. However as investment budgets and uncertainty levels increase the robust

solution becomes more attractive, reaching more than 15% improvement in the worst

case, for less than a 7% overhead for the nominal data, when uncertainty is at least 60%

and investment of at least 1500. In Figure 9 we plot the same results for the different

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

µ

r w
c, r

ac

I = 0.5 k

I = 0.75 k

I = 1 k

I = 1.25 k

I > 1.5 k

r
wc

r
ac

Figure 8: Comparison of robust and deterministic solutions for transportation network

as a function of µ, for different I, with µb = 0.

values of µ as we vary the investment budget I. Here we observe that we reach the best

improvement in rwc starting with I = 1500, regardless of the uncertainty in travel time.

The same does not happen for rac which increases as more budget is available until a

sharp drop.

In Figure 10 we plot how demand uncertainty affects rwc. For a fixed investment

budget I = 2000 and different uncertainty sets in travel time, we plot the value of
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Figure 9: Comparison of robust and deterministic solutions for transportation network

as a function of I, for different µ, with µb = 0.

ratio rwc as a function of µb. Surprisingly we notice that at first the uncertainty in

demand increases rwc, for all µ, however for demand uncertainty larger than µb = 0.2

there is a decrease in rwc as we increase demand uncertainty. The reason for this drop

is explained by Corollary 3, which shows that the robust problem solves an instance

with the maximum demand possible. Thus uncertainty in demand amounts to finding

a solution that is robust with respect to the cost uncertainty for the largest possible

demand. We have seen in our previous examples that the benefits of a robust solution

decrease with an increase in flow.

9 Extensions

There are two main issues that stem from the current work that are currently being

investigated in related research projects. The first issue concerns the realism of the

uncertainty assumptions, while the second addresses how to obtain uncertainty sets for
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Figure 10: Sensitivity to demand uncertainty µb for transportation network, different

values of µ and I = 2000.

travel time and demand data for a transportation network.

9.1 Models of uncertainty

The current uncertainty sets for travel time and demand have the form Uc × Ub with

Ub given by (11), which indicates that bk = δk (esk − etk) with δk ∈ [δk
l , δ

k
u] for all

commodities k. These uncertainty definitions imply that the uncertainty in demand

is independent across different commodities and also independent with respect to the

uncertainty in travel times. These consequences might turn out to be too restrictive.

Although a full statistical analysis of real transportation data would clear whether

these assumptions are an issue, it is plausible at an intuitive level that there is a problem.

For instance, if one OD pair has an unusually high flow, then it is reasonable to assume

that other OD pairs from the same origin should have smaller flow, since the total

population is the same. This would suggest dependencies across different commodities.

27



Analogously, if the travel time faced by a certain OD pair is unusually high, we can

expect the flow on that OD pair to decrease, again suggesting a dependency between

travel time and demand.

Current work is exploring methods that would enable to consider more complex

uncertainty sets. In particular we have shown that by formulating the network flow

problem with respect to path variables it enables the consideration of uncertainty sets

Ub with general conic form. This allows to represent dependencies in the uncertainty

across commodities. We are currently working on methods to account for dependencies

between travel times and OD flow demand.

9.2 Constructing confidence intervals

A key implementation step for this methodology is to obtain data that corresponds to a

real transportation network. This data should have estimates of travel time and demand

including uncertainty sets. Natural uncertainty sets arise from the confidence intervals

of the estimation of travel times and demand. For example we could consider Uc to be

the set of travel times within a 95% confidence interval of the estimate.

We have been working with link flow data on the Los Angeles area highway system

that can be downloaded from the PeMS website (PeMS 2004). This site provides traffic

flows and speed every five minutes for most of the county’s highway system. The speed

information at link flows can easily be converted to estimates of travel times. We use

data from different days to construct an expected travel time estimate, known to be

Normally distributed. This distribution is used to construct confidence intervals on the

travel time estimate.

Constructing confidence intervals for the demand is a more involved process, and cur-

rently the topic of another METRANS funded research project. The main complication

28



lies in that the demand is estimated through indirect link flow data, which is related to

OD flows through a (usually) underdetermined linear system. Usual demand estimation

models make additional assumptions to select one of the potentially many possible esti-

mates of the demand. Using such an estimation model to construct confidence intervals

(by repeated use of the estimation model to build intervals around the mean estimated

result) should lead to confidence intervals that depend on the additional assumptions

of the model. Our project proposes a method that separates the uncertainty in OD

estimates into the link flow data statistical uncertainty and the possibility of multiple

feasible OD demand solutions for the same link flow data. A confidence interval is then

constructed from concise representation of the uncertainty in each part. An outstanding

question in this research project is how significant are confidence intervals produced by

this method.

10 Conclusions and Recommendations

The robust capacity expansion problem (RCEP) we consider in this report, Problem (4),

is the basis of an approach to decide capacity expansions for a transportation network

that finds a robust solution with respect to the uncertainty in demands and travel

times. It seems unlikely that problem (RCEP) could be solved efficiently in general,

as this problem is a particular instance of the Adjusted Robust Counterpart problem,

which is NP-hard. Here we exploit the structure of the capacity expansion problem

to show that the (RCEP) is a tractable problem under conditions that are reasonable

for a transportation system: if we consider a multicommodity flow problem with a

single source and sink per commodity, uncertainty on the demand and travel times is

represented by bounded convex sets, all travel times are non-negative, and there exists

a feasible way to route any outcome of the uncertain demand.

The computational results obtained indicate that the robust solution is capable of

29



reducing the worst case cost by more than 20% while incurring in about a 5% loss of

optimality with respect to the optimal deterministic solution for a nominal uncertainty

data. In particular, the robust solution becomes more attractive as the uncertainty in

travel times increases and as the budget to decide capacity expansions increases. A

result which is intuitive, since a small uncertainty implies that worst case scenarios are

similar to the nominal case and if the budget is small, both solutions will tend solve

the most pressing problems. The results also show that the greatest benefit of a robust

solution is obtained for flow in some medium range, as a network with small amounts of

flow is not affected by capacity expansions and a network with large amounts of flow is

forced to send flow through less attractive routes. Finally, we note that a robust solution

can become less attractive as uncertainty in demand increases, which is reasonable since

the robust solution routes the largest amount of flow possible and, as noted above, a

robust solution becomes less attractive for large amounts of flow.

The methodology presented here gives a computationally efficient method of obtain-

ing a robust solution for the capacity expansion problem. The methodology is quite

general and can be applied in principle to other network design problems, as long as the

assumptions needed for the computational tractability of the problem are reasonable, as

they are in the transportation setting. For classical network design problems, the addi-

tional complication of dealing with a mixed integer program must be addressed. Finally,

this work suggests that a robust solution has the potential to be efficient in practice

for the capacity expansion of transportation networks. Future work should investigate

whether the robust solution can be efficient in a realistic example.

11 Implementation

This research contributes to a fundamental modeling approach that can be used to decide

investment decisions. As such, it requires substantial work on representing a realistic
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instance of investment in a transportation network, including data gathering, before it

can be implemented.

In essence this research by itself is not expected to replace human analysis for in-

vestment decisions, but to inform it. When a decision maker is faced with the question

of where to expand capacity in a network, a model of the network with this robust

formulation can quantify the effects of different solutions, considering the uncertainty

available to the decision maker robustly.

Our current research project of developing a method to construct confidence inter-

vals of traffic demand is a key step in allowing for an implementation of the robust

methodology. In fact that project should culminate with demand estimates and con-

fidence intervals for a large portion of the Los Angeles county highway system, which

could then be used for capacity expansion problems.
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