

MULTI-CYLINDER DIESEL ENGINE TESTS WITH UNSTABILIZED WATER-IN-FUEL EMULSIONS

MARCH 1981

U.S. DEPARTMENT OF TRANSPORTATION

RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION
TRANSPORTATION SYSTEMS CENTER • CAMBRIDGE MA 02142

PREPARED FOR UNITED STATES COAST GUARD
OFFICE OF RESEARCH AND DEVELOPMENT • WASHINGTON DC 20593

1. Report No.	2. Government	0.000	TECHNICAL REPORT STANDARD TITLE PAGE	
CG-D-27-80	2. Government	Accession No.	3. Recipient's Catalog No.	
		-		
4. Title and Subtitle			5. Report Date	
MULTI-CYLINDER DIESEL ENGINE UNSTABILIZED WATER-IN-FUEL EN		TESTS WITH	March 1981	
		MULSIONS	6. Performing Organization Code	
7. Author(s)			11-5477	
C. W. Coon, Jr.			8. Performing Organization Report No.	
			DOT-TSC-USCG-80-7	
9. Performing Organization Name and Addres			10. Work Unit No.	
Southwest Research Inst 6220 Culebra Road	itute*		CG 107/R 1014	
San Antonio TX 78284			11. Contract or Grant No.	
July 1 1 1 7 7 7 7 7 7 7			DOT-TSC-1587	
12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered	
U.S. Department of Tran	sportation		FINAL REPORT	
U.S. Coast Guard			September 1978-July 1980	
Office of Research and Washington DC 20593	Development		14. Sponsoring Agency Code	
	G P			
- M	5. Departmen	t of Transporta	ation	
* Under Contract to: Research and Special Programs Administrations			s Administrations	
Transportation Systems Center Cambridge MA 02142				
16. Abstract				
Two diesel engines repr	esentative o	f the four-stro	ke cycle and two-stroke cycle	
mater propersion units instal	iea in II.S.	Coast Guard MDE	ologo outtomo 1.1	
a test environment in an att	smor to demo	NStrate cionifi	cant final continue and the	
"Tell water in ider emursions	 Ine engin 	es were connect	ed to a dimension de	
raboracory test cerr. A pro-	COTVDE THE L	SVStom was acco	mblod +b-+ 11 1 1	
occupantized emulsions for white	on the Water	concentration	aggild manage for	
Lordon of the rotal Anthre	יום הדווחוו ונ	nniiad to the e	notino no E. 1 A 1 A al	
obergerou was belinfu	Th broser ro	1dentity the "	OCT from: 1 1 1	
load performance.	obstances; and both engines were operated at test points representation of the standard			
FULLULINGINGE.			_ i	
diesel fuel saving of about 2	5 Dercent	e cycle engine	indicated that an average	
encountered operating conditi	ions using w	could be obtain	ed at the most frequently	
area andry sign procedures	SUPPET A 91	I norcent confi	dom no din 11.	
- Surface reductions in ext	IAUST SMOKE T	JATA alea ahear	and although the terms of	
oam obactry was tow fill our	THOUSE THE TE	ete kor tha to		
stream opacity was low throughout the tests. For the two-stroke cycle engine, no statistically significant reduction in fuel consumption could be identified.				
o me control there are the control of trates in the control of				
The particulate emissions for the two-stroke cycle engine success 1				
slight effect of water concentration. No adverse effect on engine hardware could associated with the presence of water in the engine fuel system.			t on onoine Leater 111	
17. Key Words	of water in	the engine fue.	l system.	
		18. Distribution States	ment	
Diesel engines			VAILABLE TO THE PUBLIC	
Water-in-fuel emulsions Fuel consumption		THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD,		
Exhaust emissions	į	VIRGINIA 22161		
19. Security Classif. (of this report)	20. Security Clas	sif (of this page)	01 112 - (0 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	

Unclassified

154

Unclassified

PREFACE

This work was performed for the U.S. Department of Transportation, U.S. Coast Guard, Office of Research and Development, under a contract issued by the Transportation Systems Center. The Technical Monitors were Fred Weidner (USCG) and Robert Walter (TSC). The laboratory tests were performed by Rodney Bauer of the Department of Engine and Vehicle Research, Southwest Research Institute.

Engines were made available to the program by the Cummins Engine Company, Inc., and by the Detroit Diesel Allison Division of General Motors Corporation. The cooperation of these organizations is sincerely appreciated.

TABLE OF CONTENTS

Section			Page
1.	INTR	ODUCTION	1
(•)	1.1 1.2 1.3	Background Objectives Approach	1 2 3
2.	EXPE	RIMENTAL APPARATUS AND TECHNIQUES	6
	2.1	Equipment	6
		2.1.1 Engines	6 7 7 13
	2.2	Test Procedure Data Reduction and Calculations	25 31
3.	RESUI	TS	34
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Fuel Consumption Exhaust Smoke Particulate Emissions. Oxides of Nitrogen Unburned Hydrocarbons Carbon Monoxide Carbon Dioxide and Oxygen	34 45 45 45 55 58 63
4.	SUMMA	ARY AND CONCLUSIONS	64
5.	RECON	MENDATIONS	68
APPENDIX	A -	FUEL PROPERTIES	69
APPENDIX	В -	SAMPLE CALCULATIONS	73
APPENDIX	C -	TEST RESULTS	98
APPENDIX	D -	REPORT OF NEW TECHNOLOGY	141
REFERENC	ES		142

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
3-7	EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM	43
3–8	EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1400 RPM	44
3-9	EXHAUST SMOKE, CUMMINS ENGINE, 1800 RPM	46
3-10	EXHAUST SMOKE, CUMMINS ENGINE, 1200 RPM	₂₀ 47
3-11	EXHAUST PARTICULATE EMISSIONS, DETROIT DIESEL ENGINE, FIVE SPEEDS	48
3-12	EXHAUST PARTICULATE EMISSIONS, DETROIT DIESEL ENGINE, BASELINE DATA 5, 10, 15, 20 and 25 PERCENT WATER	49
3-13	EMISSIONS OF NITRIC OXIDE, CUMMINS ENGINE, 1800 RPM	51
3-14	EMISSIONS OF NITRIC OXIDE, CUMMINS ENGINE, 1200 RPM	52
3-15	TIMING OF THE BEGINNING OF FUEL INJECTION, CUMMINS ENGINE	53
3-16	EMISSIONS OF OXIDES OF NITROGEN, DETROIT DIESEL ENGINE, FIVE SPEEDS	54
3-17	EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1800 RPM	56
3-18	EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1200 RPM	57
3–19	EMISSIONS OF UNBURNED HYDROCARBONS, DETROIT DIESEL ENGINE, FIVE SPEEDS	59
3-20	EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1800 RPM	60
3-21	EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1200 RPM	61
3-22	EMISSIONS OF CARBON MONOXIDE, DETROIT DIESEL ENGINE, FIVE SPEEDS	62

LIST OF TABLES (CONTINUED)

Table		Page
C-6	ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 25% WATER	104
C-7	ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, BASELINE	105
C-8	ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 5% WATER	106
C-9	ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 10% WATER	107
C-10	ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 15% WATER	108
C-11	ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 20% WATER	109
C-12	ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 25% WATER	110
C-13	ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, BASELINE	111
C-14	ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 5% WATER	113
C-15	ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 10% WATER	114
C-16	ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 15% WATER	115
C-17	ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 20% WATER	116
C-18	ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 25% WATER	117
C-19	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 500 RPM	118
C-20	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, BASELINE	119
C-21	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, WITH WATER ADDITION	120
C-22	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, BASELINE	121
C-23	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 5, 10, 15% WATER	122
C-24	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 20, 25% WATER	123
C-25	ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING RETARDED 2.4 DEGREES	124

1. INTRODUCTION

The current emphasis on fuel conservation has prompted the study of many devices and techniques oriented toward a reduction in engine fuel consumption. This report describes the procedures used and the results obtained during a study of unstabilized water-in-fuel emulsions as fuels for engines representative of U.S. Coast Guard main propulsion systems.

The complete program involved an investigation of two high-speed diesel engines with nominal maximum power ratings in the 1000 hp range. A Cummins VTA-1710 engine was used to represent the military version (VT12-900M) that is utilized by the USCG. In addition, a Detroit Diesel 12V-149TI engine was employed for the acquisition of data representative of the 16 cylinder version installed in the USCG cutters.

1.1 BACKGROUND

The use of water-in-fuel emulsions for fuel conservation has been a subject of continuing interest for several years. During 1977, Southwest Research Institute conducted a program for the department of Transportation in which fuel-water emulsions were examined in the context of a single-cylinder test engine. The results obtained during that study indicated that a reduction in fuel consumption on the order of five percent might be available for engines representative of marine propulsion. It was recommended that the testing effort be continued using multi-cylinder engines, and the present study describes the partial fulfillment of that recommendation.

Various investigators have recommended the use of different devices and philosophies for the production of water—in—fuel emulsions used as engine fuels. One approach suggests the addition of surfactant compounds to the fuel—water mixture. The surfactants stabilize the emulsions and allow batch mixing of fuel supplies. For the present study, however, this approach was not considered feasible, since the USCG would prefer to avoid the requirement for precise blending of fuel additives with the large quantities of fuel utilized for partol boats. Furthermore, it was considered necessary to view

1.3 APPROACH

The program was initiated with a selection process devoted to the definition of emulsification systems appropriate to the study. Invitations were sent to all individuals or companies known to be involved in the development of emulsification systems, and an advertisement was placed in the Commerce Business Daily that outlined the program requirements. Six prospective suppliers responded to the invitation and offered devices for evaluation in the SwRI laboratory.

A system was provided by SwRI that would supply metered quantities of fuel and water to the prototype systems on a uniform basis. The emulsification systems were exercised within their performance limits as defined by the supplier, and samples of water-in-fuel emulsion were obtained over the 0 to 25 percent concentration range that was of interest. Immediately following collection of each sample, the time required for accumulation of an obvious separation layer was observed. This process allowed the assessment of the capability of each device to produce an emulsion that would be useful during the engine studies.

In addition, each prospective emulsification device was evaluated on the basis of energy usage, physical size, complexity, compatibility with the shipboard environment, and the need for auxiliary hardware such as pumps and controllers. Individual evaluations were performed by representatives of SwRI, the Transportation Systems Center, and the USCG. As a result of the evaluation process, two emulsification systems were selected for use during the engine operation phase of the program, and purchase orders for units of an appropriate size were executed.

Since the response of the engine fuel system to the presence of water was unknown, a brief sequence of test runs was performed using stabilized emulsions containing 5 and 20 percent water by volume. The single purpose of these tests was the determination of any observable detrimental effects on engine operation as a result of water in the fuel system. No detrimental effects were observed, therefore the testing with unstabilized mixtures was initiated.

repeated. During the performance of each test run, extensive observations of fuel consumption and other engine operating parameters were made.

The complete body of data includes information at speeds along the entire prop load curve for each test engine. In addition, the data include extensive testing at two spped-load points for the Cummins engine; the two points represent high utilization by operating USCG cutters. The data allow the determination of the optimum water concentration at each speed-load point; this information would be useful for the design of a shipboard control system.

The engines used to power 95-ft WPB cutters are manufactured by the Detroit Diesel Allison Division of the General Motors Corporation; the specific model designation is 16V-149TI. The displacement of each unit is 2384 cubic inches, and each engine is rated at 1235 shaft horsepower at 1800 rpm.

The engine that was available for use during this study was a Detroit Diesel Model 12V-149TI; this unit is a twelve-cylinder version of the USCG engine. During the testing program, the engine was operated at approximately the same horsepower output per cylinder that the marine version would produce. Thus, although the total output of the twelve-cylinder engine was low, the details of engine operation were quite representative of the sixteen-cylinder counterpart.

The major specifications of the engines used during the test program are outlined in Table 2-1, and data from the manufacturers is shown in Appendix A.

2.1.2 Dynamometer and Test Cell

Each engine was installed in a test cell at the SwRI laboratory and connected to an eddy-current dynamometer capable of absorbing up to 1000 horsepower. The engine installation is shown in Figures 2-1 and 2-2. The dynamometer utilized was an absorbing unit only; no motoring capability was available.

The engine speed was determined through the use of a magnetic pickup and a 60-tooth gear installed in the engine-dynamometer coupling. The speed signal was transmitted to a digital counter used as an output device, and, in addition, the signal was supplied to a dynamometer controller capable of maintaining engine speed within a tolerance of one rpm. The dynamometer beam load was measured through the use of a strain gauge type load-cell connected to an output device at the control console. The load-cell was subjected to a weekly deadweight calibration.

2.1.3 Fuel System

A fuel supply system was assembled that would meter, premix, and emulsify the fuel and water in concentrations that were of interest. Although certain

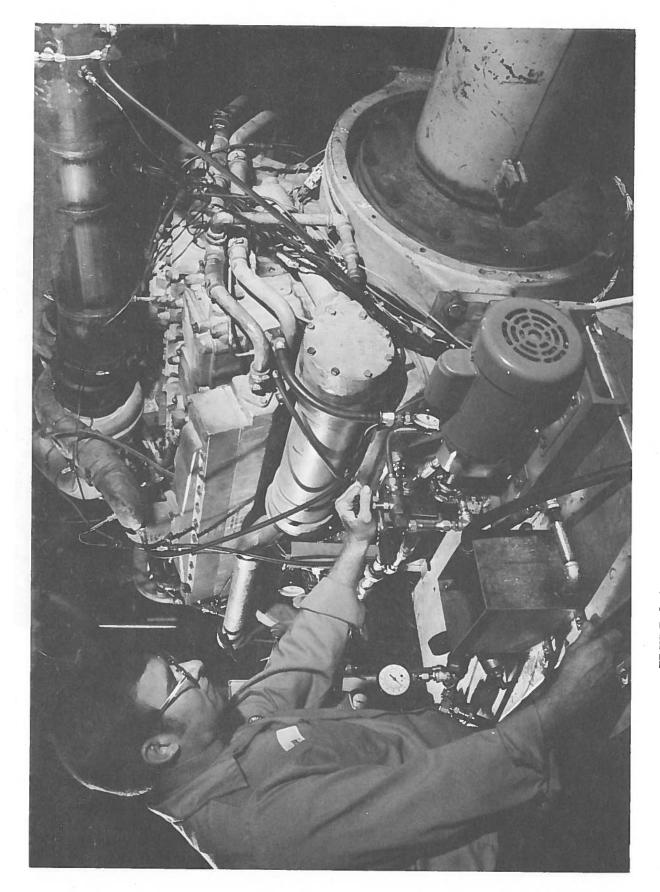


FIGURE 2-1. ENGINE INSTALLATION; CUMMINS ENGINE TESTS

features of the system were designed specifically to accommodate the Cummins engine, the same system proved useful for both of the engines tested.

In ordinary operation the fuel would be supplied directly to the injection pump of the engine, and fuel not used by the engine would be returned to a storage tank. The Cummins injection system is unique in that the returned fuel typically contains quantities of gas which must be removed prior to recycling of the unburned fuel through the engine. In usual installations, this capability is provided by a vented storage tank.

For the purposes of this study, it was necessary to assemble a fuel system that would generate the fuel-water emulsion while simultaneously satisfying the requirement for degasification of the return fuel. A schematic diagram of the system used is shown in Figure 2-4, and the fuel system is visible in Figure 2-1. Fuel and water were supplied independently to a mixing tee; this device provided a crude mixture prior to emulsification. water was utilized throughout, and the line pressure provided the driving force. Fuel was pumped from a storage tank into the mixing arrangement. A constant fuel level was maintained in a float-controlled tank having a volume of approximately one-half gallon. This open tank allowed gases trapped in the return fuel to escape prior to fuel recycling. Fuel was removed from the float-controlled tank by a one horsepower gear pump which supplied a pressure of approximately 100 psi to the fuel-water emulsifier. The emulsifier used in this system was a Hydroshear device supplied by Gaulin Corporation; the unit operates by subjecting the fuel-water mixture to an extremely high shear state. A drawing of a typical Hydroshear after Lawson 11 is shown in Figure 2-3. The pressure at the outlet of the emulsifier was typically 20 to 25 psi.

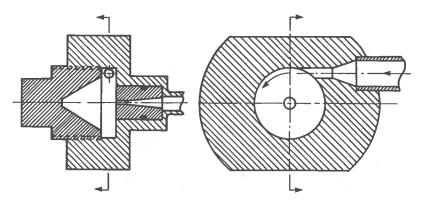


FIGURE 2-3. TYPICAL HYDROSHEAR

At the emulsifier outlet, the fuel was directed either to the engine fuel pump or to a by-pass loop. Fuel directed toward the engine passed through a control valve which lowered the pressure to a value below 5 psi in order to meet the requirements of the engine fuel system. Fuel returned from either the engine fuel pump or the engine fuel injectors was routed into the by-pass portion of the system. The unused emulsion was conducted through a heat exchanger for cooling prior to return to the float-controlled tank. Pressures and temperatures were measured at points of interest throughout the fuel supply system, and a sample port was provided at the engine fuel pump for use in the verification of water concentrations.

During the tests, the fuel system was operated at a continuous flow rate approximately equal to the engine maximum demand. Thus, a substantial flow rate was always present in the by-pass loop, and the emulsifier was not subjected to varying conditions as the engine load changed. During steady-state operation, the flow rate of the fuel-water mixture to the float-controlled tank was equal to the rate at which the fuel was consumed by the engine, but the flow through the emulsifier loop was constant.

2.1.4 <u>Instrumentation</u>

The documentation of engine performance using emulsified fuels required the measurement of a number of quantities during engine operation. The individual parameters for which data were recorded during each test run are listed in Table 2-2.

The dry bulb and wet bulb temperatures used for calculation of humidity were measured using mercury-in-glass thermometers. Exhaust temperatures were measured with type K thermocouples, and other temperatures were measured using type J thermocouples. All of the thermocouple readings were obtained through the use of multi-point switches and readout devices appropriate to the thermocouple calibration.

Pressures were measured using Bourdon tube gauges, mercury manometers, or water manometers as appropriate for the value and range of the metered quantity. The value of barometric pressure was obtained during each test run.

The water flow was monitored through the use of a variable area flowmeter installed in the water inlet line. The meter was calibrated prior to the beginning of the test program, and tables were prepared which listed the water flowmeter reading for each desired water concentration over a range of fuel rates applicable to each test point. To establish a particular water concentration in the fuel, the engine operator would read the fuel mass flowmeter, consult the table, and set the water flow rate accordingly. The water concentration was then verified by obtaining a sample of the emulsion at the engine inlet and allowing separation of the water and diesel fuel to occur.

The air flow to the engine was measured using a laminar flow element rated at 2000 cfm. The pressure drops across the flowmeter filter and across the metering element were measured using inclined water manometers, and the air flow rate was established from the meter calibration using corrections for ambient temperature and pressure.

During tests of the Detroit Diesel engine, additional air flowmetering capability was required. The 2000 cfm laminar flow element was used in the air supply to one-half of the engine (one bank of six cylinders). The air flow to the remaining engine cylinders was metered with an ASME flow nozzle installed in an inlet plenum chamber.

Instruments appropriate to diesel engine testing were used for the measurement of gaseous emissions. The concentration of unburned hydrocarbons in the exhaust stream was monitored using a heated flame ionization detector. Non-dispersive infrared analyzers were used for measurement of carbon monoxide and carbon dioxide, and a chemiluminescent analyzer was used to establish levels of nitric oxide and oxides of nitrogen. The oxygen level in the exhaust was monitored using a polarographic analyzer. Schematic diagrams of the components of the emissions instrumentation system are shown in Figures 2-5, 2-6, and 2-7, and descriptions of the individual hardware items are provided in Tables 2-3, 2-4, 2-5, and 2-6. Photographs of the instrument console are provided as Figures 2-8 and 2-9.

The exhaust smoke was measured through the use of a USPHS type opacity meter incorporated in the exhaust system at the boundary of the test cell.

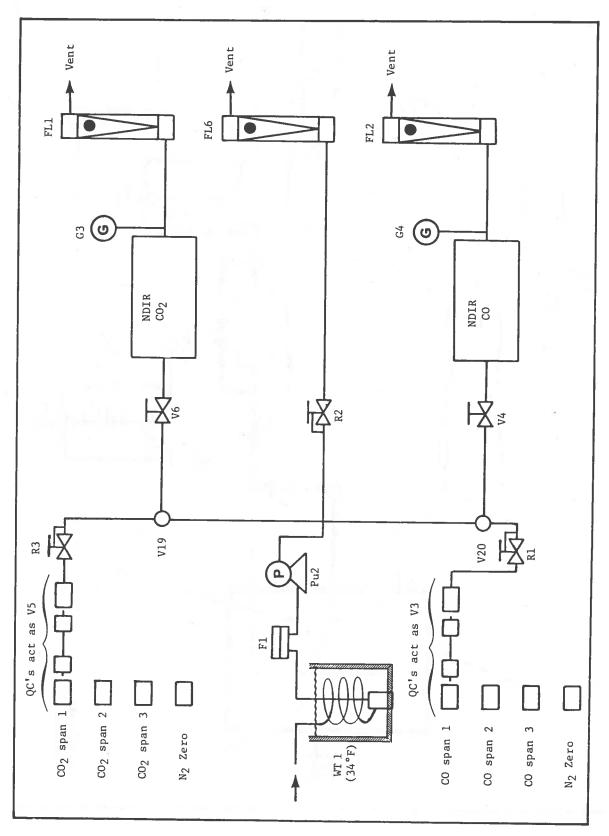


FIGURE 2-6. ANALYZER SYSTEM FOR CARBON MONOXIDE AND CARBON DIOXIDE

TABLE 2-3. INSTRUMENTS AND RANGES ON L-4 EMISSIONS CART

Emission	Detection Method	Instrument	Range	Nominal Concentration
Carbon Monoxide (S/N AIA-23)	NDIR	Horiba OPE-15	1 2 3	0 - 1000 ppm CO 0 - 3000 ppm CO 0 - 6000 ppm CO
Carbon Dioxide (S/N 15395)	NDIR	Horiba OPE-15	1 2 3	0 - 16% CO ₂ 0 - 6% CO ₂ 0 - 2% CO ₂
Oxides of Nitrogen (S/N LOAR-9691-110)	CL	TECO 10	1 2 3	0 - 250 ppm 0 - 1000 ppm 0 - 2500 ppm
Hydrocarbons (S/N 10010)	FID	Beckman 402	1 2 3	0 - 500 ppm C 0 - 1000 ppm C 0 - 5000 ppm C
Oxygen (S/N 271-001)	Polaro- graphic	Beckman OM-11EA	1 2	0 - 25% 0 ₂ 0 - 5% 0 ₂

TABLE 2-5. NDIR CO AND $\ensuremath{\text{CO}}_2$ FLOW SCHEMATIC COMPONENT DESCRIPTION

	- = 1	
Component	Description	Description of Function
Valve	V3	QC's act as CO selector valve V3
Valve	V4	CO flow control valve
Valve	V5	QC's act as CO ₂ selector valve N
Valve	V6	CO ₂ flow control valve
Valve	V19	CO2 sample/calibrate selector
		valve
Valve	V20	CO sample/calibrate selector
	, 1	valve
Gage	G3	CO ₂ instrument pressure
Gage	G4	CO instrument pressure
Casa	P2	CO sample/span pressure
Gage Gage	P3	CO ₂ sample/span pressure
Gage	13	COS sample/span blessare
Regulator	R1	CO span/zero pressure regulator
Regulator	R2	Bypass backpressure regulator
Regulator	R3	CO ₂ span/sero pressure regulator
Flowmeter	FL1	CO ₂ instrument flow
Flowmeter	FL2	CO/CO ₂ bypass flow
Flowmeter	FL6	CO instrument flow
		4240 3 2 2242
Water trap	WT1	Water trap $(34^{\circ}F)$ for CO/CO_2
		instrument
Filter	F1	7.0 cm stainless steel flip top
		filter holder
)E	70.0	0 1
Pump	Pu2	Sample pump

FIGURE 2-8. EMISSION INSTRUMENT CONSOLE, FRONT VIEW

Measurements of exhaust particulate emissions were obtained during some of the tests of the Detroit Diesel engine. The primary tool utilized for this series of measurements was a dilution tunnel of the type shown in Figures 2-2 and 2-10; the dilution of the sample stream is utilized for cooling and mixing prior to the accumulation of a particulate sample. In order to obtain a sample of the exhaust, probes were located in each of the engine exhaust ducts at a point downstream from the turbocharger outlets. A regulating valve was located in each sample line, and the pressure drop across the valve was used as a means of equating the sample line flow rates. single sample representative of both engine exhaust ducts was obtained and supplied to the particulate tunnel. The tunnel had a nominal diameter of eight inches, and air flow rates sufficient for a dilution ratio of 10 to 20 were utilized. Within the tunnel, the exhaust sample was mixed with the dilution air and cooled to 125°F. A metered sample of the diluted stream was obtained and applied to a 47 millimeter Pallflex T60A20 filter that was weighed prior to the beginning of the test. Subsequent weighing, along with the measured flow of the air stream, allowed the calculation of the particulate weight per standard cubic foot of engine exhaust. In general, only one sample filter was used during this test series; the multiple filters shown in Figure 2-10 would be utilized when more elaborate analyses of the particulate matter were required.

2.2 TEST PROCEDURE

The general philosophy that governed the performance of the alternate fuel tests was closely related to the ultimate use of fuel-water emulsions on USCG cutters; thus, it was desired to obtain data that would be representative of boat operation. A sample of engine speeds and loads was obtained for one USCG cutter powered by Cummins engines, and the prop load curve for the engine was calculated. This curve is shown, along with the engine maximum output, in Figure 2-11. The specific test points for consideration during the evaluation program were selected from locations along the prop load curve.

FIGURE 2-11. ENGINE SPEED AND POWER OUTPUT, MAXIMUM HORSEPOWER AND PROP LOAD, CUMMINS ENGINE

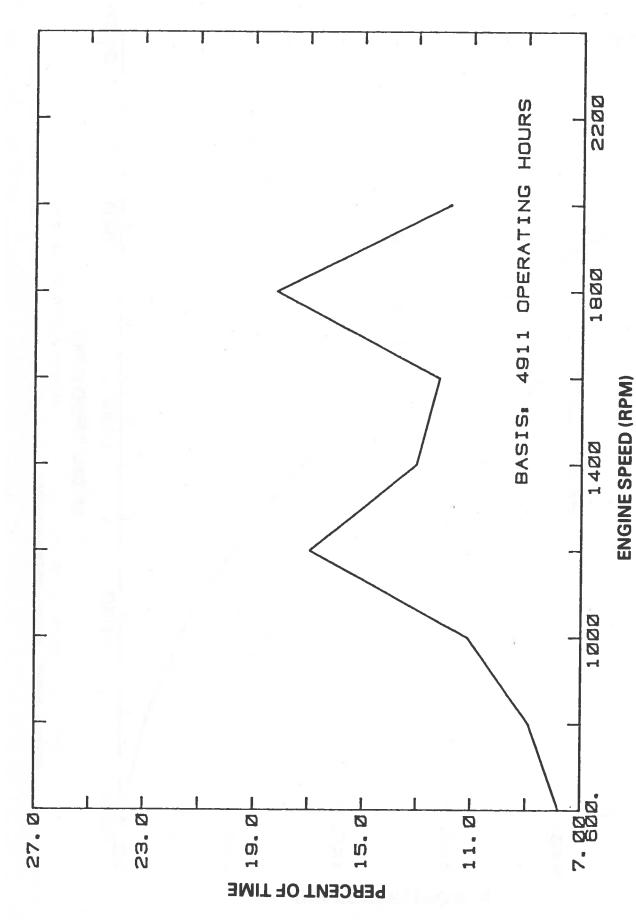


FIGURE 2-12. OPERATING TIME AS FUNCTION OF ENGINE SPEED FOR CUMMINS ENGINE-POWERED CUTTERS

this process involved repeated measurements of the fuel rate. This sequence was then repeated at water concentrations of 10, 15, 20, and 25 percent by volume. Upon completion of the test run at the highest water concentration, the fuel system was flushed with clear diesel fuel, and the baseline test run was repeated. Subsequent days of testing involved repetition of this entire process at other speed and load conditions.

All data were recorded on a permanent record sheet, and individual values were subsequently introduced into a computer data reduction program.

2.3 DATA REDUCTION AND CALCULATIONS

A computer routine was utilized for the calculation of performance quantities and for the comparison of data obtained under the same operating conditions. A set of sample calculations is included in Appendix B. The sample calculations reflect the computations made by the computer program for each test run.

The basic performance quantities, such as horsepower, torque, and specific fuel consumption, were calculated using conventional relationships and constants appropriate to the specific instruments employed. These basic parameters are listed, along with measured quantities, in the tabulations of the results shown in Appendix C.

At the test points described by 1200 rpm and 1800 rpm for the Cummins engine, the test sequence over the spectrum of water concentrations was repeated several times in order to build a statistical basis for the data. Thus, a single point, such as 1200 rpm and 15 percent water, was evaluated on several test days, and three to five individual runs were performed at that point. Since each individual test run included several fuel rate measurements, the flow rate of diesel fuel specified for each run in Appendix C represents an average of several measurements. These averages for each run were then included in an overall average applicable to each test point defined by speed, load, and water concentration.

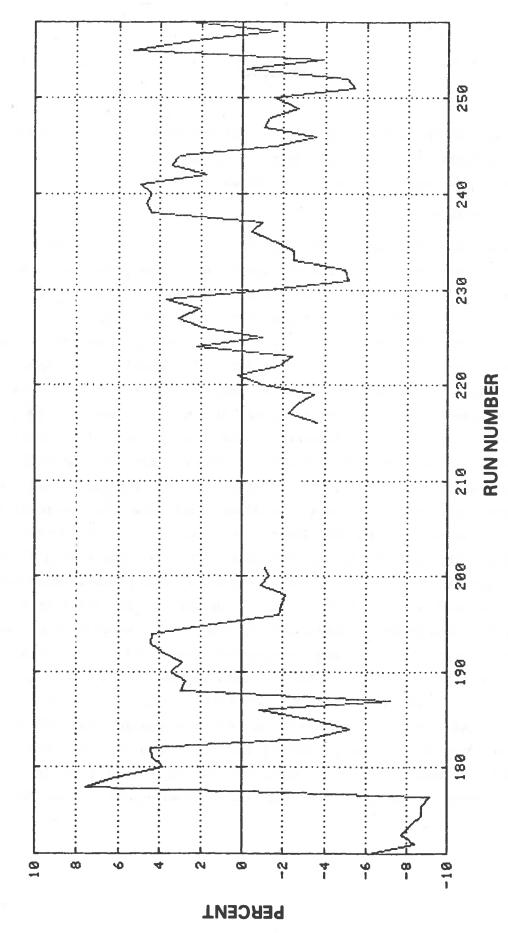
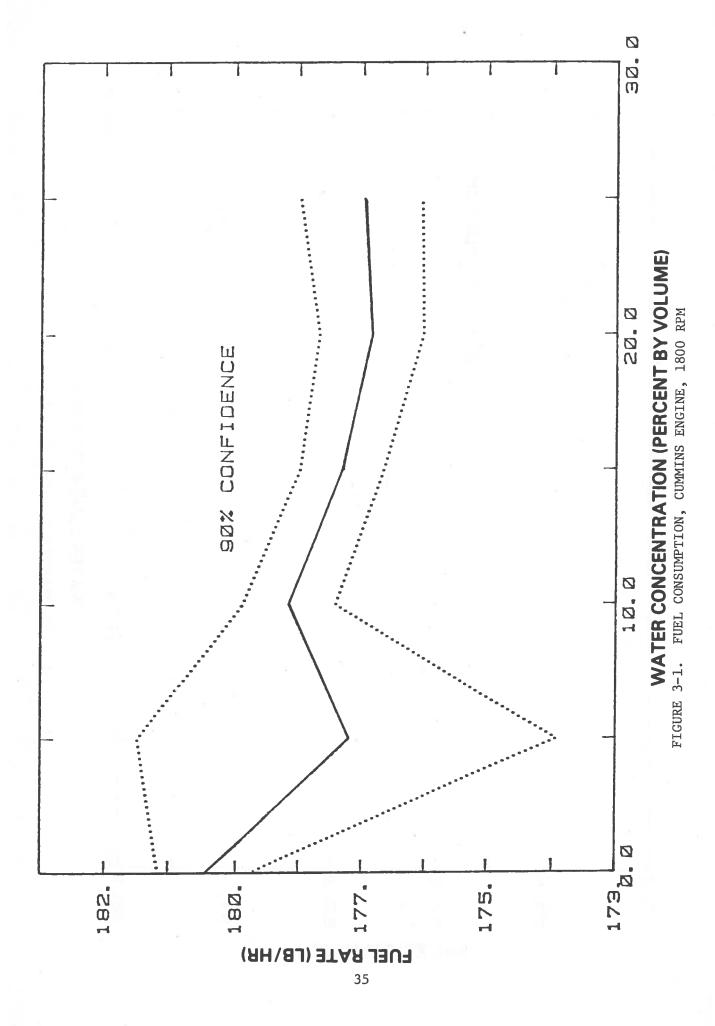



FIGURE 2-14. COMPARISON OF CARBON BALANCE AND MEASURED FUEL-AIR RATIO, CUMMINS ENGINE TESTS

obtained without water addition and with 15 percent water addition in fact represent different populations.

Some data were obtained for evaluation of the effect of water addition on fuel consumption at a speed of 900 rpm and prop load. The results are shown in Figure 3-3, using the same format as that described above. During these tests the reduction in diesel fuel flow was found to be 2.5 percent.

For the Detroit Diesel engine, fuel consumption results were obtained at several points along the prop load curve. At the 1000 rpm test point, the body of data was sufficiently extensive to allow statistical analysis; the results are shown in Figure 3-4. For this case, the general tendency was for the water to increase fuel consumption. The same trend was observed for the tests conducted at other speeds; the results are shown in Figure 3-5. No significant improvement in the rate of diesel fuel consumption could be inferred from these tests.

The configuration of the Detroit Diesel engine did allow an assessment of the effect of injection timing on the performance of water-in-fuel emulsions. Since the timing change can be effected through an injector adjustment, rather than a camshaft change, it was possible to obtain data at several values of the injection timing. Figure 3-6 describes the relationship between the fuel injector adjustment dimension and injection timing; the standard value for the engine was 2.205 inches. Tests were performed for values of the beginning of injection from about 25° BTDC to about 15° BTDC; the specific dimensions and timing angles are shown in Table 3-1. Most of the tests were performed at 1000 rpm, and examination of Figure 3-7 indicates that the timing change did not affect the relationship between fuel consumption and water addition. One series of tests was performed at 1400 rpm (Figure 3-8); the results again indicate that the timing change did not improve the ability of the engine to benefit from the addition of water to the fuel. In both Figure 3-7 and Figure 3-8, the curves designated as baseline are reproduced from Figures 3-4 and 3-5.

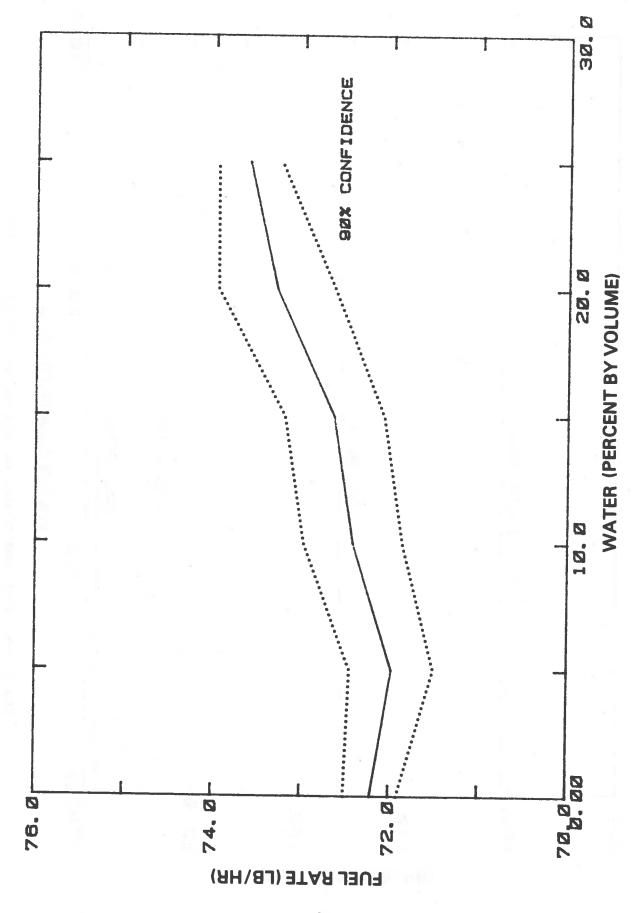


FIGURE 3-4. FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM

TABLE 3-1. DETROIT DIESEL 12V-149TI ENGINE FUEL INJECTION TIMING

Injector Adjustment Dimension (inches)_	Timing of Injection Event (degrees)
2.165	5.5 advance
2.185	2.8 advance
2.205	0
2.223	2.4 retard
2.235	4.1 retard
=	*
	fi .

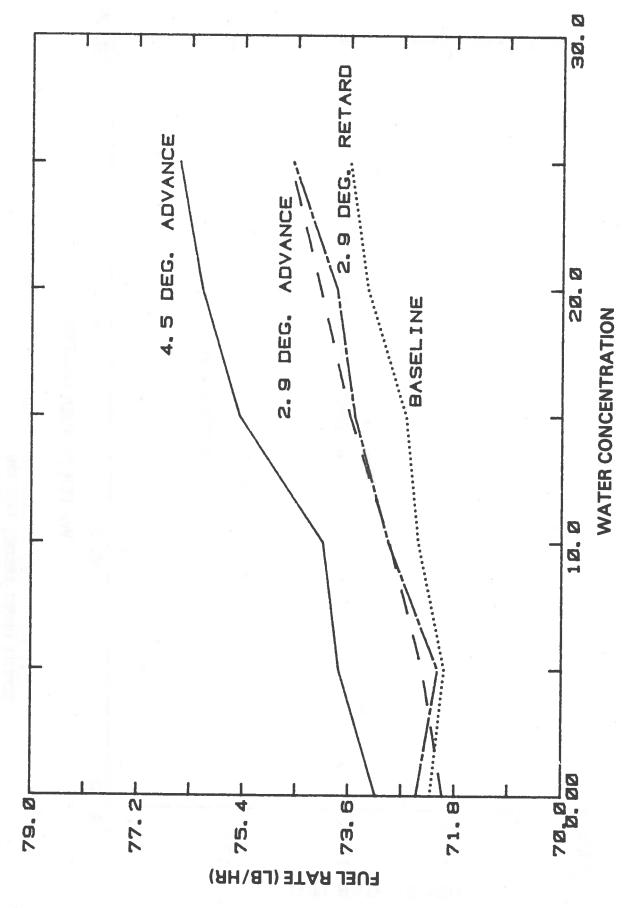


FIGURE 3-7. EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM

3.2 EXHAUST SMOKE

During the performance of the test runs on the Cummins engine, it was observed that the presence of water in the fuel caused a significant percentage reduction in the presence of exhaust smoke. The test results are shown in Figure 3-9 for the test point at 1800 rpm, and in Figure 3-10 for the test run at 1200 rpm. In both cases, it may be observed that the smoke reduction increased as water was added to the fuel. Although the percentage reductions are dramatic, it must be noted that the opacity of the exhaust stream was quite low even without water addition. Therefore, the effect of water addition on smoke reduction is questionable from a practical viewpoint, although the magnitude of the effect is statistically significant.

3.3 PARTICULATE EMISSIONS

During some of the Detroit Diesel engine tests, measurements were made of the particulate emissions using the procedures outlined in Section 2. A sample of the exhaust was obtained from each of the engine exhaust pipes, diluted with air, and passed through a pre-weighed filter. The difference in filter weights, combined with gas flow measurements, provided an assessment of the particulate loading per standard cubic foot of exhaust.

The results obtained from the particulate measurements are shown in Figures 3-11 and 3-12 as a function of both water concentration and engine speed. It may be observed from the data presented that the addition of water to the fuel has no positive effect on the particulate emissions.

3.4 OXIDES OF NITROGEN

The potential of water addition in terms of reduction of emissions of oxides of nitrogen from an operating engine was of particular interest at the outset of the program; other investigators have suggested that the use of water-in-fuel emulsions can provide a significant change in the emission levels of this particular contaminant.

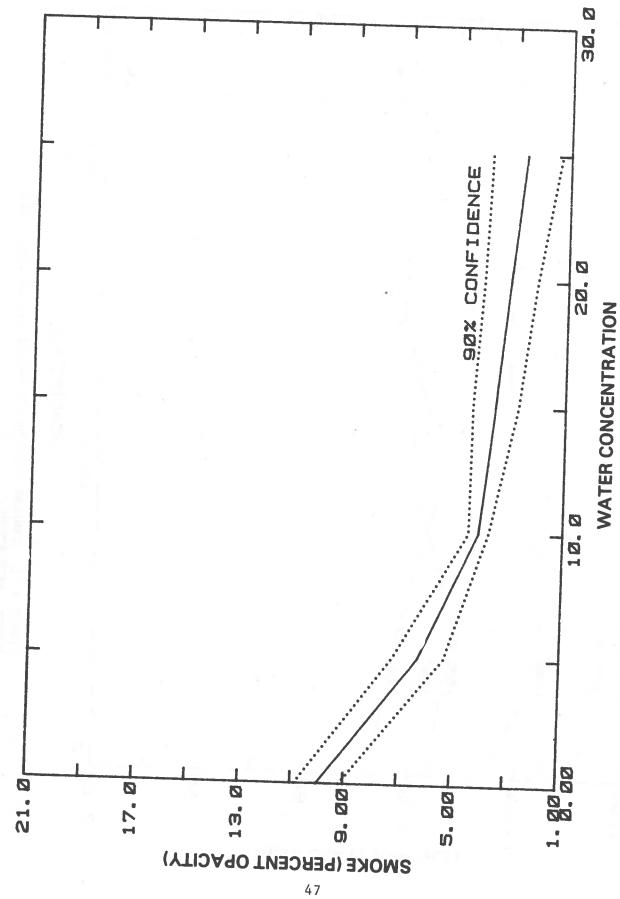


FIGURE 3-10. EXHAUST SMOKE, CUMMINS ENGINE, 1200 RPM

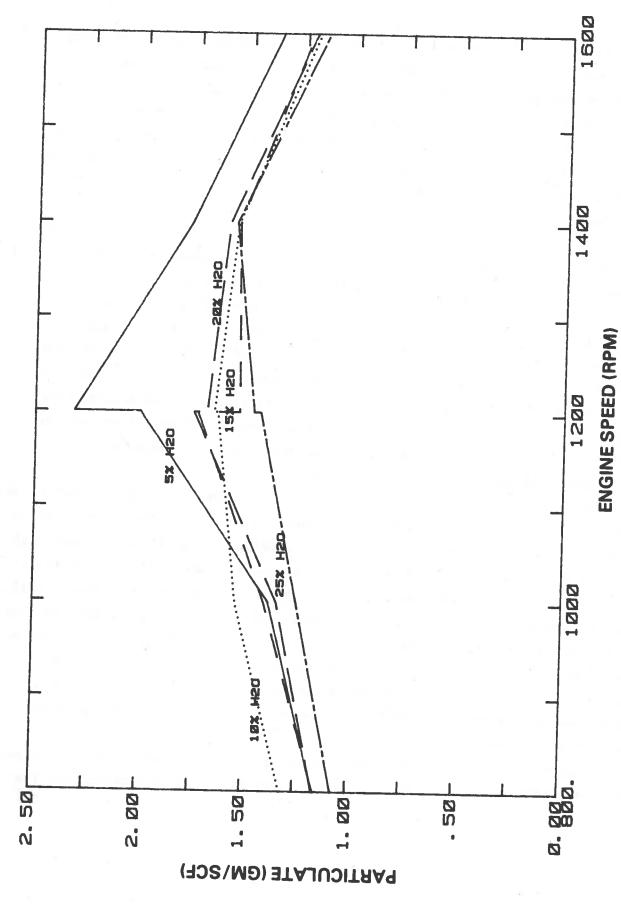
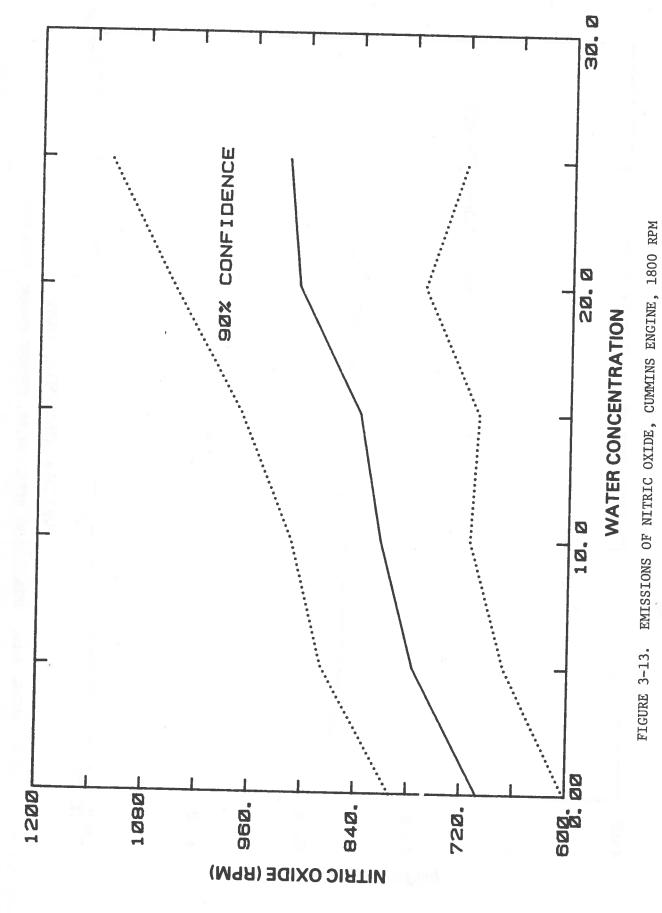
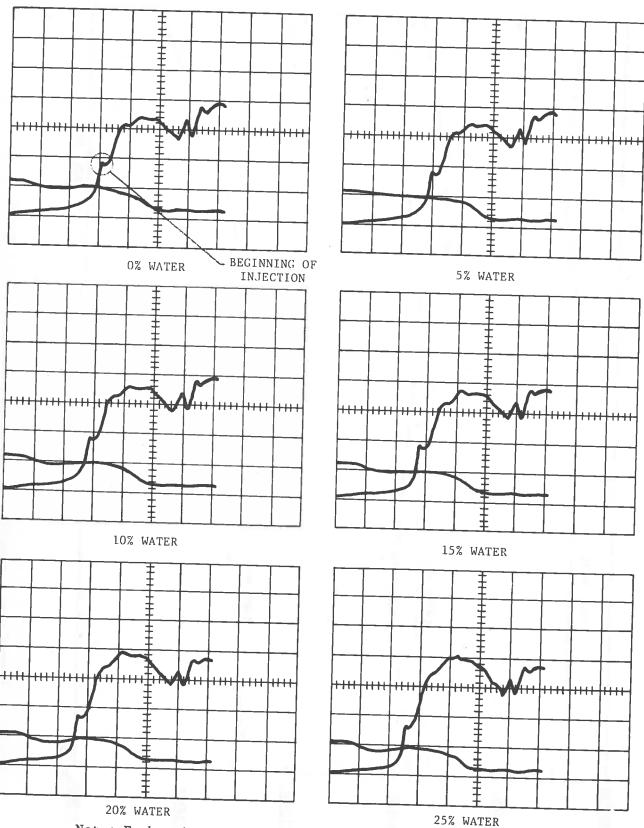




FIGURE 3-12. EXHAUST PARTICULATE EMISSIONS, DETROIT DIESEL ENGINE, BASELINE DATA 5, 10, 15, 20, AND 25 PERCENT WATER

Note: Each major vertical division represents ten degrees. FIGURE 3-15. TIMING OF THE BEGINNING OF FUEL INJECTION, CUMMINS ENGINE

Cummins engine. The emissions increase as the load increases; this result is the usual consequence of increased cycle temperatures. Although some reductions seem to occur at low rpm (800 and 1000) and high water concentrations, in general, the addition of water does not appear to be effective for the reduction of emissions of oxides of nitrogen at any concentration examined during these tests. The explanation used for the lack of influence of water addition on emissions of oxides of nitrogen for the Cummins engine is not applicable in this case; increased liquid quantities do not affect the timing of the beginning of injection for the Detroit Diesel engine.

Two mechanisms may be postulated for the control of emissions of oxides of nitrogen through water addition. First, the water tends to absorb energy from the combustion process, and lower peak cycle temperatures might be attained. In addition, the presence of water tends to increase the ignition delay period; the net effect in this case would be a retarded combustion event. Since both cycle temperature reduction and retarded injection timing have previously been demonstrated as effective control techniques, it would appear that water addition should provide the desired results. However, the data obtained during this program indicate that, if the mechanisms described were operative, they were not sufficient in magnitude to provide effective control. In other words, at the water concentration levels employed and at the engine power levels utilized, the ignition delay increase and the cycle temperature decrease were not sufficient to cause an appreciable decrease in the emissions of oxides of nitrogen.

3.5 UNBURNED HYDROCARBONS

Unburned hydrocarbons are another exhaust contaminant of particular interest in engine exhaust streams. In general, it has been found that the presence of water in the fuel tends to increase the occurrence of unburned hydrocarbons in the exhaust due to a reduction in the cycle temperatures. The hydrocarbon results for the Cummins engine are shown in Figures 3-17 and 3-18 for the test points at 1800 rpm and 1200 rpm. The effect of water addition

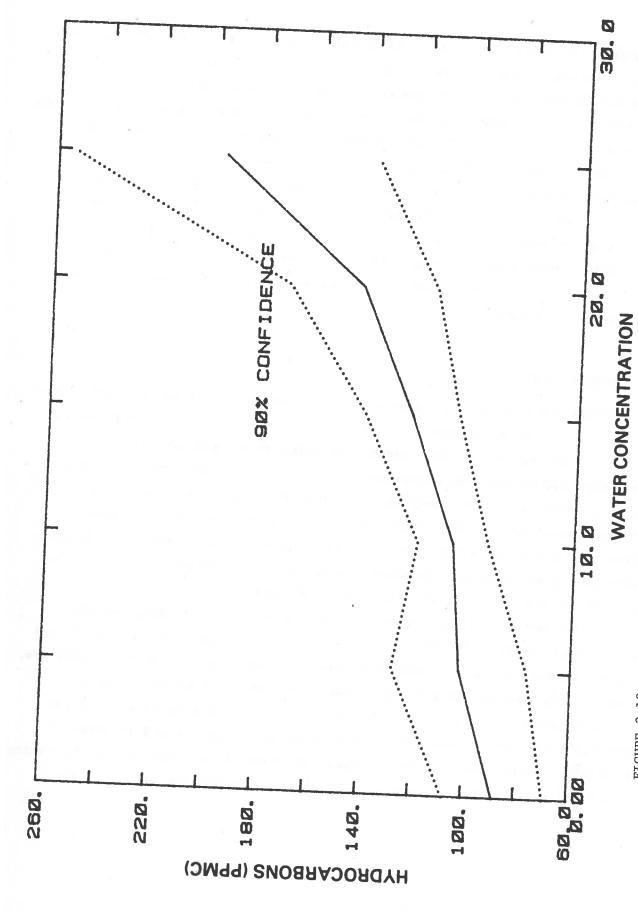
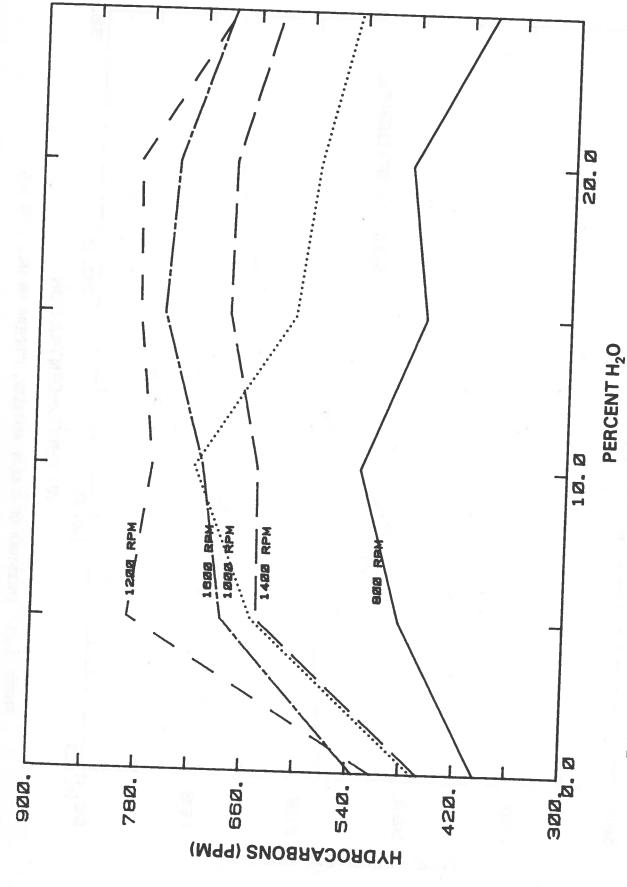



FIGURE 3-18. EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1200 RPM

EMISSIONS OF UNBURNED HYDROCARBONS, DETROIT DIESEL ENGINE, FIGURE 3-19. FIVE SPEEDS

FIGURE 3-21. EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1200 RPM

addition of water on the ignition delay might be sufficient to cause increased emissions of carbon monoxide, although no effect on emissions of hydrocarbons and oxides of nitrogen was discernible.

It may be more appropriate to examine the carbon monoxide emissions from the Detroit Diesel engine in the context of mixing within the engine cylinder. During the 800 rpm tests, the fuel rate was quite small at the prop load condition. The addition of an inert component to the fuel stream would tend to diversify the jet of injected fuel with respect to the interior of the cylinder; the local fuel-air ratio in the vicinity of a fuel droplet would tend to become leaner. Since successful combustion depends upon ignition at points within the chamber and subsequent mixing of burning and unburned materials, it is possible that the addition of water allowed portions of the charge to escape complete inflammation. At the higher fuel rates, this effect of water addition would be reduced, and the effect of water addition on carbon monoxide emissions would be reduced. This argument does not explain the high carbon monoxide levels at the 1600 rpm test point; the baseline carbon monoxide emissions at that point seem uncharacteristically high. Since the fuel-air ratio at this point is well within customary limits for good combustion, poor mixing of air and fuel could be the cause of poor combustion. It is possible that the injection of an increased volume of liquid allowed improved penetration of the fuel injection jet, and increased mixing caused a reduction in carbon monoxide levels to values typical of lower speeds.

3.7 CARBON DIOXIDE AND OXYGEN

The emissions of carbon dioxide and oxygen are recorded in the test data shown in Appendix C. These substances, although not regulated contaminants, are of interest in the generalized context of engine testing. The carbon dioxide measurement is particularly important to carbon balance fuel-air ratio calculations, and results for these estimates have been presented in Figure 2-14.

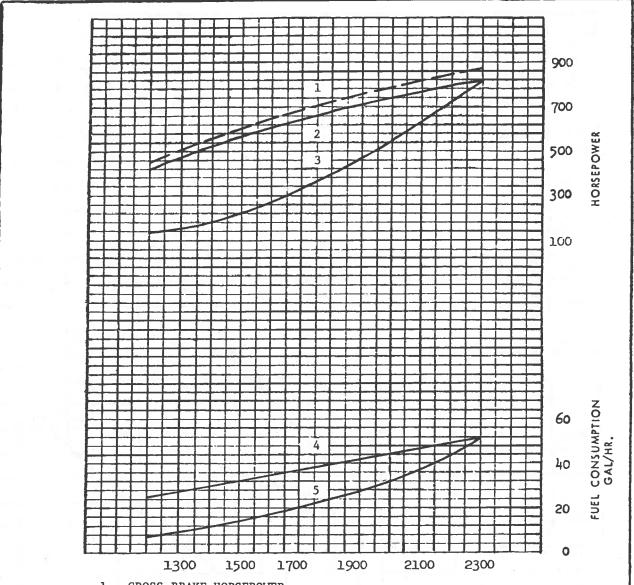
The fuel consumption tests for the Cummins engine suggested that diesel fuel savings averaging two to three percent could be obtained using emulsion concentrations of fifteen to twenty percent water. No significant fuel saving could be associated with the use of emulsions in the Detroit Diesel engine. Since the laboratory test conditions were generally more favorable than those that would prevail in actual marine use, it is necessary to conclude that the use of water-in-fuel emulsions would not be beneficial to USCG operations.

Measurements of exhaust smoke were performed for the Cummins engine, and particulate emissions were measured for the Detroit Diesel engine. Although dramatic reductions in exhaust plume opacity were observed, the smoke levels for engine operation without water addition were not excessive. Thus, although the data suggest that water—in—fuel emulsions could be used for smoke control, the observation of excessive smoke at any operating point other than full rated load is probably indicative of defective engine components or poor adjustment of engine systems, and smoke control should be effected through correction of those conditions. The addition of water to the fuel did not have a significant effect on the emission of exhaust particulates, although the Detroit Diesel engine was generally insensitive to the presence of water at all test points.

In terms of gaseous exhaust emissions, the expected effects of water addition were not generally observed. The addition of water to the fuel should yield an increase in the emissions of oxides of nitrogen. Although some trends toward these effects could be observed in the test results, no definitive conclusions can be drawn concerning the effect of water addition on emissions.

From a theoretical viewpoint, the addition of water to diesel fuel can result in a mixture which would exhibit unique properties at the onset of combustion. Specifically, it is believed that the vaporization of the water phase causes a "micro-explosion" that is capable of shattering a fuel droplet; the result of this process would be improved mixing of fuel and air and enhanced combustion quality. In addition to improving combustion in a diesel engine, the presence of water in the fuel should lower combustion temperatures, and

significant changes in engine performance. 11 Such water concentrations lie beyond the range of practical interest for USCG operations.


Both the data obtained during this study and the results reported by other investigators indicate that the effect of water-in-fuel emulsions on engine performance is dependent upon the engine system configuration. Although inferences can be drawn from the body of accumulated information, it is not possible, as yet, to predict the response of an untested engine to the addition of water to the fuel. Additional information must be obtained to define the specific mechanisms which are operative and the effect that these mechanisms exert on the combustion process.

It is possible that further investigation would reveal significant differences between techniques for the production of water-in-fuel emulsions, both in the microstructure of the emulsion product and in the effect on engine operation. Aside from the assurance of a stability sufficient for transit through the fuel system, this study did not address the details of emulsion production. An investigation of the effects of different production techniques, if attempted, should be closely coupled with a study designed to reveal the dominant mechanisms of combustion process control.

APPENDIX A

FUEL PROPERTIES AND ENGINE DATA

TABLE A-2. MARINE ENGINE PERFORMANCE CURVE

- 1. GROSS BRAKE HORSEPOWER.
- NET HORSEPOWER WITH REVERSE REDUCTION GEAR, GENERATOR AND RAW WATER PUMP.
- 3. HYPOTHETICAL PROPELLER POWER CURVE (3.0 EXPONENT).
- 4. FUEL CONSUMPTION FOR NET SHAFT HORSEPOWER.
- 5. FUEL CONSUMPTION FOR HYPOTHETICAL PROPELLER.

The above curves are based on 500 ft. altitude (29.38" HG.) and 85°F intake air temperature; fuel consumption curves are based on fuel weight of 7.0 lb/US gal. Manufacturer's data for Model VT12-900M engine (turbocharged-aftercooled, 12 cylinders, 1710 cu. in. displacement, with 5-1/2 in. bore and 6 in. stroke, military version).

APPENDIX B SAMPLE CALCULATIONS

During each individual test run, engine data were entered on a permanent record sheet. The data items that were recorded are listed in Table B-1 along with the numerical values associated with run number 235 for the Cummins engine; the sample calculations which follow will be based upon the numerical values shown.

The differences between the data items recorded for the Cummins and Detroit Diesel engines were minor. The Detroit Diesel engine was equipped with four turbochargers; therefore, the number of turbocharger-related temperatures and pressures was doubled by comparison with the Cummins engine. Also, air box pressure, rather than fuel rail pressure, was recorded for the Detroit Diesel engine.

Recorded engine test data were entered into a computer program, and several calculation routines were executed. The following discussion describes the details of the calculation procedure, and the numerical values for Cummins run number 235 are presented as an example.

Humidity Calculations

The air supplied to the engine contained some moisture, and the further addition of water to the fuel affected the exhaust moisture. The following equation was used for the calculation of the saturation vapor pressure of water: 12

$$P_{B} = \exp \left[B \ln T + \sum_{i=0}^{9} F_{i} T^{i-2} \right], \qquad (1)$$

where P_{B} = saturation vapor pressure, pascals

T = temperature, °K

B = -12.150799

 $F_0 = -8.49922 \times 10^3$

 $F_1 = -7.4231865 \times 10^3$

 $F_2 = 96.1635147$

TABLE B-1. TEST DATA, continued

Data Item	Units	Value For Cummins Run 235
Boost Pressure (Right)	psi	9.9
Boost Pressure (Left)	psi	10.0
Turbine Inlet Pressure (Left)	psi	9.0
Turbine Inlet Pressure (Right)	psi	10.0
Inlet Vacuum	In. H ₂ O	13.9
Exhaust Pressure (Right)	Inches - Hg	0.2
Exhaust Pressure (Left)	Inches - Hg	0.5
Pressure Drop, LFE Filter	In. H20	5.40
Pressure Drop, Laminar Flow Element	In. H ₂ 0	4.25
Exhaust Temperature, Cylinder IR	°F	905
Exhaust Temperature, Cylinder 2R	°F	890
Exhaust Temperature, Cylinder 3R	°F	897
Exhaust Temperature, Cylinder 4R	°F	873
Exhaust Temperature, Cylinder 5R	°F	890
Exhaust Temperature, Cylinder 6R	°F	898
Exhaust Temperature, Cylinder 1L	°F	939
Exhaust Temperature, Cylinder 2L	°F	913
Exhaust Temperature, Cylinder 3L	°F	880
Exhaust Temperature, Cylinder 4L	°F	882
Exhaust Temperature, Cylinder 5L	° _F	892
Exhaust Temperature, Cylinder 6L	° _F	904
Water Flowmeter 1, Glass Float	mm	150+
Water Flowmeter 2, SS Float	mm	115
Water Flowmeter 3, SS Float	mm	0
Fuel Pressure, Tank	psi	20
Pressure, Emulsifier Inlet	psi	100
Pressure, Fuel at Engine	psi	1.6
Water Supply Pressure	psi	65
Emission Concentrations		
Hydrocarbons	ppmc	56
Carbon Monoxide	ppm	148

$$F_3$$
 = 2.4917646 x 10⁻²
 F_4 = -1.3160119 x 10⁻⁵
 F_5 = -1.1460454 x 10⁻⁸
 F_6 = 2.1701289 x 10⁻¹¹
 F_7 = -3.610258 x 10⁻¹⁵
 F_8 = 3.8504519 x 10⁻¹⁸
 F_9 = -1.4317 x 10⁻²¹.

Application of this equation to the dry and wet bulb temperatures for run 235 yields the following:

$$P_{WB}$$
 = 3168.62 pascals (at 298.15°K)
 P_{DB} = 4382.41 pascals (at 303.71°K).

The vapor pressure at the wet bulb temperature was obtained from "Ferrels equation",

$$P_{V} = P_{WB} - 0.000660 (T_{DB} - T_{WB}) P_{BARO} [1 + 0.0015 (T_{WB} - 273.15)],$$
 (2)

where P_V = vapor pressure, pascals

 T_{DB} = dry bulb temperature, °K

 T_{WB} = wet bulb temperature, °K

 $P_{\rm BARO}$ = barometric pressure, 98307.2 pascals.

Using this relationship, the vapor pressure was found to be

$$P_V = 2797.50 \text{ pascals}.$$

The relative humidity, by definition, was calculated as:

$$RH = \frac{P_{V}}{P_{DB}} \times 100 = 63.8\%, \qquad (3)$$

and the specific humidity was calculated from:

TABLE B-2. WATER FLOWMETER CURVE COEFFICIENTS

	Meter 1 Glass Float	Meter 1 Stainless Steel Float	Meter 2 Stainless Steel Float
w_1	0.1124503×10^2	-0.3398302 x 10 ¹	0.1701297 x 10 ¹
W ₂	-0.1180202×10^{1}	0.8969192	0.7123502
₩3	0.6830435 x 10 ⁻¹	0.7994353×10^{-1}	0.1005951
W4	$-0.7587800 \times 10^{-3}$	$-0.1017442 \times 10^{-2}$	$-0.1434834 \times 10^{-2}$
₩5	0.3808533×10^{-5}	0.5968658×10^{-5}	0.8912745×10^{-5}
W ₆	$-0.6943106 \times 10^{-8}$	-0.1340098 x 10 ⁻⁷	$-0.2025536 \times 10^{-7}$

K = dynamometer constant.

Correction factors for the observed engine performance were developed on the basis of atmospheric conditions. The dry barometric pressure was calculated from

$$P_{B, DRY} = P_{BARO} - \frac{P_{V}}{K_{P}} = 28.20 \text{ in. Hg,}$$
 (9)

where $P_{B, DRY}$ = dry barometric pressure, in. Hg K_P = 3386.4 pascal/in. Hg.

the value of the correction factor was then obtained

$$c_{D} = \left(\frac{29.00}{P_{B, DRY}}\right) \left(\frac{T_{test}}{545}\right)^{0.7}, \tag{10}$$

where C_D = correction factor t_{test} = intake air absolute temperature, °R.

For the specific test case,

$$C_D = \left(\frac{29.00}{28.20}\right) \left(\frac{90 + 460}{545}\right)^{0.7} = 1.035,$$

therefore, the corrected horsepower was

$$CBHP = (431)(1.035) = 446.$$

The mean effective pressure is a useful parameter that describes engine output per unit area of piston surface. In the calculation routine, values were obtained from the relationship

bmep =
$$\frac{K_{m} (CBHP)}{(D) (N)}$$
 = 115, (11)

where PCF = pressure correction factor dp filter = pressure drop across filter, inches of water.

The correction for temperature was obtained from a curve fitted to data supplied with the instrument (Table B-3). 14

$$TCF = X_1 + X_2(T_1) + X_3(T_1)^2 + X_4(T_1)^3 = 0.937,$$
 (14)

where TCF = temperature correction factor

T_i = inlet air temperature, °F

 $X_1 = 1.28345$

 $X_2 = -0.0048289$

 $X_3 = 1.227782 \times 10^{-5}$

 $X_A = -1.618912 \times 10^{-8}$.

The air mass flow rate was then established in terms of air density at the calibration condition $(70^{\circ}F)$ as:

$$AMF = (CFM)(PCF)(TCF)(\rho s) = 79.2,$$
 (15)

where AMF = air mass flow, pounds per minute

 ρs = density of air at 70°F and 29.92 inches of mercury, pounds per cubic foot.

The air flow rate was adjusted using the previously calculated moisture concentration:

$$DAMF = AMF (1.0 - H), \qquad (16)$$

where DAMF = mass flow rate of dry air, pounds per minute

H = moisture, pounds water per pound dry air.

For the example calculation,

DAMF =
$$79.2 (1.0 - 0.0182) = 77.8$$
.

Fuel Flow Calculations

During each test run, several measurements of the mass flow rate of diesel fuel were performed. The determinations were made by observing the time required for consumption of a known mass of fuel from a container on a scale; the fuel masses were varied to permit time measurements on the order of two minutes. Each fuel mass flow rate was calculated, and an average was obtained. For the case of Cummins run 235, the following data apply:

Observation	1_	2	_3	_4
Fuel mass, pounds	5.0	5.0	5.0	5.0
Time, seconds	102.3	102.6	102.4	102.7
Fuel rate, pounds per hour	175.95	175.44	175.78	175.27
Average Fuel Rate	= F =	175.61 pour	nds per ho	ur.

The brake specific fuel consumption was calculated from the average fuel rate and the corrected brake horsepower:

BSFC =
$$\frac{F}{CBHP}$$
 = 0.3939 pounds fuel per brake horsepower hour. (17)

As a consequence of the fuel and air flow determinations, the observed fuelair ratio was calculated:

$$\left(\frac{F}{A}\right)_{MEAS} = \frac{F}{(DAMF)(60)} = 0.0376. \tag{18}$$

In order to obtain the fuel volume flow rate, a hydrometer measurement of the API gravity of the fuel was obtained and corrected to $60^{\circ}F$ through the use of ASTM IP Table 5^{15} . The value at $60^{\circ}F$ was then used in the context of ASTM IP Table 3^{15} to determine the specific gravity of the fuel; for the test case, the specific garvity of the fuel at $60^{\circ}F$ compared to water at $60^{\circ}F$ was:

$$SG_{60/60} = 0.8483$$
,

$$V_F = \frac{(F)(A)}{(\rho_{F+})(B)} = 1591,$$
 (21)

where V_F = fuel volume flow rate, cc per minute

A = conversion factor, 3785 cc per gallon

B = conversion factor, 60 minutes per hour.

As a result of the fuel volume flow determination, the water concentration in the fuel mixture was calculated:

$$W = \frac{WFR}{WFR + V_F} \times 100 = 19.4\%,$$
 (22)

where W = water concentration, percent

WFR = water flow rate, cc per minute

 V_F = fuel flow rate, cc per minute.

In order to facilitate subsequent calculations, the water content of the exhaust was modified to include the water introduced with the fuel along with the water entrained in the inlet air. Assuming a density of one gram per cubic centimeter for water,

$$WF = \frac{WFR}{453.6} = 0.8466, \qquad (23)$$

where WF = water flow rate, pounds per minute
WFR = water flow rate, cc per minute,

then,

$$PR = \frac{WF}{DAMF} = 0.0109, \qquad (24)$$

where PR = moisture added with fuel, pounds water per pound dry air

and

calculation was for the stoichiometric fuel-air ratio:

$$\left(\frac{F}{A}\right)_{\text{STOICH}} = \frac{M_{\text{C}} + (\text{HCR})}{138.18} \left(1 + \frac{\text{HCR}}{4}\right) = 0.0691.$$
 (28)

The equivalence ratio was then calculated from

$$\phi = \frac{\left(\frac{F}{A}\right)_{\text{MEAS}}}{\left(\frac{F}{A}\right)_{\text{STOICH}}} = 0.544. \tag{29}$$

For convenience, the following ratios were calculated:

$$R_1 = \frac{HCC}{10^6}$$

$$R_2 = \underline{CO}$$

$$R_3 = \frac{CO_2}{10^2} ,$$

CO = measured carbon monoxide concentration, parts per
million

 CO_2 = measured carbon dioxide concentration, percent.

The wet-to-dry correction factor was then obtained from:

$$K_{W} = \frac{1}{1 + \left[\frac{HCR(R_{2} + R_{3}) + \frac{2Y'}{\phi}(R_{1} + R_{2} + R_{3})(1 + \frac{HCR}{4})}{2 + \frac{R_{2}}{(R_{3})(K)}}\right]} = 0.929, \quad (30)$$

$$D = \frac{\left(\frac{F}{A}\right)_{calc} - \left(\frac{F}{A}\right)_{meas}}{\left(\frac{F}{A}\right)_{meas}} \quad (100) = -4.9, \quad (35)$$

where D = percentage difference between measured and calculated
 fuel-air ratios.

According to reference (12), the absolute value of D should be less than 10 for most engine operating conditions.

The measured concentrations of nitric oxide were corrected for humidity using relationships described in reference (12). The calculation of the correction factor depends upon inlet air temperature, exhaust stream humidity, and the measured dry fuel-air ratio:

$$K_{NO_X} = \frac{1}{1 + A(G - 75) + B(T - 85)} = 1.19,$$
 (36)

where A =
$$0.044 \left(\frac{F}{A}\right)_{meas}$$
 - 0.0038
B = $-0.116\left(\frac{F}{A}\right)_{meas}$ + 0.0053

G = humidity in grains per pound dry air

 $= (7000)(H^{\dagger})$

T = inlet air temperature, °F,

then

$$DNO = (NO)(K_{NO_{x}}), \qquad (37)$$

where DNO = corrected nitric oxide concentration NO = measured dry nitric oxide concentration.

The above correction is based upon the use of a water-ice bath for condensation of the water vapor present in the exhaust stream. The specific instrument used for this program employed a methanol-dry ice bath for this purpose; the bath temperature was about -150°F. Thus, an additional correction for moisture removal was used:

 $^{M}NO_{x}$ = molecular weight of NO_{2} = 46.0 ^{M}C = molecular weight of carbon ^{M}H = molecular weight of hydrogen.

The specific emissions were calculated on the basis of the corrected brake horsepower:

$$S_{HC} = \frac{W_{HC}}{CBHP} = 0.14 \tag{42}$$

$$S_{CO} = \frac{W_{CO}}{CBHP} + 0.69 \tag{43}$$

$$S_{NO_X} = \frac{W_{NO_X}}{CBHP} = 6.59, \qquad (44)$$

where S_{HC} , S_{CO} , S_{NO_X} = specific emissions, grams per brake horsepower hour.

Statistical Calculations

During the Cummins engine tests, statistical procedures were used to evaluate the confidence in certain measured results and to assess the probable effect of the addition of water to the fuel. The performance of the statistical tests required that test procedures be repeated several times under the same conditions in order to provide suitable samples.

As an example of the statistical techniques, two sets of test data will be considered. Table B-4 contains a list of all of the diesel fuel consumption rates observed for the Cummins engine with no water addition and with 20 percent water addition. Sample 1, for no water addition, was regarded as a sample of the entire population of test runs that could be performed at the specified engine setting without water addition. Similarly, Sample 2 was considered to be representative of all of the test runs that might be conducted at the specified engine condition with 20 percent water addition.

The mean of each sample was calculated according to the relationship

$$\bar{X} = \frac{1}{\eta} \sum_{i=i}^{\eta} X, \qquad (45)$$

where \bar{X} = sample mean

 η = number of items in sample

X = value of each fuel rate in the sample.

The calculated mean value for each sample is shown in Table B-4.

The standard deviation for each sample was calculated according to:

$$S = \sqrt{\frac{\sum X^2 - \frac{(\sum X)^2}{\eta}}{n-1}}, \tag{46}$$

where the individual terms are defined above. The standard deviation for each sample is also shown in Table B-4.

One statistical test was applied to each sample as an individual entity. The Student's t-distribution was used to attach a confidence band to each sample mean. Values of the t-distribution are shown in Table B-5. 16 For a desired confidence level, say 90 percent, it can be argued that the true population mean lies within the band defined by

$$\bar{X} \pm t_{0.95} (\eta - 1) \sqrt{\frac{S}{n}}$$
, (47)

where the values of t are obtained from Table B-5. For the example data, the values of the upper and lower limits of the 90 percent confidence band are shown in Table B-4. Thus, it is possible to state with 90 percent confidence that the fuel rate for an additional test at 1200 rpm without water addition would lie between 54.86 and 55.54 pounds per hour.

Since the effect of water addition is desired, it is also desirable to employ a test that compares the two samples. It is possible that the two samples selected are a part of the same population; in that case no definite statement could be made concerning the effect of water addition. The goal of the second statistical procedure is a confidence level for the statement that the means of the two populations (without and with water addition) are different.

As a first step, it was assumed that the two population means were equal. The pooled standard deviation was calculated:

$$S = \frac{(\eta_1 - 1) S_1^2 + (\eta_2 - 1) S_2^2}{\eta_1 + \eta_2 - 2} = 0.3278, \tag{48}$$

where η = sample size

S = sample standard deviation,

then

$$S_{X_1}^- - \bar{X}_2 = \sqrt{\frac{S^2}{\eta_1} + \frac{S^2}{\eta_2}} = 0.3194,$$
 (49)

and

$$T = \frac{\bar{X}_1 - \bar{X}_2}{S\bar{X}_1 - \bar{X}_2} = 4.2272, \qquad (50)$$

now, if

$$T \leq -t(1 - \frac{\alpha}{2})(\eta_1 + \eta_2 - 2),$$
 (51)

or

$$T \ge t(1 - \frac{\alpha}{2})(\eta_1 + \eta_2 - 2),$$
 (52)

where α is the probability of rejecting a true hypothesis, then the hypothesis of equal sample means can be rejected. For the present case, using Table B-5,

$$T > t$$
(.995)(12),

and

$$1 - \frac{\alpha}{2} = 0.995$$
,

imply that $\alpha = 0.01$.

Thus, it is possible to state with 99 percent confidence that the two samples represent different populations and that significance can be attached to the difference between the means.

TABLE C-1. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, BASELINE

DYNAMOMETER CONSTANT: 3000 H/C RATIO: 1.78	API	GRAVITY	OF DIESE	L FUEL:	35.3 AT	60F	
KUN NUMBER NOM. WATER PCT.	259 . 0 .	262. 0.	268. 0.	269. 0.	275. 0.	276 . 0 .	282. 0.
ENGINE SPEED RPM OBS. TORQUE LB-FT	900. 257.	900. 257.	900. 257.	900. 257.	900. 257.	900. 257.	900. 257.
BAR. PRESS. IN-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CORR. BHP HP CORR. BMEP PSI	28.95 83. 69. 49. 44.9 23.1	29.14 77. 66. 56. 44.1 22.7	29.12 87. 66. 32. 44.8 23.1	29.32 78. 66. 53. 43.9 22.6	29.25 91. 68. 30. 44.8 23.0	29.30 77. 61. 39. 43.6 22.5	29.21 89. 65. 26. 44.6 23.0
FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT: BSFC LB/BHP-HR AIR FLOW LB/MIN	25.12 0.0 0.0 5590 26.1	25.11 0.0 0.0 .5692 26.5	24.73 0.0 0.0 0.0 .5516 26.0	25.52 0.0 0.0 .5817 26.3	25.24 0.0 0.0 .5635 26.1		24.85 0.0 0.0 .5570 26.1
COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F OIL SUMP DEG F FUEL SUMP DEG F FUEL RETURN DEG F FUEL COOLER DEG F F FUEL COOLER DEG F F FUEL COOLER DEG F F F F F F F F F F F F F F F F F	111 937014474510939364895012 888993188858007742985331883523457 111 937014474510939364895012 941111447 5445454545454	11889309750127805947391607047606 7888930975799673187522682532256 1144 54454545454554	117466430128995503960 1177439996438995503960 544584545454554	111975293486888332436305478327078111 95293486883332436305478327078111 95293486883332436305478327078111 952934868833324363054783227078111	442006751720571111099394441111114439964421111109939444444454444454444454	11305051.6929.87592.69 5441029.875323245 5445929.875323249 5445929.87592.69	5445454544554
OIL PRESSURE PSI RAIL PRESSURE PSI BOOST (R) PSI UNLET VAC. (R) IN-H20 EXH. PRESS. (R)PSI TUKB. IN. (R) IN-HG TURB. IN. (L) IN-HG	485 1200000 20030	50.05920000 200.00 200.00 200.30	486 1200000 20030	486 1200000 20020	48.05500 1.500 0.00 0.00 200.1	50.0551 12.10 00.00 00.0 200.1	49. 12.00000 12.0000 00.00 200. 103.

TABLE C-3. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 10% WATER $\,$

DYNAMOMETER CO H/C RATIO: 1.7	NSTANT: 3000	API	GRAVITY	OF DIESEL	. FUEL:	35.3 AT	60F
RUN NUMBER NOM, WATER PCT	1	261. 10.	264. 10.	271 10:	278. 10.		
ENGINE SPEED OBS. TORQUE	RPM LB-FT	900. 257.	900 · 257 ·	900 257:	900. 257.		
BAR. PRESS. DRY BULB WHT BULB REL. HUMIDITY CURR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	28.89 85. 70. 48. 45.4 23.4	29.15 82. 66. 43.5 22.9	29.35 82. 67. 46.2 22.7	29.32 80. 64. 41. 44.0 22.6		
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN	24.87 17.3 7.1 .5479 25.6	25.03 19.7 8.0 .5627 26.2	25.31 19.7 7.9 .5731 26.2	24.89 19.7 8.1 .5660 26.6		
COOLANT IN COOLANT OUT OIL SUMP FUEL SUMP FUEL RETURN FUEL SUPPLY FUEL COOLER TURB: INLET (R TURB: INLET (R) COMP: OUT (R) CHARGE AIR (R) CHARGE TACK (R) EXH. STACK (L) WATER INLET CELL AIR EXHAUST 1R EXHAUST 2R EXHAUST 3R EXHAUST 5R EXHAUST 5R EXHAUST 1L EXHAUST 3L EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L		495254192760683228187457655450 889051084601773198531972612137 111111 441111144 544445454454	841217035394240561043603442912 7899149846907731885325726623236 111144 544455454454	942481220199357943471251096184 789941984699772088422962612226 1144 544545454554	407369209766814820853946490803 788940983599672088321871512136 1144 54445454454		
OIL PRESSURE RAIL PRESSURE BOOST (R) BOOST (L) INLET VAC. (R) EXH. PRESS. (R) EXH. PRESS. (L) TURB. IN. (R)	P 5 I P 5 I P 5 I P 5 I I 1 I P 5 I I 1 I	477 1230000 100000 1000000	49.05020 1.200.00 00.0 200. 1003.	487 1200000 1000000000000000000000000000000	50 7 12 00 00 00 00 00 00 00 00 00 00 00 00 00		

TABLE C-5. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 20% WATER

DYNAMOMETER CO H/C RATIO: 1.7	NSTANT: 3000	API	GRAVITY	OF DIESEL	FUEL:	35.3	AT	60F
RUN NUMBER NOM. WATER PCT		266 . 20 .	273. 20.	280. 20.				
ENGINE SPEED OBS. TORQUE	RPM LB-FT	900. 257.	900. 257.	900 . 257 .				
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CURR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.14 83. 67. 43. 44.7 23.0	29.32 87. 68. 37. 44.5 22.9	29.28 84. 66. 38. 44.4 22.8				
FUEL FLOW WATER FLOW CALC. VOL. % BSFC Alk FLOW	PCT LB/BHP-HR	24.45 49.8 18.4 .5469 25.7	24.81 49.8 18.1 .5573 26.2	24.68 49.8 18565 556.2				
COOLANT IN COOLANT OUT OIL SUMP FUEL RETURN FUEL REUPPLY FUEL COOLER INTAKE INLET (R) COMP. OUT (R) COMP. OUT (R) CCHARGE AIR (L) CCHARGE AIR (R) EXH. STACK (L) EXH. STACK (L) WATER INLET EXHAUST 1R EXHAUST 2R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 3L EXHAUST 5L EXHAUST 6L	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	9424152628274652050123725888450 7899519834007710982118505880114 44111144 54444544454	0629228868445757998849205247991 889952982400771988100860580004 44111143 5444454591	424. 424. 443. 102.				
OIL PRESSURE KAIL PRESSURE BOOST (R) BOOST (L) INLET VAC. (R) EXH. PRESS. (R) EXH. PRESS. (L) TURB. IN. (R) TURB. IN. (L)	PSI PSI PSI PSI PSI HG PSI HG PSI PSI PSI PSI PSI PSI	487 200000 20000 20030 10030	488 1200000 20030	98 120000 120000 20030				

TABLE C-7. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, BASELINE

DYNAMOMETER C	ONSTANT: 300	0 AP:	I GRAVITY	OF DIES	SEL FUEL:	35.3 A	60F			
RUN NUMBER NOM. WATER PC				194.	224	230		244.	252. 0.	258. 0.
ENGINE SPEED OBS. TORQUE	RPM LB-FT	1200. 508.	1200. 508.	1200. 508.	1200. 508.	1200. 508.	1200. 508.	1200. 508.	1200. 508.	1200. 508.
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.33 78. 63. 43. 115.4 44.6	29.11 73. 68. 78. 116.2 44.8	29.17 81: 72: 65: 117:5 45:4	29.03 82. 76. 76. 118.9 45.9	29.03 89. 76. 55. 119.9 46.3	28.75 86. 76. 63. 119.8 46.2	28.92 100. 78. 38. 121.6 46.9	29.01 82. 77. 80. 119.4 46.1	29.10 81. 74. 72. 117.8 45.5
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN	54.72 0.0 0.0 .4740 38.4	55.30 0.0 0.0 .4761 38.0	54.43 0.0 0.0 0.0 .4631 37.3	54.84 0.0 0.0 .4613 36.5	55.04 0.0 0.0 .4589 36.8	54.94 0.0 0.0 .4586 37.3	55.58 0.0 0.0 .4570 36.7	56.01 0.0 0.0 .4689 36.9	0.0
STOICH. F/A MEAS. F/A CALC. F/A % DIFF.	PCT	.0691 .0237 .0256 8.07	.0691 .0242 .0248 2.37	.0691 .0243 .0250 2.74	.0691 .0250 .0246 -1.67	.0691 .0249 .0245 -1.80	.0691 .0245 .0250 2.07	.0691 .0252 .0255 i.18	.0691 .0253 .0235 -7.14	.0691 .0250 .0252
COOLANT IN COOLANT OUT OIL SUMP FUEL SUPPLY FUEL SUPPLY FUEL COOLER INTAKE AIR TURB. INLET (L) COMP. OUT CHARGE AIR (L) EXHAUST 3R EXHAUST 18 E		99.437.109.97.437.11.6689.87.600.749.83.53.7.40.99.21.17.84.41.82.97.72.83.53.7.40.65.66.66.66.76.67.68.76.87.76.87.68.76.76.87.68.76.76.76.76.76.76.76.76.76.76.76.76.76.	214297402976589994563809941581899 789749972500066977753809941581899 661111155 756667666666	0.2.2.9 0.1.9.60 1.0.1.5.1.5.1.6.70 1.9.60 1.0.1.5.1.5.1.6.5.8.80 66213257 6666766676667666766676667666766676667	658092623532028565138239021093 7890489865112028565138239021093 66111179088188850992408 755667666676	11196118432242942517015366 0509958222242942517015366 661111165 756667666	79.46.78.88.89.00.97.09.84.03.40.26.4 740.97.09.89.09.84.07.11.65.87.56.66.76.76.6	19807711904131838932977 166111660169618732977 1661116606666666666666666666666666666	11986514701355765847784605 66111700088065847770034 756767676767676767676767676767676767676	1199605. 199605. 199605. 199607. 19960
OIL PRESSURE RAIL PRESSURE BOOST (R) BOOST (L) INLET VAC. (R) EXH. PRESS. (R EXH. PRESS. (L TURB. IN. (L) TURB. IN. (L) TURB IN. (L) FUEL PRESS. EMULSION PRESS FUEL SION PRESS WATER PRESS.	PSI PSI PSI PSI IN-H20 PSI IN-HG PSI PSSI PSSI PSSI PSSI	98661154 51123 218020 10	149 123 2115.4 10020	08591155 210020	08520155 111240 2100 20020	64.086304555 240.210020	66. 0.8550.0054 15.240.0054 20.20.0054	65512400000 61512400000 20020	455.0.2155 200.20 100.20	08041255 45125 451
HYDROCARBONS CARBON MONOXID NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN SMOKE OPACITY	PPMC EPPM PPM SPPM PCT PCT PCT	96. 488. 340. 355. 5.4 14.3 7.5	54. 212. 288. 313. 5.3 15.8 8.6	84. 508. 263. 288. 5.3 15.8	77. 281. 213. 234. 5.3 11.6	124. 199. 229. 251. 251. 9.9	120. 233. 217. 230. 5.3 13.9	117. 239. 258.5 15.6	70. 239. 174. 190. 5.0 13.6 9.5	935 935 9325 9325 95 95 10 10
HC MASS CU MASS NOX MASS BSCO BSCO RSNO	GM-HR GM-HR GM-HR GM/BHP-HR GM/BHP-HR GM/BHP-HR	45.656 446.11 521.20 .3955 3.8642 4.5146	26.649 203.00 535.94 .2294 1.7475 4.6137	40.645 475.09 484.32 3459 4.0426 4.1211	37.936 268.15 431.38 31.91 2.2558 3.6290	62.050 192.15 441.54 .5174 1.6023 3.6818	58.433 218.68 404.88 .4878 1.8255 3.3799	56.697 223.13 419.662 1.8348 3.4504	37.212 244.86 383.116 2.0501 3.2069	29.219 221.67 427.38 .2480 1.8813 3.6272

TABLE C-9. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 10% WATER

DYNAMOMETER CON H/C RATIO: 1.78	STANT: 3000	API	GRAVITY	OF DIES	EL FUEL:	35.3 AT 6	OF
RUN NUMBER NOM. WATER PCT.							
ENGINE SPEED OBS. TORQUE	RPM LB-FT	1200 508.	1200. 508.	1200. 508.	1200. 508.	1200. 508.	
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.31 80: 65: 44: 116:1 44:8	29.14 74. 68. 74. 116.1 44.8	29.05 82. 75. 72. 118.5 45.7	28.96 92. 78. 54. 120.6 46.5	29.04 86. 79. 74. 119.6 46.2	
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW	LB/HR CC/MIN PCT. LB/BHP-HR LB/MIN	53.63 49.8 9.3 .4617 37.2	53.71 49.8 9.3 .4624 37.9	54.38 49.8 9.2 .4591 37.1	53.90 49.8 9.2 .4470 36.5	55.02 49.8 9.1 45.9 36.7	
STOICH. F/A MEAS. F/A CALC. F/A % DIFF.	PCT	.0691 .0240 .0249 3.57	.0691 .0236 .0242 2.52	.0691 .0245 .0240 -2.03	.0691 .0246 .0252 2.37	.0691 .0250 .0235 -6.06	
COOLANT IN CUOLANT OUT CUOLANT OUT OIL SUMP FUEL SUPPLY FUEL RETURN FUEL COOLER TURB. INLET (R) TURB. INLET (R) COMP. OUT COMP. OUT CHARGE AIR (R) CHARGE AIR (R) EXH. STACK (L) WATER AIR EXHAUST 2R EXHAUST 2R EXHAUST 3R EXHAUST 5R EXHAUST 6L EXHAUST 6L	DEEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	0.16.7.0.66.23.14.38.9.8.5.1.1.2.8.8.5.1.39.3.1.7.89.95.98.85.1.1.2.8.8.5.1.39.3.1.7.6.8.8.5.1.39.3.1.7.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	118995993311044895579448300055732412 1189959997131044895579776050857322512 6611111557976666666666666666666666666666	7.59.08.46.185.22.08.47.25.44.2.1.32.84.81.80.0 7.89.048.46.185.22.25.44.2.1.32.84.81.80.0 8.664.11.7.87.88.87.0.64.93.31.89.7 6.566.66.66.66.66.66.66.66.66.66.66.66.6	2.24.39.98.29.82.30.13.55.30.7.10.37.83.45.6.1 7.89.04.09.98.22.77.89.97.59.52.78814.89. 6621111.55.30.7.10.37.83.41.87. 6555666666666666666666666666666666666	1119082652957023866088800390381190826529570238660888003917666111728786608800391766611172878666666666666666666666666666	
RAIL PRESSURE F BOOST (R) F BOOST (L) F INLET VAC. (R) I EXH. PRESS. (R)F EXH. PRESS. (L)F TURB. IN. (L) I TURB. IN. (L) I FUEL PRESS. F EMULSION PRESS. F FUEL SUPPLY F	281 P81 181 18-H20 281 18-HG 18-HG 881 881 881	2887 1-72 21887 1-72 10020	28581454 55423 242646 2025	075000±53 671240 0110020 20020	635.0.75.6 11.24.6 0.15.4 0.21.0 20.20 10.0.6	010025 2010 2010 2010 2010 2010 2010 201	
HYDROCARBONS CARBON HONOXIDE FOR THE COXIDE NITRIC OXIDES CARBON DIOXIDES CARBON DIOXIDES OXYGEN SMOKE OPACITY F	PPMC PPM PPM PCT PCT PCT	998. 298. 355.35 13.2	93. 508. 275. 275. 5.1 16.1 4.2	194. 2000. 2000. 114.5	122050 22050 22050 15 . 4	9.25 22.140 15.5 15.5	
8860 6	SM-HR SM-HR SM-HR SM/BHP-HR SM/BHP-HR SM/BHP-HR	47.349 275.89 557.52 .4077 2.3754 4.8002	45.610 483.12 496.37 .3927 4.1595 4.2736	60.147 266.69 450.12 .5077 2.2513 3.7997	58.619 204.08 419.09 .4861 1.6923 3.4753	50.255 223.53 516.01 .4200 1.8683 4.3130	

TABLE C-11. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 20% WATER

DYNAMOMETER CO H/C RATIO: 1.7	DNSTANT: 3000	AP 3	GRAVITY	OF DIES	EL FUEL:	35.3 AT	60F
RUN NUMBER NOM. WATER PCT					242. 20.	256 . 20 .	
ENGINE SPEED OBS. TORQUE							
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.28 81. 64. 39. 116.5 45.0	29.16 77. 70. 71. 116.7 45.0	29.06 84. 76. 70. 119.3 46.0	28.96 93. 79. 54. 121.2 46.8	29.12 82. 75. 72. 118.2 45.6	
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW	LB/HR CC/MIN PCT. LB/BHP-HR LB/MIN	53.71 114.0 18.9 .4609 37.5	53.04 iii.0 iB.7 .4546 37.4	53.92 114.0 18.9 .4521 36.7	53.80 114.0 18.9 .4439 36.2	54.77 111.0 18.3 .4635 36.7	
STOICH. F/A MLAS. F/A CALC. F/A % DIFF.	PCT	.0691 .0239 .0249 4.36	.0691 .0236 .0243 2.82	.0691 .0245 .0250 1.76	.0691 .0248 .0250 .82	.0671 .0249 .0250 .35	
COOLANT IN COOLANT OUT OUT OIL SUMP FUEL IN FUEL RETURN FUEL SUPPLY FUEL COOLANT (R) COMP. OUT (R) COMP. OUT (R) CHARGE AIR (R) EXH. STACK (L) CHARGE AIR (R) EXHAUST 2R EXHAUST 2R EXHAUST 1 LEXHAUST 5 CR EXHAUST 1 LEXHAUST 5 CR EXHAUST 6 C	DEEGGGGFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	1119059511344892115472645 78905998001166558883481051378645 661116558883481051378645	11995187.688177.5888174582279.4213.4 11995187.68817753874582279.4213.4 1197538745822279.4213.4	11866665552316865577625995940 78901866665552316865577625995940 561117774886577625995940 5611175586556666655566	1190943142342754874998544888888888288888888888888888888888	######################################	
OIL PRESSURE RAIL PRESSURE BOOST (R) BUOST (L) INLET VAC. (R) EXH. PRESS. (R EXH. PRESS. (L) TURB. IN. (R) TURB. IN. (L) FULL PRESS. EMULSION PRESS FULL SUPPLY WATER PRESS.	PSI PSI PSI PSI IN-H20 PSI IN-HG PSI PSI PSI PSI PSI	5557711552 2180 10020	885884450 00000 00000 5	0-65520-1520 40 240 2400 20 200 20 40 40 40 40 40 40 40 40 40 40 40 40 40	658-1240 2400 200 200 200 200 200 200 200 200	0545340153 01100000000000000000000000000000000	
HYDROCARBONS CARBON MONOXIDE NITRIC OXIDE NITROGEN OXIDES CARBON DIOXIDE OXYGEN SMUKE OPACITY		175. 263. 330. 360. 5.3 13.6	149. 613. 275. 313. 5.1 16.0	149. 2211. 2211. 248.3 9.3	146. 263. 215. 249. 5.3 15.4	95. 267. 2250. 35.6 15.6	
HC MASS CO MASS NOX MASS HSHC BSCO HSNO	GM-HR GM-HR GM-HR GM/BHP-HR GM/BHP-HR GM/BHP-HR	84.052 243.65 607.14 -7212 2.0906 5.2097	72.323 574.23 611.45 .6198 4.9214 5.2405	71.784 212.32 514.93 .6019 1.7802 4.3176	70.145 242.91 509.42 .5788 2.0043 4.2035	46.490 250.79 520.16 .3934 2.1223 4.4018	

TABLE C-13. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, BASELINE

DYNAMOMETER CO								
RUN NUMBER NOM. WATER PCT				183. 0.	188. 0.	195. 0.	201.	216. 0.
ENGINE SPEED OBS. TORQUE				1800. 1257.	1200. 508.	1800. 1257.	1800. 1257.	1800 1257
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CUKR. BHP CORR. BMEP	IN-HG DEG F PCT HP PSI	29.29 82. 73. 436.2 112.2	29.16 91. 73. 42. 441.7 113.7	28.96 81. 76. 80. 443.9 114.2	29.11 73. 68. 78. 116.2 44.8	29.22 79. 74. 79. 436.1 112.2	29.26 78. 72. 75. 433.9 111.6	29.10 89. 76. 55. 444.3 114.3
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW			179.14 0.0 0.0 .4056 82.6	180.80 0.0 0.0 .4073 83.7	55.30 0.0 0.0 .4761 38.0	179.19 0.0 0.0 .4109 85.0	180.09 0.0 0.0 .4151 84.5	177.08 0.0 0.0 .3986 81.4
STOICH, F/A MEAS, F/A CALC, F/A % DIFF.	PCT	.0691 .0363 .0335 -7.63	.0691 .0361 .0324 -10.37	.0691 .0360 .0341 -5.24	.0691 .0242 .0248 2.37	.0691 .0351 .0347 -1.15	.0691 .0355 .0348 -1.86	.0691 .0363 .0342 -5.58
COOLANT IN COOLANT OUT COOLANT OUT OIL SUMP FUEL SUMP FUEL SUPPLY FUEL SOPPLY FUEL SOPPLY FUEL SUPPLY CHARGE AIR COMP. OUT (R) CHARGE AIR COMP. OUT (R) CHARGE AIR COMP. OUT (R) CHARGE AIR COMP. OUT CHARGE AIR CHARGE CHA	DEECH FEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	781:539635-7184-4-6-88-6-888-4-5-85-1-6-9-25-118-8-8-8-231355-1-6-9-25-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	19924426297087743055627533939249 782059094743992119963422461722445 99222118811 9999999999999999999999999999	666752949020245294519461457103 7810590846339799884319461457103 12111 1 99221187 99999999999999999999999999999999999	21142940297653994563809415319794994029765399945651576137976665157666676666666666666666666666666	347520597354900020585053000126 78105905973522890888830200148491126 11211 1 992211187 9999999999999999999999999999999999	12105805821431207806611858074522712078088351275104	186. 217. 110. 153. 107. 107.
OIL PRESSURE KAIL PRESSURE BODST (R) FUDST (L) INLET VAC. (R) EXH. PRESS. (R) EXH. PRESS. (L) TURB. IN. (L) FUEL PRESS. EMULSION PRESS. FUEL SUPPLY WATER PRESS.	PSI PSI	76. 75.0	76.	76. 75.0 11.25 10.0 13.0	66.0858 149.858 1.58 2.54 100.	76.0 110.8 13.6 13.6 100.0 100.0	76. 0 75. 11. 15. 9 11. 15. 9 11. 11. 10 100. 20.	77400 3 2000 1000 1000 1000 1000 1000 1000
HYDROCAKBONS CARBON MONOXIDE NITRIC OXIDE NITRIGEN OXIDES CAKBON DIOXIDE OXYGEN SMOKE OPACITY	PPMC PPM	100. 306. 700. 863. 7.2 10.5	40. 163. 950. 7.0 10.3	130. 635. 870. 880. 7.35 11.5	54. 212. 288. 313. 5.3 15.8 8.6	78. 281. 850. 838. 7.52 12.2	750 · · · · 550 · · · · 550 · · · · 550 · · · ·	825. 1268. 750. 75.0 15.0
HC MASS CO MASS NOX MASS ESCO BSCO ESNO	GM-HR GM-HR GM-HR GM/BHP-HR GM/BHP-HR GM/BHP-HR	121.64 704.86 3527.4 .2789 1.6161 8.0876	49.507 384.81 3789.1 .1121 .8712 8.5787	154.76 1431.4 3719.8 .3486 3.2248 8.3803	26.649 203.00 535.94 .2294 1.7475 4.6137	89.849 615.43 3371.8 .2060 1.4113 7.7323	81.249 1206.3 3339.2 1873 2.7802 7.6960	95.154 274.58 2949.6 .2142 .6181 6.6393

TABLE C-14. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 5% WATER

DYNAMOMETER C H/C RATIO: 1.	DNSTANT: 30	00 AP	I GRAVIT	Y OF DIE	SEL FUEL	: 35.3 A	T 60F
RUN NUMBER NOM. WATER PC			184. 5.				
ENGINE SPEED OBS. TORQUE	RPM LB-FT	1800 1257	1800 1257	1800. 1257.	1800 1257	1800. 1257.	1800 1257:
BAR. PRESS. DRY BULB WET BULR REL. HUMIDITY CORR. BHP CORR. BMEP	DEC E	29.27 82. 73. 65. 437.6 112.6	28.95 94. 82. 60. 453.4 116.7	29.23 79. 74. 79. 437.0 112.5	29.21 80. 73. 72. 437.2 112.5	28.96 83. 75. 69. 442.9 114.0	28.95 89. 76. 55. 446.6 114.9
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW	LB/HR CC/MIN PCT. LB/BHP-HR LB/MIN	179.89 82.8 4.8 4111 82.9	168.98 82.8 5.1 .3727 80.8	178.13 82.8 4.9 .4076 83.5	178.26 82.8 4.9 .4078 83.2	179.46 82.8 4.8 .4052 81.7	
STOICH. F/A MEAS. F/A CALC. F/A Z DIFF.	PCT	.0691 .0362 .0326 -9.98	.0691 .0348 .0345 98	.0691 .0355 .0343 -3.49	.0691 .0357 .0343 -4.00	.0691 .0366 .0336 -8.19	.0691 .0379 .0358 -5.61
EXHAUST SL EXHAUST AL	DDEGG BEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	17882431955897387485005229114 1985291955897387485005229114 992221187	48168378500342394709169175535 1211 1 99221188 999999051224	89194615546679890315546679	922118998883955499160938 92211899888201992730938 9999999999999999999999999999999999	13196435307736230 7098831253077406230 99120137406230	1211191128532977424415.682577.42611591128532977424415.682377979797979797979797979797979797979797
OIL PRESSURE KAIL PRESSURE BOOST (R) BOOST (L) INLET VAC. (R) EXH. PRESS. (R EXH. PRESS. (R) TURB. IN. (L) TURB. IN. (L) TURB. IN. (L) FUEL PRESS. EMULSION PRESS FUEL SUPPLY WATER PRESS.	PSI PSI PSI IN-H20 PSI PSI IN-HG	75. 78. 10. 10. 12. 33. 11.0	76. 07.9 100.9 13. 35 11.00	76. 78.0 11.0 10.8 13.6 15.0	77.0 80.0 11.0 10.5 13.2 11.0	76.0 78.0 10.5 14.5 11.0	76.0 80.6 10.8 15.8 15.8
FUEL PRESS. EMULSION PRESS. FUEL SUPPLY WATER PRESS.	PSI PSI PSI PSI	100. 100.	18. 150. 50.	20. 100. 20. 50.	10.0 20. 100. 50.	9.8 20. 100. 2. 65.	9.5 20. 100. 2. 0.
HYDROCARBONS CARBON MONOXIDE NITRIC OXIDE NITROGEN OXIDES CARBON DIOXIDE OXYGEN SMOKE OPACITY	PPMC PPM PPM PPM PCT PCT PCT	110. 2625. 877.0 10.0	150. 592. 870. 915. 7.4 10.5	95. 2460 877. 450 12.2	50 229 742 632 7.4 13.4 4.3	55. 219. 625. 645. 7.3 13.2	90. 219. 648. 7.7 9.9 4.2
HC MASS CU MASS NOX MASS BSCO BSCO BSNO	GM-HR GM-HR GM-HR GM/XHP-HR GM/XHP-HR GM/XHP-HR	136.23 619.35 3790.3 .3113 1.4154 8.6618	165.36 1231.8 3869.4 .3647 2.7169 8.5346	110.81 542.75 3681.6 2535 1.2423 8.4237		65.327 497.47 2774.6 .1475 1.1232 6.2647	102.49 470.61 2584.7 .2295 1.0537 5.7870

TABLE C-16. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 15% WATER

DYNAMOMETER CO H/C RATIO: 1.7	8		GRAVITY	OF DIES	EL FUEL:	35.3 AT	60F
RUN NUMBER NOM. WATER PCT		174. 15.	186. 15.	198. 15.	220. 15.	234. 15.	248 15
ENGINE SPEED OBS. TORQUE	RPM LB-FT	1800. 1257.	1800. 1257.	1800. 1257.	1800. 1257.	1800. 1257.	1800 1257.
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.22 89. 73. 47. 439.4 113.1	28.90 100. 94. 80. 462.6 119.0	29.24 82. 76. 76. 438.2 112.8	29.25 86. 76. 63. 440.2 113.3	29.00 87. 77. 64. 444.0 114.2	28.96 95. 77. 448.9 115.5
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW	LB/HR CC/MIN PCT. LB/BHP-HR LB/MIN	178.39 284.9 14.9 .4060 81.0	178.32 288.5 15.0 .3855 79.3	176.90 288.5 15.2 .4037 81.4	176.82 288.5 15.2 .4017 80.2	177.37 277.7 14.6 .3995 79.5	179.00 284.9 14.8 .3987 77.6
	PCT	.0691 .0367 .0332 -9.50	.0691 .0375 .0353 -5.76	.0691 .0362 .0348 -3.83	.0691 .0368 .0349 -5.00	.0691 .0372 .0349 -6.09	.0691 .0384 .0372 -3.19
COOLANT IN COOLANT OUT COOLANT OUT COOLANT OUT OIL SUMP FUEL IN FUEL RETURN FUEL COLORER INTAKE TURB. INLET (R COMP. OUT (R) CHARGE AIR (R) CHARGE TACK (R) EXH. STACK (L) EXH. STACK (L) EXH. STACK EXHAUST 2R EXHAUST 1R EXHAUST 1R EXHAUST 1L EXHAUST 1L EXHAUST 3L EXHAUST 5L EXHAUST 5L EXHAUST 6L	DESCRIPTION OF FREE FEFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	17872119 11823119 118	1189-47-07-59-94-32-33-32-09-51-15-07-59-94-32-33-32-09-51-5-15-07-5-1-5-07-5-07	1784801.32222181977184801.3222218977189752221897771888888888888888888888888888888	1846452299018467631369628911 18122289860897888999988891 181222898899988999988891	1187-22-1198-4-28-4-28-4-28-4-28-4-28-4-28-4-28-4-	4504449545542000000000000000000000000000
OIL PRESSURE RAIL PRESSURE BOOST (R) BOOST (L) INLET VAC. (R) EXH. PRESS. (R EXH. PRESS. (R	PSI PSI PSI IN-H20 PSI	75.0 90.3 10.9 12.03	76. 88.2 10.8 12.8 35	76.0 90.3 10.8 13.12	760.455.2442 1090.103 1090.103 10020	76. 88.0 10.2 10.1 14.1	76. 90.0 10.0 10.4 15.4
BUDST (L) INLET VAC. (R) EXH. PRESS. (R EXH. PRESS. (R INLET VAC. (R) INLET VAC.	IN-HG IN-HG PSI PSI PSI PSI	10.52 22. 100. 60.	102 88 35 30 102 09 20 20 10 20 50	13 . 12551 190	10.4 20. 100. 40.	10 . 1 . 1 . 1 . 1 . 2 . 0	10.0 20. 100. 45.
HYDROCARBONS CARBON MONOXIDE NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN SMUKE OPACITY	PPMC EPPM PPM BPPM PCT PCT PCT	46. 212. 1018. 983. 7.2 10.3	150. 571. 988. 975. 9.6 8.7 4.7	94. 468. 950. 963. 12.0 13.0	54. 186. 675. 813. 11.9	65. 130. 695. 708. 13.6	67. 163. 700. 740. 8.1 11.6 3.0
HC MASS CD MASS NOX MASS RSHC RSHC RSHC RSHC RSHC RSHC	GM-HR GM-HR GM-HR GM/BHP-HR GM/BHP-HR GM/BHP-HR	55.774 485.17 4382.4 .1269 1.1041 9.9733	171.43 1222.3 6476.9 .3706 2.6425 14.009	107.30 1009.6 4473.2 .2449 2.3039 10.208	60.978 399.94 3662.0 .1385 .9086 8.3195	73.797 279.54 3228.9 .1662 .6296 7.2722	72.733 333,28 3051.5 .1620 .7424 6.7974

TABLE C-18. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 25% WATER

DYNAMOMETER CO H/C RATIO: 1.7	OOS : TMATRAC	D API	GRAVITY	OF DIES	EL FUEL:	35.3 AT	60F
RUN NUMBER NOM. WATER PCT							
ENGINE SPEED OBS. TORQUE							
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.19 90. 73. 44.3 113.3	29.26 81. 75. 76. 436.9 112.4	29.25 86. 76. 63. 441.9 113.7	29.03 91. 79. 59. 445.9 114.7	28.92 98. 77. 39. 450.7 116.0	
FUEL FLOW WATER FLOW CALC. VOL. % BSFC Alk FLOW	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN	178.04 478.9 22.8 .4044 79.8	176.54 494.2 23.5 .4041 80.1	176.64 501.7 23.7 .3998 77.7	176.71 501.7 23.7 .3963 77.9	179.43 501.7 23.4 .3981 76.1	
STOICH. F/A MLAS. F/A CALC. F/A % DIFF.	PCT	.0691 .0372 .0334 -10.05	.0691 .0368 .0356 -3.00	.0691 .0379 .0358 -5.39	.0691 .0378 .0362 -4.07	.0671 .0393 .0369 -6.10	
COOLANT IN COOLANT OUT OIL SUMP FUEL SUMP FUEL REPUPLY FUEL RESUPLY FUEL COOLER TURB. INLET (L COMP. OUT (R) CHARGE AIR (R) COMP. OUT (R) CHARGE AIR (R) EXH. STACK (L) WATER TURB EXHAUST 2R EXHAUST 2R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L		783005002652211940434343493078311990229919783888884068454	1888221889390273938798522 888221884390273938798522 888221884390273938798522	149720144 1198448220180350845350 1882218448220180350845350 1882218448220180350845350 198485420180350845350	1189021885602468724057724 189021885602468724057724	7821501902207190749775997948 1121111 992227190749775997948	
OIL PRESSURE KAIL PRESSURE BOOST (R) BUOST (L) INLET VAC. (R) EXH. PRESS. (R TURB. IN. (R) TURB. IN. (L) FUEL PRESS. EMULSION PRESS LUEL SUPPLY WATER PRESS.	PSI PSI PSI IN-H20 PSI	75. 102.0 9.8 9.8 11.7	76. 104.0 10.0 10.0 12.7	77. 107.0 9.8 10.0 13.0	76. 112.0 9.7 10.0 13.6	76. 105.0 9.5 9.8 15.1	
TURB. IN. (R) TURB. IN. (L) FUEL PRESS. EMULSION PRESS LUEL SUPPLY WATER PRESS.	IN-HG IN-HG PSI PSI PSI PSI	10.0 22.0 100.	10.0 20. 100. 40.	10.0 20. 100. 70.	10.0 88.8 20. 100. 62.	10.0 8.8 20. 100.	
HYDROCARBONS CARBON MONOXIDE NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN SMUKE OPACITY	PPMC PPM PPM SPPM PCT PCT PCT	163. 1188. 1163. 10.0 0.0	100. 429. 1113. 1113. 7.7 11.9	55. 148. 770. 750. 12.5 12.2	55. 151. 788. 795. 7.9 13.3	69. 148. 748. 763. 8.0 11.3	
HC MASS CU MASS NOX MASS #SHC #SHC #SHC #SNO	GM-HR GM-HR GM-HR GM/BHP-HR GM/BHP-HR GM/BHP-HR	55.392 370.11 5662.8 .1258 .8406 12.862	111.82 900.50 5600.0 .2560 2.0613 12.819	61.187 308.49 3712.8 .1385 .6982 8.4027	60.594 311.64 4021.8 .1359 .6989 9.0196	75.734 303.91 3517.1 .1680 .6743 7.8030	

TABLE C-20. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, BASELINE

	NVNAMONETER OF	NOTALIT ALL						
	DYNAMOMETER CO H/C RATIO: 1.8 RUN NUMBER NOM. WATER PCT					40. 0.		60F
	ENGINE SPEED OBS. TORQUE	RPM LB-FT	800. 591.	800. 591.	800. 591.	800. 591.	800. 591.	
	BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CÜRR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.20 72. 64. 65. 89.8 24.9	29.29 74. 64. 58. 89.5 24.8	29.04 74. 68. 74. 91.0 25.2	29.33 71. 58. 45. 88.4 24.5	29.13 79. 62. 38. 90.4 25.0	
	FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW L	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN	43.10 0.0 0.0 .4799 31.9	43.06 0.0 0.0 .4813 31.9	42.87 0.0 0.0 .4710	42.15 0.0 0.0 .4768	42.43 0.0 0.0 .4692	
	COOLANT IN COOLANT OUT COOLANT	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	0.669.055997788899995555837488661730 8899929977888999955778866766198012	056570355998822835610544881175 8899199887799996778767861981175 3 3333333443344	1419988789999777977876208122 189919988789999777977876208122	0555865652400988781210403160625 88991899777799887770878787730978787134	95.623807.6440097.97.02080.02608004 78902008888800997.88088002608004 1111111111111111111111111111111111	
(F) III II (III III III III III III III II	DIL PRESSURE FUEL SPILL RUGGET (RF) RUGOST (RF) RUGOST (LF) RUGOST (LF) RUGOST (LF) RUGOST (LF) RUET VAC. (RF) RUET VAC. (RF) RUET VAC. (LR) RUET VAC. (RF) RUET VAC. (RE) RUET VAC. (RF)	0000 999999999999999999999999999999999	0050000904700000000 5	79000001 22000 88880 7	20 20 20 20 20 20 20 20 20 20 20 20 20 2	00000000000000000000000000000000000000	0055050000880087770 7	

TABLE C-22. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, BASELINE

DYNAMOMETER CONSTANT: 2000. H/C RATIO: 1.82	API	GRAVITY	OF DIE	SEL FUEL:	33.9 A	7 60F			
RUN NUMBER NOM. WATER PCT.	3. 0.	9 · 0 ·	15. 0.	19. 0.	25. 0.	51. 0.	57. 0.	65. 0.	7 <u>1</u> .
ENGINE SPEED RPM OBS. TORQUE LB-FT	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 원77.
BAR. PRESS. IN-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CORR. BHP HP CORR. BMEP PSI	29.17 72. 64. 65. 167.0 37.0	29.26 72. 64. 65.9 36.7	28.99 74. 68. 79.6 169.6 37.6	<u>66</u> .	29.25 73. 67. 168.4 37.3	29,29 62. 55. 64. 162.9 36.1	29.15 68. 62. 72. 166.2	29.07 62. 76. 168.2 37.3	64. 69.
FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT BSFC LB/BHP-HR AIR FLOW L LB/MIN AIR FLOW R LB/MIN	72.43 0.0 0.0 0.36 40.7 41.8	72.17 0.0 0.0 .4351 40.7 42.0	71.76 0.0 0.0 4230 39.8 40.8	72.25 0.0 0.0 4341 40.9 41.5	72.43 0.0 0.0 .4301 39.9 40.2	71.91 0.0 0.0 .4416 41.4 41.6	73.17 0.0 0.0 .4403 41.0 40.8	71.97 0.0 0.0 4278 39.6 40.2	71.32 0.0 0.0 .4265 41.0 39.9
WATER FLOW COLL. 2 PCT. HP HP HR LB/MIN CALC. VOL. 2 PCT. HP HP HR LB/MIN CALC. VOL. 2 PCT. HP HP HR LB/MIN CALC. VOL. 2 PCT. HP HP HR LB/MIN DEGG FF LOW L LB/MIN COOLANT IN DEGG FF FF DEEGG FF DEEGG FF DEEGG FF FF DEEGG FF DEEGG FF DEEGG FF DEEGG FF DEEGG FF DEEGG	9512290119123332446996725551584 78002808878000047775676697903 111114 44444544455	78619066990011133183536140896387 78619066990011133183536140896387 112 14 444470970113	78619178992311174360995764443537 786928998881110057888678697188023 111144444445554555	740016044126765196666164250693 780028088880000677867867108014 11211 1 11114 4444554555	86. 86.	68. 92.	102. 102. 98. 96.	94.	78. 98. 99. 100.
BOUST (LF) PSI BOUST (LR) PSI A1R BOX PSI INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LR)IN-H20 EXH. PRESS. (L)PSI EXH. PRESS. (L)PSI TURB. IN. (RF) IN-HG TURB. IN. (RF) IN-HG TURB. IN. (LF) IN-HG TURB. IN. (LF) IN-HG	34.00 31.00 0.00 1.00 0.00 0.00 0.00 0.00	33 1112113330011120030 20030	34.000056090022020 11.00056090022020 11.00056090022020 20030	33 56 56 56 56 56 56 56 56 56 56 56 56 56	461000000659900444400 2 4610001511150000000000000000000000000000	4511001011115000555550000055550000055550000055550000	555100000550900111130 7	00000000000000000000000000000000000000	00000004600000000000000000000000000000

TABLE C-24. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 20, 25% WATER

DYNAMOMETER CO H/C RATIO: 1.8	NSTANT: 2000.	API	GRAVITY	OF DIES	EL FUEL:	33.9 AT	60F
RUN NUMBER NOM. WATER PCT		23. 20.	55. 20.	69. 20.	24 · 25 ·	56. 25.	70 25:
ENGINE SPEED OBS. TORQUE	RPM LB-FT	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.29 72. 66. 167.6 37.1	29.21 69. 60. 165.0 36.5	29.09 72. 66. 73.9 167.9 37.2	29.27 72. 66. 167.7 37.1	29.18 69. 60. 165.2 36.6	29.04 72. 66. 73. 168.2 37.3
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW L AIR FLOW R	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN LB/MIN	73.83 159.0 19.3 .4405 40.1 40.3	73.68 155.9 19.1 .4466 40.8 41.5	73.02 155.9 19.2 .4349 40.1 39.7	73.91 208.0 23.9 .4407 39.9	73.77 208.0 23.9 .4467 41.0 41.2	73.53 211.0 24.2 .4372 40.0 40.2
COOLANT IN COOLANT OUT OIL SUMP FUEL RETURY FUEL RETUR	00000000000000000000000000000000000000	1112 1 1122 1 1112 1 11114 4444444444444	1111 1897777779999477764343355096502 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7407567768766976961031113092461 78091897887700995777545441086613 112 11 4 44444554455	1122 1898888000038875555488488800003887555554848888000038875555484888000038875555548488800000000000000000000000000	112 1 112 1 112 1 112 1	030647676095629016513326446103 112 1 111 4 44444554455
UIL PRESSURE FUEL SPILL BOOST (RF) BOOST (LF) BOOST (LF) BOOST (LR) AIR BOX INLET VAC. (RF	PS1 PS1 PS1 PS1 PS1	000000056990011990 D	00000000000000000000000000000000000000	35 100.000066100008110 9 11.1144003333300030 20030	00000000000000000000000000000000000000	000000056990011120 2 331001101133000333300040 11133000333300040	33 346100010111444003333300040 11111444003333300040

TABLE C-26. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING RETARDED 4.1 DEGREES

DYNAMOMETER CONSTANT: 2000: H/C RATIO: 1.82	API	GRAVITY	OF DIES	BEL FUEL:	33.9 AT	60F	
RUN NUMBER NOM. WATER PCT.	79. 0.	85. 0.	80 . 5 .	81 10:	82. 15.	83. 20.	84. 25.
ENGINE SPEED RPM OBS. TORQUE LB-FT		1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.
BAR. PRESS. IN-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CORR. BHP HP CORR. BMEP PSI		28.93 94. 70. 30. 172.6 38.2	29.06 80. 70. 61. 170.6 37.8	29.06 83. 71. 56. 170.6 37.8	29.03 83. 71. 56. 171.2 37.9	29.00 84. 71. 53. 172.6 38.2	28.96 92. 71. 35. 172.8 38.3
FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LB/BHP-HR AIR FLOW R LB/MIN AIR FLOW R LB/MIN	72.58 0.0 0.0 .4263 39.3 40.4	72.52 0.0 0.0 .4201 39.6 39.5	72.09 33.8 4.9 .4226 39.1	72.93 69.7 9.6 .4275 39.1 39.8	73.51 108.0 14.0 .4293 40.7	73.82 154.4 18.8 .4276 38.0	74.57 211.7 23.9 .4315 .39.5
COOLANT IN DEG F COOLANT OUT DEG F FUEL SUMP FUEL RETURN DEG F FUEL RETURN DEG F FUEL COOLER INTAKE AIR (RF)DEG F INTAKE AIR (RR)DEG F INTAKE AIR (LR)DEG F INTAKE AIR (LR)DEG F HP AIR (RF) HP AIR (RF) HP AIR (LF) HP AIR (LF) HP AIR (LF) HP AIR (LF) HP AIR T CELL HP AIR T CELL HAUST 1R DEG F EXHAUST 1L DEG F EXHAUST 1L DEG F EXHAUST 1L EXHAUST 1L EXHAUST 5L DEG F	584.	749878600000141496502796245882 78902000000141496502796245882 78902001000141496502796245882 7890200000141496502796245882	26602082364830172433 7881110988966866413 111114 44445555	114. 115.	73.	116. 473. 95.	74041144116700779469434020892037900204011670077946945520892037900201111111111111111111111111111111111
Oll PRESSURE PSI FUEL SPILL PSI BOUST (RF) PSI BOUST (LF) PSI BOUST (LF) PSI BOUST (LF) PSI AJK BOX PSI INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-H6 INLET VAC. (LP) IN-HG IUKB. IN. (RF) IN-HG IUKB. IN. (LF) IN-HG	00000000551100011000 0 55511010101114400533530050 33	00000000000000000000000000000000000000	0000000055000000110000 0 55511101010111440055555550000000000000	000000056010011020 2 551100121144005553536050	00000000000000000000000000000000000000	00000000000000000000000000000000000000	33 5551110121114400333336030 20 50

TABLE C-28. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING ADVANCED 5.5 DEGREES

DYNAMOMETER CONSTANT: H/C RATIO: 1.82	2000 . API	GRAVITY	OF DIES	EL FUEL:	33.9 AT	60F	
RUN NUMBER NOM. WATER PCT.	100.	106. 0.	101	102. 10.	103. 15.	104. 20.	105. 25.
ENGINE SPEED RPM OBS. TORQUE LB-FT	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.	1000. 877.
BAR. PRESS. IN-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CURR. BHP HP CORR. BMEP PSI		28.95 82. 70. 55. 171.5 38.0	28.99 75. 69. 74. 170.2 37.7	29.00 75. 70. 78. 169.9 37.6	29.00 82. 70. 55. 170.8 37.8	28.99 82. 70. 55. 170.6 37.8	28.97 82. 70. 55. 171.0 37.9
FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT BSFC LB/BHP AIR FLOW L LB/MIN AIR FLOW R LB/MIN	73.41 0.0 0.0 0.0 4333 40.0 40.1	72.85 0.0 0.0 .4247 38.7 39.2	73.77 32.3 4.6 4334 39.5 39.9	74.04 68.1 357 4357 40.2	75 47	76.11 160.6 19.0 .446.0 39.2	76.50 215.5 23.8 .4474 39.0 40.1
COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUPPLY DEG F FUEL SUPPLY DEG F FUEL COOLER (RF)DEG F INTAKE AIR (RR)DEG F INTAKE AIR (LF)DEG F INTAKE AIR (LF)DEG F INTAKE AIR (LR)DEG F HP AIR (RF) HP AIR (RF) HP AIR (LF) HP AIR (LR) EGG F EXHAUST 1R DEG F EXHAUST 2R DEG F EXHAUST 5R DEG F EXHAUST 5R DEG F EXHAUST 5R DEG F EXHAUST 1L DEG F EXHAUST 1L DEG F EXHAUST 1L DEG F EXHAUST 5R DEG F	7446046033339813199888659195288367700096778659195288367	9.6245.640.1340.22448840.1839.60.6987 780029609999911111788976655330235 112111 1 4 444445555555	852453455214542692707041014120 120029088880000678765645229235 111214 44445229235	11211 1 8 8 11114 44441577348723067266677708663	454. 446.	12111 1 8 8 8 8 8 9 0 0 1 1 1 1 5 8 8 7 4 5 5 5 5 7 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6	85429521122302331961461685372297780019529799911111158897456168537209711111148897455545552
UIL PRESSURE PSI FUEL SPILL PSI BUOST (RF) PSI BUOST (LF) PSI BUOST (LF) PSI BUOST (LF) PSI AIK BOX INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 EXH. PRESS. (L)PSI TURB. IN. (RF) IN-HG TURB. IN. (RF) IN-HG TURB. IN. (LF) IN-HG TURB. IN. (LF) IN-HG TURB. IN. (LF) IN-HG FUEL PRESS. PSI EMULSION PRESS. PSI FUEL SUPPLY WATER PRESS.	35.0	33 100000000000000000000000000000000000	4441000100100100100100100100100100100100	33 100 121 14 4 0 0 3 3 3 10 0 121 14 4 4 0 0 3 3 3 3 10 0 121 14 4 0 0 3 3 3 3 10 0 10 10 10 10 10 10 10 10 10 10 10 1	33 10001211444003333344030 20 50 50 50 50 50 50 50 50 50 50 50 50 50	34.000.000551000110 1000.100110 11144000533510 20050 1	1.0

TABLE C-30. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, WITH WATER ADDITION

DYNAMUMETER CONSTANT: 2000. H/C RATIO: 1.82	API	GRAVITY	Y OF DIE	SEL FUEL:	33.9 AT	60F
H/C RATIO: 1.82 RUN NUMBER NOM. WATER PCT.	27. 5.	28. 10.	29. 15.	30. 20.	31. 25.	
ENGINE SPEED RPM OBS. TORQUE LB-FT			1200 1229	1200. 1229.	1200 1229	
BAR. PRESS. IN-HG DRY BULB DEG F WHT BULB DEG F REL. HUMIDITY PCT CORR. BHP HP CURR. BMEP PSI						
FUEL FLOW LE/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LE/BHP-HR AIR FLOW L LE/MIN AIR FLOW R LE/MIN	116.26 49.8 4152 50.7 51.6	115.70 114.0 9.9 .4124 50.9 51.8	116.43 175.1 14.3 .4144 50.8 51.6	116.22 215.5 17.1 4104 51.0 51.1	116.43 366.4 25.9 .4123 49.4 51.2	
CUOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP DEG F FUEL RETURN DEG F FUEL SUPPLY DEG F INTAKE AIR (RF)DEG F INTAKE AIR (LR)DEG F ENHAUST INTAKE AIR DEG F EXHAUST 1R DEG F EXHAUST 1R DEG F EXHAUST 5R DEG F EXHAUST 5L DEG F	9662342324488921502950146698761 780028099882222478979988028224 11211 1 1 11115 55555665666	7866234487442321600732450164329 180028088888221600732450164329 1112111 1 555555656666	97.63.22.47.64.32.32.91.40.54.87.04.71.47.92.78.00.28.08.88.82.22.13.88.15.77.76.81.60.02.11.21.1	976119258884433420544714137494799 78001808888822222888657765806091 11211 1 11115 555555565656	85-655520095563742259421-644700947-18978882223224888646455705508080	
OIL PRESSURE PSI FUEL SPILL PSI BOOST (RF) PSI BUOST (RF) PSI BUOST (LF) PSI BUOST (LF) PSI BUOST (LR) PSI INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LR)IN-H20 INLET VAC. (LR)IN-H3 INLET VAC. (LR)IN-H2 INLET VAC. (LR	0000000004774000999990 5. 35021127025500000000000000000000000000000	00000000474400033330 4 30001100004744000333330 4 44	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00050000567500055550 Q 23244207000500055550 Q 44	

TABLE C-32. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM, WITH WATER ADDITION

DYNAMOMETER CONSTANT: 2 H/C RATIO: 1.82	.000 AF	'I GRAVIT	Y OF DIE	SEL FUEL	: 33.9 A	T 60F			
RUN NUMBER NOM. WATER PCT.	34. 5.	59. 5.	35. 10.	60. 10.	36. 15.	61. 15.	37. 20.	62. 20.	38. 25.
ENGINE SPEED RPM OBS. TORQUE LB-FT	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.
BAR. PRESS. IN-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CURR. BHP HP CORR. BMEP PSI	29.18 75. 62. 48. 442.9 70.1	29.23 65. 60. 75. 433.2 68.5	29.19 75. 62. 48. 442.2 70.0	29.23 67. 62. 76. 434.3 68.7	29.19 75. 61. 441.2 69.8	29.21 68. 62. 72. 435.6 68.9	29.18 76. 63. 48. 441.0 69.8	29.19 68. 62. 72. 437.1 69.1	29.18 72. 59. 435.2 68.8
FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT BSFC LB/BHP- AIR FLOW L LB/MIN AIR FLOW R LB/MIN	175.30 82.8 5.0 HR .3958 65.2 69.0	177.80 81.2 4.8 .4105 66.1 69.9	176.64 173.4 9.6 .3995 64.5	175.95 170.1 9.7 .4051 65.8 69.5	176.73 292.1 15.5 .4006 64.8 68.9	176.82 270.5 14.5 .4059 .65.4 .69.3	176.38 418.9 20.9 4000 65.1 69.2	176.13 380.5 19.4 .4030 64.9 68.5	177.25 501.7 23.9 .4073 65.1 70.0
COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP FUEL SIN DEG F FUEL RETURN DEG F FUEL COOLER RETURN DEG F INTAKE AIR (RF) DEG F INTAKE AIR (LR) DEG F HP AIR (RF) HP AIR (LF) DEG F EXHAUST 1R DEG F EXHAUST 2R DEG F EXHAUST 5R DEG F EXHAUST 6R DEG F EXHAUST 6R DEG F	861156330955550782901201290660 7810280988855550782901201290660 11211 1 88555530788991201290660 11116 667756777	142 1 148306 14279087320043617775695187148306 14279087320043617775695187148306 14279087320043617775695187148306	7816280998855542988809897047233 11211 1 11116 667666776777	18988764433486778665250445 112 1 1116 6666667777777	1121211 1 11116 66666676777	43898285432548308889922253322697 18091898877443338866686651493333 111116 6666666776777	640002809992362638222169896583 781028998775544097668665815001 11211	548983954534394280639791644702 18988774433287667555038233 112 1	761982844557818980466415231319 781918988774443987557565815000 112 1
OIL PRESSURE PSI FUEL SPILL PSI BUOST (RF) PSI BUOST (RF) PSI BUOST (LF) IN-H20 INLET VAC. (RF) IN-H20 INLET VAC. (LR) IN-H6 INLET VAC. (LR) IN-H6 INLET VAC. (LR) IN-H6 INLET VAC. (RF) IN-H6	54 54 104 104 104 104 100 100 100 100 100 10	15443434488 99990030 10544565450 3	000000503542000£7740 5 054434044£800\$	00000000343111544440 2 154443434488 99990030 20 5	50.0 45.0 4.0 4.0 3.0	000500000453111544440 2 115444344488 99990030 11544434	50.0 45.0 4.0 4.0 3.0	000005003400011478030 2 054435824478 99990030 20 5	0000005045100074550 5 054434044880099999030 54

TABLE C-34. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1600 RPM, BASELINE

DYNAMOMETER CO H/C RATIO: 1.8	NSTANT: 2000	AP:	GRAVITY	OF DIESEL	FUEL: 33	.9 AT 60F
RUN NUMBER NOM. WATER PCT	•	6. 0.	12. 0.	18. 0.		
ENGINE SPEED OBS. TURQUE	RPM LB-FT	1600. 2143.	1600. 2143.	1600. 2143.		
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.31 75. 65. 59. 648.1 89.7	29.11 78. 69. 64. 660.1 91.4	29.17 75. 64. 65.7 91.5		
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW L AIR FLOW R	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN LB/MIN	259.27 0.0 0.0 .4001 85.7 93.1	260.12 0.0 0.0 3940 82.0 91.5	260.37 0.0 0.0 .3941 84.4 91.9		
COOLANT IN COOLANT OUT COOLANT FUEL SUPPLY FUEL RETURY FUEL COOLER INTAKE AIR (RF) INTAKE AIR (LR) INTAKE AIR (LR) INTAKE AIR (LR) HP AIR (RF) HP AIR (LF) HP AIR (LF) HP AIR (LF) HP AIR (LF) EXHAUST 1R EXHAUST 2R EXHAUST 3R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 1L EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L		1121027077788888887775818854071065279 7810270777888888777581885167212 1111116 7787887888	7875013310090290330408822124154 7810381099090290887029053399434 112113111 112217 7887882888	44480272229956229996250472600578 78103808888899099787939962899334 112111 1		
FUEL SPILL BOOST (RF) BOOST (RR)	P9511 9511 9511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511 97511	0050000082831246990 0 50787817822 22220030	0050000811633111110 60777827832 444410 120030	0050000588453355770 0 60777828723 44440030		

TABLE C-36. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM

DYNAMOMETER CO	NSTANT : 3000	L API	GRAVIT	Y OF DIE	SEL FUEL		T 60F	
RUN NUMBER NOM. WATER PCT		114.	120. 0.	115. 5.	116. 10.	117. 15.	118. 20.	119. 25.
ENGINE SPEED OBS. TORQUE	RPM LB-FT	800. 592.	800 592	800. 592.	800. 592.	800. 592.	800. 592.	800. 592.
BAR. PRESS. DRY BULB WET BULB TEL. HUMIDITY COKR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.22 88. 77. 61. 925.6	29.14 99. 78. 39. 93.8 26.0	29.22 89. 77. 58. 92.6 25.6	29.21 91. 78. 92.9 92.7	29.21 92. 78. 93.1 93.1	29.19 95. 78. 47. 93.5 25.9	29.18 99. 78. 39. 93.9 26.0
FUEL FLOW WATER FLOW CALC VOL % BSFC AIR FLOW L AIR FLOW R	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN LB/MIN	42.95 0.0 0.0 4650 31.0 30.9	43.25 0.0 0.0 .4612 30.9 30.6	43.18 17.3 4.3 .4665 30.8	43.69 46.5 10.5 .4702 30.4 30.8	43.80 61.4 13.4 .4794 30.4 30.7	44.10 94.0 19.1 .4715 30.2 30.6	44.81 124.5 23.53 .427.3 30.5
STOICH. F/A MEAS. F/A CALC. F/A % DIFF:	PCT	.0689 .0116 .0101 -12.64	.0689 .0117 .0100 -14.39	.0689 .0117 .0102 -13.02	.0689 .0119 .0102 -13.97	.0689 .0119 .0103 -14.05	.0689 .0121 .0103 -14.35	.0689 .0123 .0104 -15.23
COOLANT IN COOLANT OUT COOLANT OUT COLL SUMP FUEL SUMP FUEL SUMPLY FUEL COOLER RETURN FUEL COOLER (RF INTAKE AIR (LR INTAKE AIR (LR INTAKE AIR (RR)) HP AIR (RR) HP AIR (LR) EXHAUST 1 REXHAUST 1 LEXHAUST 1 LEXH	200 000 000 000 000 000 000 000	8835550472209224118899024629676731 6790240797209888764544209224 11111111111111111111111111111111111	163 174 104 1104 1107 1107 1107 1107 1107 1	1113651485215564070671511099999155640706715441213975	18908737275478963222446075537003110872224480755370033344237003	173 184 194 104 105 114 103 98 97 110 110 110 110 374 375 340 340 340 340 340 340 340 340 340 340	17065647 18800216107 18002111107 111107 1111117 1111117 11111117 11111111	87.24405.2742.2455.3662.90999.248017.11111111111111111111111111111111111
#UTIST (RF) #00ST (RR) #00ST (LF) #00ST (LR)	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	00070000000000000000000000000000000000	AN TO T WHOO THE THE STATE OF T	005804388870065570 3				00500000000000000000000000000000000000
HYDROCARBONS CARBON MONDXIDI NITRIC UXIDE NITRIGEN OXIDE: CARBON DIOXIDE: UXYGEN PARTICULATE	PPMC EPPM PPM SPPM PCT PCT MG/SCF	414. 108. 405. 446. 2.1 16.8	376. 108. 428. 469. 16.0	485. 1365. 13859. 432.1 161.2	532. 1745. 3403.1 403.1 15.3	463. 193. 376. 453. 18.0	484. 252. 328. 378. 2.1 16.7	393. 401. 236. 299. 17.2 17.2
HC MASS CO MASS NOX MASS BSHC BSCO BSNO	GH-HR GM-HR GM-HK GM/BHP-HR GM/BHP-HR GM/BHP-HR	388. 199. 1588. 4.30 2.21 17.61	356. 202. 1541. 3.95 2.24	455. 252. 1572. 5.04 2.79 17.44	500. 320. 1492. 5.55 3.55 16.55	436. 359. 1685. 4.83 3.98 18.70	455. 466. 1474. 5.05 5.18 16.35	373. 750. 1101. 4.14 8.32

TABLE C-38. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1200 $\ensuremath{\mathtt{RPM}}$

DYNAMOMETER CO	DNSTANT : 3000	. AP	I GRAVIT	Y OF DIE	SEL FUEL	: 33.9 A	T 60F		
RUN NUMBER NOM. WATER PC			127. 0.	144.	150. 0.	122. 5.	145.	123. 10.	146.
ENGINE SPEED OBS. TORQUE	RPM LB-FT	1200. 1231.	1200. 1231.	1200. 1231.	1200. 1231.	1200. 1231.	1200. 1231.	1200. 1231.	1200. 1231.
BAR. PRESS. DRY BULB WEI BULK REL. HUMIDITY COKR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.20 89. 77. 58. 289.4 53.4	29.11 101. 78. 36. 294.2 54.3	29.11 96. 74. 35. 290.8 53.7	28.96 102. 73. 24.6 294.6	29.19 91. 77. 53. 290.4 53.6	29.06 100 76. 33. 293.2 54.1	29.19 92. 78. 54. 291.1 53.7	29.04 102. 77. 32. 294.7 54.4
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW L AIR FLOW R	LR/HR CC/MIN PCT. LB/BHP-HR LB/MIN LB/MIN	114.65 0.0 0.0 .3962 49.5 51.8	116.46 0.0 0.0 .3959 50.9 52.0	115.06 0.0 0.0 3956 50.2 52.0	116.46 0.0 0.0 .3953 49.5 51.6	115.76 53.1 4.8 .3987 49.9 51.7	116.22 53.1 4.8 .3964 49.4 52.1	116.18 109.5 99.4 .399.6 50.6 52.0	116.69 112.5 9.60 50.7 51.6
STOICH. F/A MEAS. F/A CALC. F/A Z DIFF.	РСТ	.0689 .0189 .0175 -7.22	.0689 .0189 .0175 -7.44	.0689 .0188 .0173 -7.55	.0689 .0192 .0173 -9.97	.0689 .0190 .0176 -7.28	.0689 .0191 .0175 -8.22	.0689 .0189 .0176 -6.52	.0689 .0190 .0177 -7.07
	######################################	1804066325555539491084276730340 112011390099922326899956854351547 11115555555555555666666666666666666666	177921491491100877716447749842605511008777164477498674436666666666666666666666666666666666	1864-0077-19-32-22-6-8-8-37-27-9-22-9-8-7-8-5-7-8-5-5-5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	99.12.129.4.8.1.02.1.9.4.1.7.1.7.0.4.3.8.8.5.7.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	21.4.2.1.0.9.2.4.7.6.6.6.1.4.2.1.0.9.2.4.7.6.6.6.1.4.1.4.9.6.9.2.0.1.3.8.8.4.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	97-6181809-65-213810234-20-607-57-65-579-1201009-65-2138110234-20-607-57-65-51111111111111111111111111111111	140156098893975994674679923 1101156098893975994679923 11111111156098893975994679923	581-20-265-29-76561-33-5-4-29-32-1-861-32-5- 6701-301-1-10044445-0085-67541-861-32-5- 112111111111115-115555-5665-665
OIL PRESSURE FUEL SPILL BOOST (RR) BOOST (LF) BOOST (LF) BOOST (LF) BOOST (LR) INLET VAC (RI INLET VAC (IF INLET VAC (LF INLET V		70011110447.0001111100 0	มออยากของของเพลงก อ วรุณกาณรณณอยากมหากอาจ 44	0.	90000000000000000000000000000000000000	0000041000070000701110 0	44************************************	50.	SATING ANALOGO POR PARTIES OF THE PA
HYDROCARBONS CARBON MONOXII NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN PARTICULATE	PPMC DEPPM PPM SPPM PCI PCI MG/SCF	513. 83. 674. 692. 3.7 15.0	510. 83. 681. 714. 3.7 16.0	560. 81. 728. 752. 3.6 15.8	522. 84. 756. 775. 3.6 15.8	791. 99. 648. 676. 3.7 15.2	774. 88. 727. 764. 3.6 14.8 2.3	768. 98. 644. 685. 3.7 15.5	758. 94. 763. 796. 3.7 15.2
HU MASS CO MASS NUX MASS BSHC BSCO BSNO	GM-HR GM-HR GM-HR GM/BHP-HR GM/BHP-HR GM/BHP-HR	746. 234. 3673. 2.65 .83 13.06	755. 2392. 3542. 2.685 12.60	822. 233. 3577. 2.92 12.72	779 . 246 . 3519 . 2 . 77 . 87 . 12 . 51	1154. 282. 3634. 4.11 1.00 12.92	1139. 252. 3754. 4.05 13.35	1123. 277. 3852. 3.99 13.70	1109. 269. 4010. 3.94 14.26

TABLE C-40. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM

DYNAMOME(ER (H/C RATIO: 1.	CONSTANT : 300 0). Al	PI GRAVIT	TY OF DIE	ESEL FUEL	.: 33.9 /	AT 60F	
RUN NUMBER NOM. WATER PO		128. 0.	134. 0.	129. S.	130. 10.	131. 15.	132. 20.	133 25
ENGINE SPEED OBS. TORQUE	RPM LB-FT		1400	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.	1400. 1654.
BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP	IN-HG DEG F DEG F PCT HP PSI	29.22 87. 77. 64. 453.3 71.7	29.14 102. 76. 30. 459.3 72.7	29.21 89. 77. 58. 453.7 71.8	29.21 94. 78. 49. 457.5 72.4	29.20 94. 78. 49. 458.8 72.6	29.19 94. 78. 49. 459.0 72.6	29.17 100. 77. 35. 458.7 72.6
FUEL FLOW WATER FLOW CALC. VOL. % BSFC AIR FLOW L AIR FLOW R	LB/HR CC/MIN PCT LB/BHP-HR LB/MIN LB/MIN	178.17 0.0 0.0 .3931 63.9 68.0	178.39 0.0 0.0 .3884 64.6 66.5	178.39 81.2 4.8 .3932 65.5 68.3	177.78 173.4 9.7 .3886 62.3 67.9	177.95 288.5 15.2 .3879 61.9 65.9	178.22 391.0 19.5 3883 61.9 65.9	179.37 517.5 24.2 .3911 63.3 66.0
STOICH. F/A MEAS. F/A CALC. F/A Z DIFF.	PCT	.0689 .0225 .0170 -24.56	.0689 .0227 .0171 -24.57	.0689 .0222 .0172 -22.53	.0689 .0228 .0174 -23.35	.0689 .0232 .0176 -24.19	.0689 .0232 .0175 -24.53	.0689 .0231 .0176 -24.10
COOLANT IN COOLANT OUT OIL SUMP FUEL RETURN FUEL RETURN FUEL COOLER (RITTAKE ATR (R	DEG F	757.	783945194509537024420596717662 113019450953770244205967773778 110111111111111111111111111111111111	916215022540914151360448509380 11211391022540914151360448509380 11211191109995465499977977777777777777777777777777	9174282793865784387354696701468 11090855584387354696701448 1109085584387354696777777	91720899004275797305922666662172	239-189-8-2437-7-8-39-189-8-24-37-7-8-39-189-8-24-37-7-8-39-2-37-31-10-11-11-11-11-11-11-11-11-11-11-11-11	2309-605-24-65-09-034-029-64-51-93-637-07-78-19-08-68-65-19-36-37-07-78-11-21-11-11-11-11-11-11-11-11-11-11-11-
TURB. IN. (RR) TURB. IN. (LF) TURB. IN. (LR) FUEL PRESS. EMULSION PRESS FUEL SUPPLY WATER PRESS.		30:0 100: 3:1 0:	977772457440800079790000 44777245744080007979790000	2007000444448800000000000000000000000000		0070100450000980000 7 010750750804400880800 7 54	005018813550084570 6 00535034448800088880000 54	806118223544500099780 5 955323544580008889005 44
HYDROCARBONS CAKBON MONOXID NITRIC OXIDE NITRIGEN OXIDE CARBON DIOXIDE DXYGEN PARTICULATE	PPMC EPPM PPM SPPM PCT PCT MG/SCF	420. 141. 683. 691. 3.6 15.4	497. 136. 764. 778. 3.6 15.7	646. 116. 676. 709. 3.6 14.6	649. 96. 689. 706. 3.6 15.6	684. 76. 725. 744. 3.7 15.5	682. 706. 737. 3.7 15.4	633. 674. 678. 14.8
HC MASS CO MASS NUX MASS BSHC BSCO BSNO	GM-HR GM-HR GM-HR GM-BHP-HR GM/BHP-HR GM/BHP-HR	977 . 640 . 5940 . 2 . 22 1 . 45 13 . 47	1147. 613. 5776. 2.60 1.39	1483. 518. 6100. 3.36 1.18 13.83	1466 422 6055 3.32 13.73	1536. 334. 6640. 3.48 .76 15.06	1539. 293. 6906. 3.49 .66	1437. 245. 6395. 3.26 14.50

APPENDIX D

REPORT OF NEW TECHNOLOGY

This study documents the unique application of water-in-fuel emulsions to large (900hp to 1200hp) diesel engines. A laboratory system was developed to mix and meter the emulsions to the engine (p. 6 to 11). This system performed well and allowed a determination of the emulsion effects on diesel engine performance.

REFERENCES (CONTINUED)

- 12. Federal Register, 42FR174, P-45169.
- 13. Society of Automotive Engineers, "Engine Test Code-Spark Ignition and Diesel," SAE Standard J816b, SAE Handbook (1978).
- 14. Meriam Instrument Division, Scott and Fetger Co., "Installation and Operating Instructions; Meriam Laminar Flow Elements," (1975).
- 15. American Society for Testing and Materials, <u>Petroleum Measurements</u> <u>Tables</u>, American Edition, ASTM (1952).
- 16. Ostle, B., Statistics in Research, 2nd, Iowa State University Press, Ames, IA (1963).