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FOREWORD 

This document addresses a basic function of aircraft (and other vehicle) surveillance and navi-
gation systems analyses — quantifying the geometric relationship of two or more locations 
relative to each other and to the earth. Here, geometry means distances and angles, including 
their projections in a defined coordinate frame. Applications that fit well with these methods 
include (a) planning a vehicle’s route; (b) determining the coverage region of a radar or radio 
installation; and (c) calculating a vehicle’s latitude and longitude from measurements (e.g., of 
slant- and spherical-ranges or range differences, azimuth and elevation angles, and altitudes). 

The approach advocated is that the three-dimensional problems inherent in navigation/surveil-
lance analyses should, to the extent possible, be re-cast as a sequence of sub-problems: 
 Vertical-Plane Formulation (two-dimensional (2D) problem illustrated in top right 

panel on cover) — Considers the vertical plane containing two problem-specific 
locations and the center of a spherical earth, and utilizes plane trigonometry as the 
primary analysis method. This formulation provides closed-form solutions. 

 Spherical-Surface Formulation (2D problem illustrated in bottom left panel on 
cover) — Considers two or three problem-specific locations on the surface of a 
spherical earth; utilizes spherical trigonometry as the primary analysis method. This 
formulation provides closed-form solutions.  

 Three-Dimensional Vector Formulation — Utilizes 3D Cartesian vector frame-
work; best-suited to situations involving four or more problem-specific points and 
slant-range or slant-range difference measurements; provides closed-form solutions. 

 Non-Linear Least-Squares (NLLS) Formulation — Employed for the most 
complex situations, and does not require many of the idealizations necessary for 
simpler approaches. Provides estimates of the accuracy of its solutions. Drawback is 
that it requires numerical methods, consequently solution properties are not evident. 

These techniques are applied, in the context of a spherical earth, to a series of increasing 
complex situations, starting with two problem-specific points (e.g., a route’s origin and 
destination) and extending to three or more points (e.g., an aircraft and multiple surveil-
lance/navigation stations). Closed-form solutions are presented for measurements involving 
virtually every combination of ranges, pseudo ranges, azimuth/elevation angles and altitude. 

The Gauss-Newton NLLS methodology is employed to address the most complex situations. 
These include circumstances where there are more measurements than unknowns and/or the 
measurement ‘equations’ cannot be inverted analytically* (including those for an ellipsoidal-
shaped earth) and/or are not analytic expressions (e.g., involve empirical data). 

                                                 
* The term ‘analytic’ is used for expressions that are described by mathematical symbols, typically from algebra, 
trigonometry and calculus. ‘Inverting’ refers to solving such expressions for a set of desired unknown variables. 
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1. INTRODUCTION 

1.1 Overview of Analysis Methodologies and Their Applications 

This document addresses a fundamental function in surveillance and navigation analysis —
quantifying the geometry of two or more locations relative to each other and to the earth. Here, 
‘geometry’ refers to: (a) points (idealized locations); (b) paths between points; and (c) distances 
and angles involving paths. Points represent locations of either vehicles, route origins/destin-
ations/waypoints and navigation/surveillance sensors. Paths are trajectories followed by vehicles 
or sensor signals. Distances are the lengths of paths that are either straight lines or follow the 
earth’s surface. Angles between paths may be measured in horizontal or vertical planes. 

1.1.1 Trigonometric and Vector Analysis Methodologies (Chapters 3 – 5) 

The approach that may first come to mind when addressing an analysis situation is to treat it as a 
three-dimensional problem, and to employ vector analysis. Vector analysis a modern technique 
(it was not well formulated until approximately 1900) and is often useful. However, a classical 
approach (with roots dating to approximately 500 AD) is recommended as the first option. Thus, 
to the extent possible, three-dimensional problems should be re-cast as two separate two-
dimensional problems, each of which can be addressed by a branch of trigonometry: 
 Vertical Plane Formulation (Chapter 3)* — This formulation considers the vertical 

plane containing two problem-specific locations and the center of the earth. Problem-
specific locations are unconstrained vertically, except that at least one altitude must 
be known. Plane trigonometry is the natural analysis tool when altitudes, elevation 
angles and slant-ranges are involved. Conversely, latitude and longitude coordinates 
are not utilized. 

 Spherical Surface Formulation (Chapter 4) — This formulation —sometimes called 
great-circle navigation — considers two or more problem-specific locations on the 
surface of a spherical earth. Spherical trigonometry is the natural analysis tool when 
the earth’s curvature must be considered explicitly. Latitudes and longitudes, as well 
as spherical-ranges (distances along the earth’s surface) and azimuth angles with 
respect to north or between two paths, are inherent to this formulation. A limitation is 
that altitudes cannot be accounted for. 

These two-dimensional analyses can generally be performed in the above sequence, with the 
result that most limitations of each analysis method are overcome. Section 1.2 provides an 
overview of this process. (For historical and practical reasons, in this document when there are 

                                                 
* Organizational terminology: X designates a Chapter; X.Y designates a Section (of a Chapter); X.Y.Z designates a  
Subsection (of a Section). 
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two problem-specific locations, they are often labeled U [user]) and S [satellite] *. These are only 
labels, and do not restrict application of the analysis.)  

Some problems/situations are better suited to vector analysis than to trigonometric analysis, and 
important methodologies are based on vector analysis. Thus, it is addressed as well: 
 Vector Analysis Formulation (Chapter 5) — The 3D-vector approach is preferable 

in situations that involve: (1) three or more problem-specific points that must be 
considered simultaneously (rather than sequentially, which allows one vertical plane 
to be considered at one time); and/or (2) only slant-range-type measurements (true 
slant-ranges, slant-range differences and/or altitude).  

Limitations of the vector formulation are that (1) the earth’s curvature is not handled well, and 
(2) insight into a problem can be hindered by the vector notation. Ultimately, the two metho-
dologies are complementary: some situations can be addressed by both; some only by the 
combined trigonometric formulations; and some only by the vector formulation. 

1.1.2 Applications of Trigonometric and Vector Methods (Chapters 6 – 7) 

Chapters 6 and 7 apply the analysis methodologies described in Chapter 3-5 to situations invol-
ving three or more problem-specific points (e.g., an aircraft and two, three or four sensors). The 
following two significant restrictions are imposed:  

(1) the number of measurements and unknown quantities are equal 

(2) the earth is modeled as a sphere. 

These restrictions enable closed-form solutions to be found. The primary value of a closed-form 
solution is that its properties — such as existence (e.g., What ranges of measured quantities do / 
do not result in a solution?) and uniqueness (e.g., Are there multiple solutions? Can the correct 
solution be determined?) — can be examined. It is also beneficial to have a comprehensible set 
of expressions for a solution. 

Chapter 6 addresses scenarios involving sensors that measure slant- or spherical-range and 
azimuth angles (with aircraft altitude always known).  

Chapter 7 addresses systems that measure slant- or spherical-range differences (a capability 
enabled by 20th century technologies). Often, these problems require consideration of all 
measurements simultaneously, and the vector methodology plays a more prominent role than the 
trigonometry-based methodology; however, both are used. 

                                                 
* Historical: these notes were begun for a project involving satellites. Practical: the Microsoft Word Equation Editor 
v3.1 does not have a global change capability. 
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1.1.3 Gauss-Newton NLLS Methodology and Applications (Chapter 8) 

Chapter 8 eliminates restrictions (1) and (2) in the previous subsection. It first describes the 
Gauss-Newton Non-Linear Least-Squares (NLLS) method, which addresses situations that: 
(a) may involve more measurements than unknown variables, and (b) do not necessarily have 
invertible (or even analytic) measurement equations. This generality enables the calculation of 
numerical solutions for situations involving non-ideal sensors, an ellipsoidal earth, and/or other 
analytically intractable aspects. However, a drawback of the NLLS technique is that its solution 
properties cannot be readily characterized. The NLLS methodology is applied to a series of 
problems that, for various reasons, cannot be addressed by the trigonometric or vector methods. 

1.2 Summary of Trigonometric Methodology 

1.2.1 Vertical Plane Formulation 

Figure 1 depicts a vertical-plane involving: an earth-based 
user U; a satellite S above a spherical earth; the satellite 
nadir (or sub-point) N; and the center of the earth O. Points 
U and S (or N) are problem-specific; O is not. All four 
locations are in the plane of the paper. Points O, N and S 
form a straight line. These points have no special relatio-
nship with the earth's spin axis. Since a ‘snapshot’ analysis 
is involved, no assumptions are made regarding the satel-
lite’s trajectory. 

In Figure 1, three linear distances are of interest: 
 𝑅𝑅𝑒𝑒 Earth radius (length of OU and ON) 
 ℎ Satellite altitude above the earth (length of NS) 
 𝑑𝑑 User-satellite slant-range (length of US). 

And two angles are of interest: 
 𝛼𝛼 Satellite elevation angle relative to the user's 

horizon (may be positive or negative) 
 𝜃𝜃 Geocentric angle between the user and satellite 

nadir (is always positive). 

The earth radius 𝑅𝑅𝑒𝑒 is always assumed to be known.  

There are four variables associated with this formulation: ℎ, 𝑑𝑑, 𝛼𝛼 and 𝜃𝜃. If any two are known, 
the remaining two can be found. Thus, there are six possible groupings. Subsection 3.2.2 shows 
how to relax the restriction of U being on the earth’s surface, to its having a known altitude. 
Chapter 3 details the full set of 12 possible equations for this formulation. 

 
Figure 1  Vertical Plane 

Bisecting a Spherical Earth and 
Containing Points U, O, N and S 
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Of these four variables, the geocentric angle 𝜃𝜃 (which is equivalent to distance along the earth’s 
surface, or spherical-range) is also a variable in the spherical surface formulation. It serves as the 
link for relating the two formulations — i.e., for transferring a solution to the vertical plane 
formulation into the spherical surface formulation (Subsection 4.1.3 elaborates on this topic). 
The other three variables (ℎ, 𝑑𝑑 and 𝛼𝛼) are related to the altitude of S above the earth’s surface 
and have no role in the spherical surface formulation.  

1.2.2 Spherical Surface Formulation 

The spherical surface formulation is an application of spherical trigonometry. This formulation is 
almost perfectly matched to marine surface navigation, and was developed by the ancients partly 
for that purpose. It can be used for many aviation navigation and surveillance situations by 
combining it with the vertical plane formulation.  

The left-hand side of Figure 2 depicts the earth’s familiar latitude/longitude grid. The right-hand 
side shows two problem-specific points U and S on the surface and the seven variables involved 
in a two-location problem on a sphere: 
 the latitude/longitude, respectively, of U (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) and of S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) 
 the geocentric angle 𝜃𝜃 between U and S, and  
 the azimuth angles 𝜓𝜓𝑆𝑆/𝑈𝑈 and 𝜓𝜓𝑈𝑈/𝑆𝑆 of the great circle* arc connecting U and S.  

   

Figure 2  Spherical Surface Containing Points U and S 

Generally, four of these variables must be known; from those, the other three can be computed. 
Even this simple problem involves 35 possible groupings of known / unknown variables. By 
taking advantage of symmetries, the situation can be described by 16 unique problems (Sub-
section 4.1.8) —still a significant number. Thus, in contrast with the exhaustive approach taken 
for the vertical plane formulation, a more selective approach is adopted for the spherical-earth 

                                                 
* A great circle results when a sphere is sliced exactly in half. An arc from great circle (also called an orthodrome) is 
the path having the shortest length between two points along the surface of a sphere.  



DOT Volpe Center   

 1-5 

formulation: equations are presented only for the variable groupings of highest interest.  

“Geodesy is the science concerned with the exact positioning of points on the surface of the 
Earth” (Ref. 1). In geodesy, analyses involving two groupings of known/unknown variables 
occur so frequently that they have been named: 

 Direct (or first) problem* of geodesy: (a) Given the coordinates (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) of U, the 
geocentric angle 𝜃𝜃 between U and S, and azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 of a great circle path 
starting at U and ending at S; (b) Find the coordinates (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) of the end point S and the 
path azimuth angle at the end point 𝜓𝜓𝑈𝑈/𝑆𝑆. 

 Indirect (or second, or inverse) problem of geodesy: (a) Given the coordinates (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) 
and (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) of points U and S, respectively; (b) Find the geocentric angle 𝜃𝜃 connecting 
U and S, and the azimuth angles (from north), 𝜓𝜓𝑆𝑆/𝑈𝑈 and 𝜓𝜓𝑈𝑈/𝑆𝑆, of the path at each end. 

In both Chapter 4 (spherical surface formulation) and Chapter 5 (vector formulation), solution 
equations are provided for the Direct and Indirect problems of geodesy, and variations thereon 
that have relevant applications. Many of the problems addressed in Chapter 6 use the Direct or 
Indirect problem as a step in the solution algorithm. 

1.3 Applicability and Limitations of Methodologies 

With a few exceptions, the methodologies presented herein generally reflects conditions and 
assumptions appropriate to aircraft navigation and surveillance, including: 
 Earth Curvature Considered — With the exception of aircraft on the surface of an 

airport, the curvature of the earth is a fundamental aspect of aircraft navigation and 
surveillance analysis and cannot be neglected. 

 Three-Dimensions Frequently Must Be Considered — Some essential operations, 
such as aircraft approach, require that lateral/longitudinal position and altitude all be 
considered, necessitating a three-dimensional analysis methodology.  

 Horizontal Position and Altitude Are Decoupled at Long Ranges — Generally, 
scenarios requiring simultaneous consideration of three dimensions involve aircraft-
sensor ranges of less than 250 miles, the maximum visible distance of aircraft at 
40,000 feet of altitude. 

 Altitude Measurement Are Always Available — Virtually all aircraft provide baro-
metric altitude information that can be adjusted to the elevation above sea level. 

The analysis also embodies the following assumptions/limitations: 
 Static Scenarios — Scenarios analyzed are ‘snapshots’ — i.e., motion of an aircraft 

is not explicitly involved. Sequence of locations are considered, but the notions of 
velocity or time as mechanisms for relating those locations are not utilized.  

 Straight-Line / Great-Circle Vehicle Paths — When a spherical-earth model is 

                                                 
* Note the academic/mathematical use of the word “problem” in the narrow sense of specific groupings of known 
and unknown variables. This document also uses “problem” in the broader sense of a situation to be analyzed. 
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used, vehicle ‘horizontal’ (latitude/longitude) trajectories are always great circles. 
That is, they lie in a vertical plane that contains the center of a spherical earth. 
Vertical trajectories may be constant altitude or a geometric straight line. 

 Geometrically Simple Radio Wave Propagation Paths— Radio waves follow 
paths that result in the shortest transmission time between a transmitter and receiver. 
When the intervening media can be treated as free space, a geometric straight-line 
path model is used. When the density of the atmosphere must be considered, a 4/3rds 
earth path model is used. When the conductivity of the earth must be considered, 
great circle paths are assumed.  

 Terrain/Obstacles Ignored — Except for the earth itself, obstacles such as hills/ 
mountains or man-made structures that could block the signal path between two 
locations (e.g., a sensor and a vehicle) are not addressed. 

One might ask: Why emphasize a spherical earth model, when an ellipsoidal model is more 
accurate? The rationale is: 
 Insight/Confidence — When the number of measurements is equal to the number of 

unknown quantities, a spherical earth-model often has a closed-form solution that is 
understandable. Conversely, an ellipsoidal model never has a closed form solution; 
the analyst must initialize, utilize and trust a numerical solution. In such a situation, a 
method for checking the numerical solution is necessary. 

 Ellipticity Error Often Acceptable — While an ellipsoidal model more accurately 
describes the earth’s shape, the earth is ‘99.7% round’ (the ratio of the polar to 
equatorial radii). The ellipticity error resulting from employing the spherical- 
approximation is acceptably small for some applications. 

 Initialize Iterative Solution Process, When Needed — The spherical-earth 
approximation provides excellent initial values for iterative solution processes that are 
required to eliminate the above assumptions/limitations.  

Engineering analyses methods have been characterized thusly: “There are exact solutions to 
approximate problems, and approximate solutions to exact problems. But there are no exact 
solutions to exact problems”.* The techniques described in Chapters 3–7, based on the spherical 
earth approximation, are exact solutions to approximate problems. The spherical-earth approxi-
mation is often made in authoritative documents that address similar applications (e.g., Refs. 1, 2 
and 3). When an ellipsoidal-earth model is required and iterative numerical technique must be 
employed (Chapter 8), the spherical-earth approximation provides excellent initial values for the 
iteration process. 

1.4 Document Outline 

Chapter 1 (this one) describes the basic problems to be addressed, and outlines the recommended 
methodology for their solution. Chapter 2 is mathematical in nature, and is included to make this 
                                                 
* Conveyed by Prof. Donald Catlin (Univ. of Mass. Amherst, Mathematics Dept.), who attributed it to Prof. Lotfi 
Zadeh (Univ. of Calif. Berkley, Electrical Engineering Dept.). 
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document more self-contained.  

Chapters 3 through 8 address mathematical solution techniques that are matched to the nature of 
the problem at hand – e.g., geometry and number and types of measurements. These are 
synopsized in Section 1.1. Table 1 is a high-level roadmap of location of the topics addressed. 

Table 1  Topic Locations by Geometric Factors 

Dimension 
Shape Two Dimensions Three Dimensions 

Spherical 
Earth 

 Plane Trigonometry (problem limited to a 
vertical plane) – Chapter 3 

 Spherical Trigonometry (problem limited 
to the surface of a sphere) – Chapter 4 (2 
points) and Chapter 6 (3 points) 

 Vector Analysis – Chapter 5 
 Plane & Spherical Trigonometry 

combined – Chapter 6  
 Non-Linear Least Squares – Chapter 8 

Ellipsoidal 
Earth 

 Vincenty's Algorithm (2 points on an 
ellipsoid) – Subsection 2.2.3  

 Non-Linear Least Squares  (>2 points on 
an ellipsoid)  – Chapter 8 

 Vector Analysis – Section 9.3 
 ‘Bancroft’ sections in Chapter 7 
 Non-Linear Least Squares – Chapter 8 

To illustrate application of the analysis techniques described herein, example applications are 
presented at the ends of several chapters that address: 
 Air Traffic Control (ATC) radar coverage (Example 1) 
 Precision approach procedure design (Example 2) 
 Satellite visibility of/from the Earth (Example 3) 
 Great-circle flight path between Boston and Tokyo (Example 4) 
 ATC radar display coordinate transformations (Example 5) 
 Single VOR/DME station RNAV fix (Example 6) 
 Ground path length ellipticity error for selected airport pairs (Example 7) 
 Simplified navigation system that measures slant-ranges in two dimensions 

(Examples 8) 
 Simplified navigation system that measure slant-range difference in two dimensions 

(Examples 9) 
 Aircraft latitude/longitude determination from measurements of the pseudo spherical-

ranges to three stations in a single Loran chain (Example 10);  
 Aircraft latitude/longitude determination from measurements of the pseudo spherical-

ranges involving four stations from two Loran chains (Example 11) 
 A Wide Area Multilateration (WAM) surveillance system using measurements of 

slant-range differences and altitude for an aircraft (Example 12) 
 Aircraft latitude/longitude determination from measurements of the pseudo spherical-

range to five stations (Example 13) 
 Aircraft latitude/longitude determination from measurements of the azimuth angles to 

two ground-based transmitters (Example 14). 

Relevant specialized topics are presented in an Appendix (Chapter 9). 
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2. MATHEMATICS AND PHYSICS BASICS 

2.1 Exact and Approximate Solutions to Common Equations 

2.1.1 Law of Sines for Plane Triangles 

For future reference, the law of sines applied to the plane triangle UOS in Figure 1 yields 

sin(𝜃𝜃)
𝑑𝑑

=
sin(12𝜋𝜋 + 𝛼𝛼)
𝑅𝑅𝑒𝑒 + ℎ

=
sin(12𝜋𝜋 − 𝛼𝛼 − 𝜃𝜃)

𝑅𝑅𝑒𝑒
 Eq 1 

Using the properties of trigonometric functions, Eq 1 reduces to 
sin(𝜃𝜃)
𝑑𝑑

=
cos(𝛼𝛼)
𝑅𝑅𝑒𝑒 + ℎ

=
cos(𝛼𝛼 + 𝜃𝜃)

𝑅𝑅𝑒𝑒
 Eq 2 

In Eq 2, the left-center equality, 

(𝑅𝑅𝑒𝑒 + ℎ) sin(𝜃𝜃) = 𝑑𝑑 cos (𝛼𝛼) Eq 3 

relates all five quantities of interest in a simple way. 

The left-right equality in Eq 2 is equivalent to 

𝑅𝑅𝑒𝑒 sin(𝜃𝜃) = 𝑑𝑑 cos(𝛼𝛼 + 𝜃𝜃) Eq 4 

This expression relates one side variable, 𝑑𝑑, and the two angle variables, 𝛼𝛼 and 𝜃𝜃. 

Similarly, the center-right equality in Eq 1 is equivalent to 

𝑅𝑅𝑒𝑒 cos(𝛼𝛼) = (𝑅𝑅𝑒𝑒 + ℎ) cos(𝛼𝛼 + 𝜃𝜃) Eq 5 

This expression relates one side variable, h, and the two angle variables, 𝛼𝛼 and 𝜃𝜃. 

2.1.2 Law of Cosines for Plane Triangles 

For future reference, the law of cosines is applied to the plane triangle UOS in Figure 1. When 
the angle at O is used as the angle of interest, the result is 

𝑑𝑑2 = 𝑅𝑅𝑒𝑒2 + (𝑅𝑅𝑒𝑒 + ℎ)2 − 2 𝑅𝑅𝑒𝑒  (𝑅𝑅𝑒𝑒 + ℎ) cos(𝜃𝜃) Eq 6 

When the law of cosines is applied using the angle at U, the result is 

(𝑅𝑅𝑒𝑒 + ℎ)2 = 𝑅𝑅𝑒𝑒2 + 𝑑𝑑2 − 2 𝑅𝑅𝑒𝑒   𝑑𝑑 cos(12𝜋𝜋 + 𝛼𝛼) Eq 7 

Each of these equations relates variables for two sides, 𝑑𝑑 and ℎ, and one angle — 𝜃𝜃 in Eq 6, and 
𝛼𝛼 in Eq 7. 
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2.1.3 Law of Tangents for Plane Triangles 

The law of tangents for a plane triangle having sides 𝑎𝑎 and 𝑏𝑏 (respectively) with opposite angles 
𝐴𝐴 and 𝐵𝐵 is  

𝑎𝑎 − 𝑏𝑏
𝑎𝑎 + 𝑏𝑏

=
tan(12(𝐴𝐴 − 𝐵𝐵))
tan(12(𝐴𝐴 + 𝐵𝐵))

 Eq 8 

The law of tangents can be used to find angles 𝐴𝐴 and 𝐵𝐵 simultaneously from their opposite sides, 
𝑎𝑎 and 𝑏𝑏, and the angle, 𝐶𝐶, enclosed by 𝑎𝑎 and 𝑏𝑏. Thus 

𝐴𝐴 − 𝐵𝐵 = 2 arctan �
𝑎𝑎 − 𝑏𝑏
𝑎𝑎 + 𝑏𝑏

tan(12(𝜋𝜋 − 𝐶𝐶))� 

𝐴𝐴 + 𝐵𝐵 = 𝜋𝜋 − 𝐶𝐶 
Eq 9 

It follows that 

𝐴𝐴 = 1
2
(𝜋𝜋 − 𝐶𝐶) +  arctan �

𝑎𝑎 − 𝑏𝑏
𝑎𝑎 + 𝑏𝑏

cot(12𝐶𝐶)� 

𝐵𝐵 = 1
2
(𝜋𝜋 − 𝐶𝐶) −  arctan �

𝑎𝑎 − 𝑏𝑏
𝑎𝑎 + 𝑏𝑏

cot(12𝐶𝐶)� 
Eq 10 

The law of tangents (like the law of sines) can be used to find one side of a triangle from a linear 
equation, given another side and both opposite angles. Both denominators in Eq 8 must be posi-
tive. Thus 𝐴𝐴 > 𝐵𝐵 if and only if 𝑎𝑎 > 𝑏𝑏. So, if the sides of a plane triangle are ordered based on 
length, their opposite angles must have the same order based on magnitude, and vice versa. 

2.1.4 Quadratic Algebraic Equation 

In some instances, a quadratic equation similar to the following must be solved 

𝐴𝐴 𝑥𝑥2 + 𝐵𝐵 𝑥𝑥 + 𝐶𝐶 = 0 Eq 11 

The algebraic solution is  

𝑥𝑥 =
−𝐵𝐵 ± √𝐵𝐵2 − 4𝐴𝐴𝐴𝐴

2𝐴𝐴
 Eq 12 

Generally, we cannot have imaginary roots, so B2 > 4 A C when A and C have the same sign. In 
many instances, the positive root is sought. In these situations: 

𝑥𝑥 =
−𝐵𝐵 + √𝐵𝐵2 − 4𝐴𝐴𝐴𝐴

2𝐴𝐴
=

𝐵𝐵
2𝐴𝐴

�−1 + √1 − 𝐷𝐷�     ,     𝐷𝐷 ≡
4𝐴𝐴𝐴𝐴
𝐵𝐵2

     ,     |𝐷𝐷| < 1 

𝑥𝑥 = −
𝐵𝐵

2𝐴𝐴
�

1
2
𝐷𝐷 +

1
8
𝐷𝐷2 +

1
16

𝐷𝐷3 +
5

128
𝐷𝐷4 +

7
256

𝐷𝐷5 +
21

1024
𝐷𝐷6 +

33
2048

𝐷𝐷7 + ⋯�  

𝑥𝑥 → −
𝐵𝐵𝐵𝐵
4𝐴𝐴

= −
𝐶𝐶
𝐵𝐵

     as     𝐷𝐷 → 0 

Eq 13 
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2.1.5 Computational Precision 

To retain measurement precision, geodetic navigation and surveillance calculations typically 
require a minimum of ten decimal places (although they may not be needed in all applications). 
The reasons are that: (1) the earth radius and related quantities are known to an accuracy of one 
foot, or eight decimal places (Section 2.2); and (2) locations of interest on the earth’s surface are 
often stated to hundredths of a foot, or ten decimal places (typical FAA and Coast Guard data).  

If the analyst determines that calculations should be capable of replicating specified locations in 
the presence of computational effects (typically when using automation equipment), floating-
point double-precision arithmetic is a minimum requirement. The IEEE 64-bit float pointing 
format “gives 15–17 significant decimal digits precision” (Ref. 4). Moreover, awareness of 
potential precision issues remains the analyst’s responsibility. 

2.1.6 Inverse Trigonometric Functions 

Intrinsic to navigation analysis is the calculation of angles using inverse trigonometric functions. 
In performing such calculations, two concerns must be borne in mind: (1) numerical ill-con-
ditioning and (2) ambiguous/extraneous solutions. Numerical ill-conditioning typically occurs 
when sine or cosine function values are close to ±1. Ambiguous/extraneous solutions occur when 
multiple angles satisfy a mathematical equation, and are a concern when the approximate value 
of the correct angle is not known. The equations in the following chapters attempt to address 
these concerns, but every situation cannot be anticipated. 

Numerical Ill-Conditioning — Both the sine and cosine functions have angular arguments for 
which, simultaneously, the function’s (a) value is ±1, and (b) derivative is zero. In such 
situations, relatively large changes in the angular argument can result in small changes in the 
function value, which may be subject to truncation or round off. Thus, computing an angle using 
the inverse of a trigonometric function often requires care and/or increased precision. 

Table 2 illustrates numerical ill-conditioning for geocentric angle 𝜃𝜃 computed from the arc 
cosine function. For illustrative purposes, five decimal digits are used for angles in radians and 
their trigonometric function values (linear distances are regarded as comments). Here the 
minimum detectable cosine function change corresponds a linear distance greater than 10.3 NM. 
For most applications, use of double precision will alleviate problems of this nature, but use of 
single precision (which typically is accurate to seven decimal places) typically will not. 
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Table 2  Behavior of Trigonometric Functions for Small Geocentric Angles θ 

θ (rad) Re θ 
(NM) 

Re θ 
(feet) cos(θ) 1-cos(θ) sin(θ) sin(θ ) / 

1-cos(θ) 
0.00000 0.000 0 1.00000 0.00000 0.00000 — 
0.00001 0.034 209 1.00000 0.00000 0.00001 2.00 E+05 
0.00003 0.103 627 1.00000 0.00000 0.00003 6.67 E+04 
0.00010 0.344 2,090 1.00000 0.00000 0.00010 2.00 E+04 
0.00030 1.031 6,270 1.00000 0.00000 0.00030 6.67 E+03 
0.00100 3.438 20,900 1.00000 0.00000 0.00100 2.00 E+03 
0.00300 10.313 62,700 1.00000 0.00000 0.00300 6.67 E+02 
0.01000 34.378 209,000 0.99995 0.00005 0.01000 2.00 E+02 
0.03000 103.134 627,000 0.99955 0.00045 0.03000 6.67 E+01 
0.10000 343.780 2,090,000 0.99500 0.00500 0.09983 2.00 E+01 

When hand calculations were the norm, a remedy to such situations was to employ the sine or 
tangent function, rather than the cosine function, when small angles are to be found. Unlike the 
cosine function, the sine and tangent functions increase monotonically from a zero value for a 
zero angle. In Table 2, the last column (calculated using double precision) indicates that for an 
angle of 0.000,01 rad, the sine function has a five decimal place precision advantage over the 
cosine function.  

A method for recasting an ill-conditioned expression for cos(𝜃𝜃), which dates to the middle of the 
first millennium, is illustrated in Eq 14.  









=

=−=













−≡

−=

2
arcsin2

2
1

2
1

2
sin

2
sin21)cos(

)(1)()cos(
2

εθ

εθ

θθ

εθ

So

fThus

Invoke

variablesothervariablesotherf  =  Given

 Eq 14 

An example application of Eq 14 is finding the shortest side 𝜃𝜃𝐴𝐴 of a right spherical triangle, 
given the hypotenuse 𝜃𝜃𝐻𝐻 and the other side 𝜃𝜃𝐵𝐵 which have similar magnitudes. Spherical 
trigonometry, addressed in Section 4.1, provides the spherical equivalent of Pythagoras' theorem, 
cos(𝜃𝜃𝐻𝐻) = cos(𝜃𝜃𝐴𝐴) cos(𝜃𝜃𝐵𝐵). Using cos(𝜃𝜃𝐵𝐵) − cos(𝜃𝜃𝐶𝐶) = 2 sin �12(𝜃𝜃𝐶𝐶 + 𝜃𝜃𝐵𝐵)� sin �12(𝜃𝜃𝐶𝐶 − 𝜃𝜃𝐵𝐵)�, 
an identity from plane trigonometry, it follows that 

𝜃𝜃𝐴𝐴 = arccos �
cos (𝜃𝜃𝐻𝐻)
cos (𝜃𝜃𝐵𝐵)

� = 2 arcsin��
sin�12(𝜃𝜃𝐻𝐻 + 𝜃𝜃𝐵𝐵)� sin�12(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐵𝐵)�

cos (𝜃𝜃𝐵𝐵)
� Eq 15 
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 = 2 arcsin

⎝

⎛
�sin�12(𝜃𝜃𝐻𝐻 + 𝜃𝜃𝐵𝐵)� �sin�12(𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐵𝐵)�

�cos (𝜃𝜃𝐵𝐵)
⎠

⎞ 

Ambiguous/Extraneous Solutions — Trigonometric functions 
are periodic. Consequently, inverse trigonometric functions can 
result in multiple angles. (Figure 3 illustrates the principal values 
for the arccos and arcsin.) Herein, the term ‘ambiguous’ refers to 
situations where more than one solution to a mathematical 
equation satisfies the physical problem posed, whereas ‘extran-
eous’ solutions satisfy the mathematical equation but not the 
physical problem. To limit the frequency of such situations, when 
selecting an equation, the analyst should consider the expected 
range of values for the angle involved — e.g.,  
 Elevation Angles — Elevation angles 𝛼𝛼 vary 

between -π/2 and π/2, so the arc sine and arc tangent 
functions, which result in unique angles in [-π/2, π/2] are 
preferred.  

 Geocentric Angles — Geocentric angles 𝜃𝜃 vary between 0 
and π, so the arc cosine or half-angle arc sine formulas are 
preferred, since both yield unique angles in [0,π] 

 Azimuth Angles — Azimuth angles 𝜓𝜓 vary between –π and π, so the four-quadrant (two 
argument) arc tangent function is preferred.  

Unfortunately, some physical situations are inherently ambiguous. When such a situation occurs 
and the correct solution cannot be determined by inspection, the approach taken herein is make 
the ambiguity explicit by using the principal value of the arc function involved and introducing 
additional notation such as ‘±’. When the principal value is to be used, the ‘a’ in arc is 
capitalized. Such situations occur, e.g., in Subsections 3.3.1 and 3.4.4. In the former, the quantity 
‘arccos[𝑢𝑢 cos(𝛼𝛼)]’ is to be found, where 𝑢𝑢 > 0. Since the correct resulting angle may be posi-
tive or negative when 𝛼𝛼 > 0, for clarity, the quantity is written as ‘±Arccos[𝑢𝑢 cos(𝛼𝛼)]’. 

2.1.7 Power Series Expansions for arcsin, arccos and arctan 

In the analysis that follows, a common situation is the need to compute the inverse of a trigo-
nometric function for an argument such that the resulting angle will be close to 0 — e.g., 𝜃𝜃 =
arcsin(𝑥𝑥), 𝜃𝜃 = arccos(1 − 𝑥𝑥) or 𝜃𝜃 = arctan(𝑥𝑥), where 𝑥𝑥 is close to 0.  

First, it is known that (Ref. 5)  

 
Figure 3  Principal Values of 
arcsin and arccos Functions 
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arcsin(𝑥𝑥) = 𝑥𝑥 +
1
6
𝑥𝑥3 +

3
40

𝑥𝑥5 +
5

112
𝑥𝑥7 +

35
1152

𝑥𝑥9 +
63

2816
𝑥𝑥11 + ⋯ Eq 16 

A Taylor series expansion of arccos(1 − 𝑥𝑥) is not available, due to its lacking a derivative at 

𝑥𝑥 = 0. However, a more general power series (often called a Frobenius expansion) is available; 

thus, utilizing Eq 14 and Eq 16: 

arccos(1 − 𝑥𝑥) = 2 arcsin��1
2𝑥𝑥�

= √2𝑥𝑥  �1 +
1

12
𝑥𝑥 +

3
160

𝑥𝑥2 +
5

896
𝑥𝑥3 +

35
18432

𝑥𝑥4 +
63

90112
𝑥𝑥5 + ⋯� 

Eq 17 

Lastly, from Ref. 5: 

arctan(𝑥𝑥) = 𝑥𝑥 −
1
3
𝑥𝑥3 +

1
5
𝑥𝑥5 −

1
7
𝑥𝑥7 +

1
9
𝑥𝑥9 −

1
11

𝑥𝑥11 ± ⋯ Eq 18 

2.1.8 Single-Variable Numerical Root Finding Methods 

Introduction — When it’s necessary to find an unknown scalar quantity, the preferred situation 
is to have (or develop) an equation whereby all known quantities are on one side and the 
unknown quantity is isolated on the opposite side (sometimes call ‘inverting’ the original 
equation). However, situations inevitably arise whereby the available expressions cannot be 
manipulated to isolate the unknown quantity (sometimes called ‘intractable’). This is particularly 
true when three-dimensions are involved and/or an ellipsoidal model of the earth is employed. In 
such situations, recourse is often made to numerical root finding techniques. 

The most widely-known scalar root-finding technique is “Newton’s” or the “Newton-Raphson” 
method (Ref. 6). Newton’s method performs well for most functions, but has the disadvantage 
that it requires the derivative of the expression with respect to the variable whose value is sought. 
Often the derivative is difficult or impossible to find analytically. Thus, in applied work, interest 
is frequently focused on derivative-free root-finding techniques. Such techniques were first 
investigated by the ancients, including the Babylonians and Egyptians. 

Secant Method — The secant method is among the simplest and oldest root-finding algorithms. 
Assume that we seek a value of x that satisfies 𝑓𝑓(𝑥𝑥) = 0 and that two initial or previous 
estimates for x are available, 𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛. The expression for the next estimate, 𝑥𝑥𝑛𝑛+1, then is  

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1

𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑥𝑥𝑛𝑛−1) =
𝑥𝑥𝑛𝑛−1𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛−1)

𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑥𝑥𝑛𝑛−1)  Eq 19 
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The secant method is a finite difference version of Newton’s method; in effect, it uses the 
previous two points to estimate the function’s derivative. The points 𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 that are used to 
generate 𝑥𝑥𝑛𝑛+1 maybe, but are not required to be, on opposite sides of the root sought.  

Example of Secant Method — An example of the secant method is determining the square root 
of 2 — i.e., finding the root of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2– 2. Table 3 shows the results of applying Newton’s 
method and the secant method, beginning from similar points. 

Table 3  Comparison of Newton’s and Secant Methods for Finding the Square Root of 2 

Iteration, n Newton’s Method Secant Method 
Variable, xn Function, f(xn) Variable, xn Function, f(xn) 

1 1.0000000000 -1.0000000000 1.0000000000 -1.0000000000 
2 1.5000000000 0.2500000000 1.5000000000 0.2500000000 
3 1.4166666667 0.0069444444 1.4000000000 -0.0400000000 
4 1.4142156863 0.0000060073 1.4137931034 -0.0011890606 
5 1.4142135624 0.0000000000 1.4142156863 0.0000060073 
6 — — 1.4142135621 -0.0000000009 
7 — — 1.4142135624 0.0000000000 

Discussion — After initialization, both Newton’s and the secant method converge in one step if 
the function f is linear over the interval between the initial value(s) and the root. Generally, con-
vergence is governed by the first and second derivatives of f. Functions that have a constant or 
continuously increasing (or decreasing) derivative are most amenable to a numerical root finder. 
For such functions, Newton’s method convergence is order 2 (i.e., the error for iteration n is 
proportional to the square of the error for iteration n-1); the secant method convergence is order 
1.6 (termed ‘superlinear’). If one weights function and derivative evaluations equally, the secant 
method can be faster than Newton’s method. 

Guaranteed Convergence Methods — While effective for favorable initial conditions, conver-
gence is not guaranteed for either Newton’s or the secant method. If not chosen close enough to 
the root sought, the initial point(s) can result in a derivative (or numerical approximation thereof) 
which is much smaller in absolute value and/or of opposite sign than the derivative at the solu-
tion. That, in turn, can cause the next estimate, xn+1, to be far from the root sought (divergence).  

The two methods described immediately below guarantee convergence, provided that the initial 
estimates 𝑥𝑥1 and 𝑥𝑥2 are on opposite sides of the root sought and that there is only one root 
between 𝑥𝑥1 and 𝑥𝑥2. These conditions are often satisfied in navigation problems. The cost of this 
robustness generally is speed of convergence. Neither method converges as rapidly as Newton’s 
or the secant method for well-chosen initial point(s). Two examples are provided below. 

False Position (Regula Falsi) — The method of false position uses almost the same expression as 
the secant method to find the next estimate, 𝑥𝑥𝑛𝑛+1, for the root sought. The difference is that the 
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initial two estimates, now labeled 𝑥𝑥1 and 𝑥𝑥1′ , are required to be on opposite sides of the root 
sought. Moreover, at each subsequent iteration, the two points used to compute 𝑥𝑥𝑛𝑛+1 (i.e., 𝑥𝑥𝑛𝑛 and 
𝑥𝑥𝑛𝑛′  in Eq 20) are required to be on opposite sides of the root. The weakness of the false position 
method is that convergence can be very slow when f is highly nonlinear, because the actual 
function and assumed linear function behaviors are widely different. 

𝑥𝑥𝑛𝑛+1 =
𝑥𝑥𝑛𝑛′  𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑥𝑥𝑛𝑛 𝑓𝑓(𝑥𝑥𝑛𝑛′ )
𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑥𝑥𝑛𝑛′ )    ,   𝑥𝑥𝑛𝑛+1′ = 𝑥𝑥𝑛𝑛 or 𝑥𝑥𝑛𝑛′    such that   𝑓𝑓(𝑥𝑥𝑛𝑛+1)𝑓𝑓(𝑥𝑥𝑛𝑛+1′ ) < 0 Eq 20 

Interval Bisection — Interval bisection is among the oldest root finding techniques. Like the 
method of false position, the initial two estimates, 𝑥𝑥1 and 𝑥𝑥1′ , are required to be on opposite sides 
of the root sought. Then, at each iteration, 𝑥𝑥𝑛𝑛+1 is set to the mean of 𝑥𝑥𝑛𝑛 and 𝑥𝑥𝑛𝑛′  (Eq 21). As for 
the method of false position, 𝑥𝑥𝑛𝑛+1′  is set to either 𝑥𝑥𝑛𝑛 or 𝑥𝑥𝑛𝑛′ , whichever is on the side opposite 
𝑥𝑥𝑛𝑛+1 of the root. Except for its sign, the interval bisection method does not take account of the 
value of the function f. This is a drawback when f is almost linear. However, it is an advantage 
when f is highly nonlinear, since it is better to assume nothing about a function’s behavior than to 
make an incorrect assumption. 

𝑥𝑥𝑛𝑛+1 = 0.5 (𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛′ )  ,   𝑥𝑥𝑛𝑛+1′ = 𝑥𝑥𝑛𝑛 or 𝑥𝑥𝑛𝑛′    such that   𝑓𝑓(𝑥𝑥𝑛𝑛+1)𝑓𝑓(𝑥𝑥𝑛𝑛+1′ ) < 0 Eq 21 

These two methods can be used separately or in combination, either as the first root finding 
technique employed or as an alternative when the secant method fails.  

Example of Guaranteed Convergence Methods (Poor Initial Values) — The function 
selected is specified in Eq 22 and illustrated in Figure 4. It is representative of functions often 
encountered in navigation analysis. Although highly nonlinear, it is ordinary in many aspects. 
It’s monotonically increasing, as is its derivative. The initial two points are on opposite sides of 
the root sought (at π/4 = 0.785398…), but are intentionally selected not to be close to the root.  

𝑓𝑓(𝑥𝑥) =
1

cos2(𝑥𝑥)
− 2          𝑥𝑥1 = 0          𝑥𝑥1′ = 1.5 Eq 22 

Three guaranteed-convergence root finding algorithms are employed for Eq 22: interval 
bisection, false position, and alternating between the two. The stopping criterion is |𝑓𝑓(𝑥𝑥𝑛𝑛)| <
10−10. The iteration numbers n that satisfy the stopping criterion are (and an opinion): interval 
bisection, n = 37 (acceptable); false position, n = 1,696 (not acceptable); and alternating, n = 20 
(preferred).  

The excessive number of iterations required by the false position method is due to its primary 
limitation: one of the two points used to compute 𝑥𝑥𝑛𝑛+1 (Eq 20) may remain fixed (‘pinned’) at 
one of the initial values. In this case, 𝑥𝑥𝑛𝑛′ = 𝑥𝑥1′ = 1.5 for 𝑛𝑛 = 2,3,4, … while 𝑥𝑥𝑛𝑛 increases 
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gradually from slightly greater than zero to the root sought.  

 
Figure 4  Example Function for Numerical Root Finding Techniques 

The secant method diverges for this example. The values computed for 𝑥𝑥3 and 𝑥𝑥4 are the same as 
𝑥𝑥2 and 𝑥𝑥3 for the false position method. However, for the secant method, the computed value for 
𝑥𝑥5 is 44.26…, which is well outside the initial interval. One might posit that the very slow 
convergence of the false position method for this example is the ‘cost’ of using a linear method 
that guarantees convergence in a situation where the secant method diverges. 

Role of Initial Values — The initial values are an integral part of a root-finding problem. 
‘Good’ initial values result in a situation whereby the function is almost linear for the interval 
containing the root sought and the initial values. Then the secant method can be used and 
convergence is rapid. Conversely, for ‘poor’ initial values, the function is highly nonlinear over 
that interval. Then a guaranteed-convergence algorithm is needed and convergence is slower. 
Conceptually, one may regard alternating between the interval bisection and false position 
methods as using the interval bisection method to improve the initial estimates for the false 
position method.  

Example of Guaranteed Convergence Methods (Good Initial Values) — If the example of Eq 
22 is modified by choosing 𝑥𝑥1′ = 1 rather than 1.5 (without changing anything else), then the 
problem is transformed from one that is highly nonlinear to one that is almost linear. The 
iteration numbers n that satisfy the stopping criterion are: interval bisection, n = 37; false 
position, n = 29; and alternating between the two, n = 16. For this modified example, the secant 
method converges and satisfies the stopping criterion when n = 11. 
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Summary: Guaranteed Convergence Methods — Convergence of the false position method is 
highly sensitive to the initial values used, while convergence of the interval bisection method is 
completely insensitive to the initial values. Alternating between the two methods is often more 
efficient than using either exclusively, for both ‘good’ and ‘poor’ initial conditions. Other 
techniques for combining the interval bisection and false position methods may also be used. 

2.2 Shape of the Earth 

2.2.1 WGS-84 Ellipsoid Parameters 

While use of a spherical earth model is basic to much of the analysis herein, the most-accepted 
model for the shape of the earth is an oblate spheroid (ellipse rotated about its minor axis). The 
term ‘ellipticity error’ is used for differences between distances or angles found using a spherical 
earth model and the same quantities found using an ellipsoidal model. 

The World Geodetic Survey 1984 (WGS-84) model parameter are the ellipsoid’s semi-major 
axis, a, and the flattening f. Their numerical values are 

 𝑎𝑎 = 6,378,137 m   (WGS-84) 
 𝑓𝑓 = 1 / 298.257,223,563   (WGS-84) 

Eq 23 

Flattening of the ellipsoid is defined by Eq 24, where 𝑏𝑏 is the semi-minor axis. 

𝑓𝑓 =
𝑎𝑎 − 𝑏𝑏
𝑎𝑎

 Eq 24 

In computations, the square of the eccentricity 𝑒𝑒2 is frequently used in lieu of the flattening.  

𝑒𝑒2 =
𝑎𝑎2 − 𝑏𝑏2

𝑎𝑎2
= 2𝑓𝑓 − 𝑓𝑓2 = 𝑓𝑓(2 − 𝑓𝑓) Eq 25 

Although the earth’s shape is not a sphere, it is nearly so. A useful ‘rule of thumb’ is that the 
ellipticity error in the computed length of a path is 0.3%. The basis of this estimate is that the 
earth’s flattening is approximately 0.003353, or 0.34%. Subsection 4.8.7 contains examples of 
the ellipticity error in computing the ranges between selected airports. 

In the U.S., the foot is the most common unit of distance. As a result of the International Yard 
and Pound Agreement of July 1959, the international foot is defined to be exactly 0.3048 meter. 
Thus 

 𝑎𝑎 = 20,925,646.3 ft   (WGS-84) 
 𝑏𝑏 = (1– 𝑓𝑓)𝑎𝑎 = 6,356,752.3 m = 20,855,486.6 ft   (WGS-84) 
 𝑒𝑒2 = 0.006,694,379,990,14   (WGS-84) 

Eq 26 

In marine and aviation applications, the nautical mile (NM) is usually used as the unit of 
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distance. The international nautical mile was defined by the First International Extraordinary 
Hydrographic Conference in Monaco (1929) as exactly 1,852 meters. This definition was 
adopted by the United States in 1954. The international nautical mile definition, combined with 
the definition for the foot cited above, result in there being 6,076.1155 feet in one nautical mile. 

2.2.2 Radii of Curvature in the Meridian and the Prime Vertical 

To approximate the ellipsoidal earth at a location on its surface by a sphere, two radii of curva-
ture (RoCs) are commonly defined — the RoC in the meridian (north-south orientation), 𝑅𝑅𝑛𝑛𝑛𝑛, 
and the RoC in the prime vertical (east-west orientation), 𝑅𝑅𝑒𝑒𝑒𝑒 (Ref. 7). These RoCs lie in 
orthogonal planes that include the normal (perpendicular line) to the surface of the ellipse. Their 
values are a function of the geodetic latitude 𝐿𝐿 of the location involved — see Appendix (Section 
9.3). Their analytic expressions are shown in Eq 27 and they are plotted in Figure 5. 

𝑅𝑅𝑛𝑛𝑛𝑛 =
𝑎𝑎(1 − 𝑒𝑒2)

[1 − 𝑒𝑒2 sin2(𝐿𝐿)]3/2 
=

𝑎𝑎2 𝑏𝑏2

[𝑎𝑎2 cos2(𝐿𝐿) + 𝑏𝑏2 sin2(𝐿𝐿)]3/2 
 

𝑅𝑅𝑒𝑒𝑒𝑒 =
𝑎𝑎

[1 − 𝑒𝑒2 sin2(𝐿𝐿)]1/2 
=

𝑎𝑎2 
[𝑎𝑎2 cos2(𝐿𝐿) + 𝑏𝑏2 sin2(𝐿𝐿)]1/2 

 
Eq 27 

The 𝑅𝑅𝑛𝑛𝑛𝑛 RoC in Eq 27 can vary more widely than the rule of thumb for ellipticity error. Figure 5 
shows that while 𝑅𝑅𝑒𝑒𝑒𝑒 does change by about 0.34% between the Equator and a Pole, 𝑅𝑅𝑛𝑛𝑛𝑛 changes 
by slightly over 1%. Excursions of the radius of curvature from a reasonable average value will 
usually be greater, on a percentage basis, than the ellipticity error in a path length. 

The RoC in an arbitrary vertical plane that includes the normal to the ellipse and makes azimuth 
angle 𝜓𝜓 with north is given by (Ref. 7): 

1
𝑅𝑅𝜓𝜓

≡
cos2(𝜓𝜓)
𝑅𝑅𝑛𝑛𝑛𝑛

+
sin2(𝜓𝜓)
𝑅𝑅𝑒𝑒𝑒𝑒

 Eq 28 

The average of 𝑅𝑅𝜓𝜓 over 0 ≤ 𝜓𝜓 ≤ 2𝜋𝜋 (at a given latitude) is the Gaussian radius of curvature 𝑅𝑅𝐺𝐺  

𝑅𝑅𝐺𝐺 ≡ �𝑅𝑅𝑛𝑛𝑛𝑛  𝑅𝑅𝑒𝑒𝑒𝑒 =
𝑎𝑎(1 − 𝑓𝑓)

1 − 𝑒𝑒2 sin2(𝐿𝐿) 
 Eq 29 

In some applications, a global approximation to 𝑅𝑅𝑒𝑒 (independent of latitude) may be sufficient. 
One such approximation is the arithmetic mean of the three semi-axes of the ellipsoid 

𝑅𝑅𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≡
1
3
(𝑎𝑎 + 𝑎𝑎 + 𝑏𝑏) = �1 − 1

3𝑓𝑓� 𝑎𝑎 Eq 30 

Thus 
 𝑅𝑅𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 6,371,008.8 m = 20,902,259.7 ft   (WGS-84) Eq 31 
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Figure 5  Ellipsoidal Earth’s Radii of Curvature, Normalized to the Semi-Major Axis 

When analyzing procedures for the FAA and other U.S. Government agencies with an aviation 
mission, the value of 𝑅𝑅𝑒𝑒 to be used is defined in Ref. 2:  
 𝑅𝑅𝑒𝑒,𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 20,890,537 ft   (U.S. TERPS) Eq 32 

An earth-centered, earth-fixed (ECEF) Cartesian coordinate frame for an ellipsoidal model of the 
earth is defined in the Appendix (Section 9.3).  

2.2.3 Methods for Addressing an Ellipsoidal Earth 

During approximately the past half-century, there has been a resurgence of interest in ellipsoidal 
earth models. Reasons for this interest include: (1) wide availability of machine-based compu-
tational capabilities, (2) deployment of accurate long-range radionavigation systems, and 
(3) development of long-range weapons systems. Much of the recent work derives from two 
volumes by Helmert* which were published in the 1880s (Ref. 8) and translated into English 
(Ref. 9) in the 1960s. 

Andoyer-Lambert Formula — The Andoyer-Lambert formula results from expansion of the 
geodesic (shortest) arc between two points on a reference ellipsoid to first-order in the flattening 
(Ref. 10). This approximation was widely used in conjunction with both the Loran-C (Ref. 11) 
and Omega (Ref. 12) radionavigation systems. Accuracy for the Andoyer-Lambert formula is 

                                                 
* Friedrich Robert Helmert (July 31, 1843 – June 15, 1917) was born in Freiberg, Kingdom of Saxony (now 
Germany). According to Wikipedia, his texts “laid the foundations of modern geodesy”. 
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10 m for distances up to 6,000 miles (Ref. 11). 

Sodano’s Method — In a series of papers published between 1958 and 1968, Sodano* described 
approximate solutions to the Direct and Indirect problems of geodesy based on expansion of the 
arc length between two points to higher orders in the eccentricity (Refs. 13, 14 and 15). Quoting 
Ref. 13: “The accuracy of geodetic distances computed through the e2, e4, e6 order for very long 
geodesics is within a few meters, centimeters and tenth of millimeters respectively. Azimuths are 
good to tenth, thousandths and hundreds thousandths of a second. Further improvement of results 
occurs for shorter lines”. 

Vincenty’s Method — During the early 1970s, Vincenty† revisited the issue of geodesics on an 
ellipsoid. He developed and programmed a version of earlier algorithms (including Helmert’s) 
for a calculator. To accommodate the available computing technology, Vincenty’s primary 
concern was minimizing the program’s memory consumption. Accordingly, he developed 
iterative algorithms for both the Direct and Indirect problems of geodesy (Ref. 16).  

Due to its ease of coding, Vincenty’s algorithms are now the most widely used method for 
computing geodesics on an ellipsoidal earth. Their accuracy is quoted as less than one milli-
meter, which has been independently validated by comparison with numerical integration of the 
differential equations governing geodesic arcs on an ellipsoid (Ref. 17). 

2.2.4 Surface Area of a Spherical Earth Visible to a Satellite 

If the earth is modeled as a sphere with radius 𝑅𝑅𝑒𝑒, its surface area is 4𝜋𝜋𝑅𝑅𝑒𝑒2. The surface area 
enclosed by a circle on the surface of that sphere is 

𝐴𝐴 = 2𝜋𝜋 (𝑅𝑅𝑒𝑒)2[1 − cos (𝜃𝜃)] Eq 33 

Here 𝜃𝜃 is the half-angle of the cone, with apex at the center of the spherical earth, whose 
intersection with the surface forms the circle under discussion. In Figure 1, the cone would be 
formed by rotating line OU about line ON. Thus 𝐴𝐴 is the area of the earth visible to satellite S at 
altitude ℎ when the user’s elevation angle 𝛼𝛼 or larger. An expression for the cone angle 𝜃𝜃 as a 
function of the satellite altitude h and user’s elevation angle 𝛼𝛼 is provided subsequently (Eq 40). 

 

                                                 
* Emanuel Sodano worked at the U.S. Army Map Service and the Army Geodesy, Intelligence and Mapping 
Research and Development Agency. 
† Thaddeus Vincenty worked at the U.S. Defense Mapping Agency Aerospace Center, Geodetic Survey Squadron, 
Warren Air Force Base, in Wyoming. 
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3. TWO-POINT / VERTICAL-PLANE FORMULATION 

3.1 Mathematical Problem and Solution Taxonomy 

3.1.1 Mathematical Formulation 

In mathematical terms, the objective of this chapter is to analyze a plane triangle similar to UOS 
in Figure 1. A plane triangle is fully described by its three sides and three interior angles (or 
quantities having a one-to-one relationship with these six quantities). However, since the interior 
angles of a plane triangle (quantified in radians) must sum to π, interest can be limited to two 
interior angles (or their one-to-one equivalents). Thus, in Figure 1, any three of the five 
quantities 𝑅𝑅𝑒𝑒, ℎ, 𝑑𝑑, 𝛼𝛼 and 𝜃𝜃 can be selected independently (noting that at least one quantity must 
be a side), and the other two quantities will be (almost) uniquely determined. In this analysis,  
 The angle having its vertex at the satellite S has a secondary role and is treated as a 

dependent variable.  
 The earth's radius 𝑅𝑅𝑒𝑒 is assumed to be a known parameter, rather than a variable. 

Consequently, the purpose of this chapter is to provide solutions for any one of the four variables 
(ℎ, 𝑑𝑑, 𝛼𝛼, 𝜃𝜃) as a function of any two of the remaining variables (and the known parameter 𝑅𝑅𝑒𝑒). 
When a known user altitude ℎ𝑈𝑈 is introduced in Section 3.2, ℎ is a surrogate for ℎ𝑆𝑆 –  ℎ𝑆𝑆. 
However there is no change in the number of known/unknown quantities or to the solution 
methodology.  

3.1.2 Taxonomy of Solution Approaches 

Calculating any one variable (of four possible) as a function of any two (of three possible) other 
variables results in a total of 12 equations. These equations are addressed in the following 
sections of this chapter and are described Table 4. In the fourth column of the table, the classic 
trigonometric terminology for ‘solving a triangle’ is utilized — e.g., SAS denotes two sides and 
the included angle (Ref. 18). 

Two complications can arise when ‘solving a triangle’. One is that — due to measurement errors 
or other reasons — the values for the independent variables are not consistent with a valid tri-
angle. For example: in an ASA situation, the two known angles may sum to π or greater; in an 
SSS situation, one side may be longer than the sum of the other two. A second complication can 
occur when the three quantities available are consistent with a valid triangle; they may in fact be 
consistent with two triangles (ambiguous solution). This can only occur for the SSA taxonomy 
category, and only when the available angle is adjacent to the longer of the two available sides. 
Sections 3.2 through 3.6 address these complications. 
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Table 4  Taxonomy for the Vertical Plane Triangle OUS in Figure 1 

Independent 
Variables* 

Dependent 
Variable Subsection Triangle 

Taxonomy† 
Solution 

Guaranteed? 
Solution 
Unique? Solution Method 

ℎ & 𝛼𝛼 𝜃𝜃 3.3.1‡ SSA No No Law of Sines 
ℎ & 𝑑𝑑 𝜃𝜃 3.3.3 SSS No Yes Law of Cosines 
𝑑𝑑 & 𝛼𝛼 𝜃𝜃 3.3.4‡ SAS Yes Yes Law of Sines 
ℎ & 𝜃𝜃 𝛼𝛼 3.4.1‡ SAS Yes Yes Law of Sines 
ℎ & 𝑑𝑑 𝛼𝛼 3.4.3 SSS No Yes Law of Cosines 
𝑑𝑑 & 𝜃𝜃 𝛼𝛼 3.4.4 SSA No No Law of Sines 
ℎ & 𝜃𝜃 𝑑𝑑 3.5.1 SAS Yes Yes Law of Cosines 
ℎ & 𝛼𝛼 𝑑𝑑 3.5.2 SSA No No Law of Cosines 
𝜃𝜃 & 𝛼𝛼 𝑑𝑑 3.5.3 ASA No Yes Law of Sines 
𝑑𝑑 & 𝜃𝜃 ℎ 3.6.1 SSA No No Law of Cosines 
𝑑𝑑 & 𝛼𝛼 ℎ 3.6.2 SAS Yes Yes Law of Cosines 
𝜃𝜃 & 𝛼𝛼 ℎ 3.6.3‡ ASA No Yes Law of Sines 

* Side OU, length 𝑅𝑅𝑒𝑒, is always known. 
† SAS = side-angle-side; ASA = angle-side-angle; SSS = side-side-side; SSA = side-side-angle. 
‡ The following subsection contains an alternative solution method for the same set of variables. 

There are often alternatives to solution approaches based on the law of cosines and of sines. Four 
are presented herein — three based on the law of tangents and one on the quadratic equation. 

3.1.3 Detailed Geometry 

Figure 6 is a more detailed depiction of the vertical-plane problem geometry shown in Figure 1. 
For each of vertex of triangle OUS, a line is constructed that intersects the opposite side (or an 
extension thereof) in a right angle. (Similar lines are created in some proofs of the law of sines 
and law of cosines.) The intersection points are labeled A, B and C. Because triangle OUS is 
oblique, intersections points B and C are outside the perimeter of OUS. Each constructed line 
results in the creation of two right triangles (for example, line OC creates right triangles OCU 
and OCS). Thus its length can be found from each of the two right triangles. Because the angles 
at B or C are constructed as right angles, it follows that ∠𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛼𝛼 and ∠𝐶𝐶𝐶𝐶𝐶𝐶 = 𝛼𝛼. Figure 6 
also introduces the chord UN, which relates to the half-angle ½𝜃𝜃. Color-coded distances (violet) 
and angles (blue) associated with these lines and points are also shown.  
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Figure 6  Detailed Geometry for Vertical Plane Formulation 

3.2 Accounting for Known User Altitude 

3.2.1 Need to Account for User Altitude 

The equations in Section 3.3 through 3.6 — which address the vertical plane containing the 
User’s location U, the Satellite’s location S and the earth’s surface center O (Figure 1)  — can 
be developed assuming that U is on the earth’s surface. The equations that result are sufficient 
when S represents an actual, earth-orbiting satellite, as their minimum satellite altitudes are 
hundreds of miles. Moreover, in situations involving satellites, if more accuracy is needed, one is 
generally free to re-define the earth’s radius to include the elevation of U above, say, sea level.  

However, the ‘vertical situation’ is very different when S represents an airplane. At most, 
aircraft are only a few miles above the earth’s surface. Additionally, absent a compelling reason 
to do otherwise, in aviation, the earth’s radius corresponds to sea level (this information is 
provided by a baro-altimeter – see Subsection 9.1.1) and should not be redefined. Thus, for 
aviation, the altitude of U, while known, must be explicitly accounted for.  

Subsection 3.2.2 shows how to modify the equations in Section 2.1 to account of a non-zero, 
known user elevation/altitude, and Subsection 3.2.3 shows how to select the user altitude to 
ensure an unblocked line-of-sight to a satellite at a given distance or altitude (which is not 
guaranteed by the equations in Section 3.3 through 3.6).  
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3.2.2 Method of Accounting for Known User Altitude 

In many situations, there is no concern about the line-of-sight (LOS) between the ‘User’ U 
(generally a sensor) and the ‘Satellite’ (actual satellite or aircraft) S being blocked by the earth’s 
curvature. This is the situation depicted in Figure 1. A method for determining the minimum 
elevation angle for which there is no LOS blockage is shown in Subsection 3.2.3.  

When the user altitude ℎ𝑈𝑈 is known, the equations presented in Subsections 2.1.1 and 2.1.2 can 
be used with these substitutions to account for a non-zero user altitude: 
 𝑅𝑅𝑒𝑒  →  𝑅𝑅𝑒𝑒  +  ℎ𝑈𝑈, and  
 ℎ →  ℎ𝑆𝑆 – ℎ𝑈𝑈 (where ℎ𝑆𝑆 is the satellite altitude) 

Eq 34 

3.2.3 Conditions for Unblocked Line-of-Sight (LOS) 

The expressions developed in Sections 3.3 through 3.6 require that OUS be a valid geometric 
triangle, including one of its degenerate forms. However, they do not require that the LOS 
between U and S be unblocked by the earth. The possibility that a signal (or flight) path is 
physically blocked must be checked separately, using the expressions in this subsection. 

Conditions for which the LOS between two points is unblocked by the earth can be determined 
with the aid of Figure 7, which shows the LOS connecting the User U and Satellite S having a 
point of tangency T with the earth’s surface. Eq 35 applies to a situation where the user altitude 
ℎ𝑈𝑈 and satellite altitude ℎ𝑆𝑆 are known and the geocentric angle 𝜃𝜃 is be selected to ensure LOS 
visibility. Altitudes ℎ𝑈𝑈 and ℎ𝑆𝑆 can be traded off to avoid blockage. If the largest value 𝜃𝜃 is 
selected consistent with LOS visibility, the variables 𝑑𝑑, 𝛼𝛼𝑈𝑈 and 𝛼𝛼𝑆𝑆, can be found from Eq 36. 

𝜃𝜃𝑈𝑈 = arccos �
𝑅𝑅𝑒𝑒

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
� = 2 arcsin��

ℎ𝑈𝑈
2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)� 

𝜃𝜃𝑆𝑆 = arccos �
𝑅𝑅𝑒𝑒

𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
� = 2 arcsin��

ℎ𝑆𝑆
2(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)� 

𝜃𝜃 ≤ 𝜃𝜃𝑈𝑈 + 𝜃𝜃𝑆𝑆 for LOS visibility, when ℎ𝑈𝑈 and ℎ𝑆𝑆 are fixed 

Eq 35 

 
For  𝜃𝜃 = 𝜃𝜃𝑈𝑈 + 𝜃𝜃𝑆𝑆 

𝑑𝑑 = 𝑅𝑅𝑒𝑒 tan(𝜃𝜃𝑈𝑈) +𝑅𝑅𝑒𝑒 tan(𝜃𝜃𝑆𝑆) 

𝛼𝛼𝑈𝑈 = − arccos �
𝑅𝑅𝑒𝑒

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
� = −2 arcsin��

ℎ𝑈𝑈
2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)� 

𝛼𝛼𝑆𝑆 = − arccos �
𝑅𝑅𝑒𝑒

𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
� = −2 arcsin��

ℎ𝑆𝑆
2(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)� 

Eq 36 
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Figure 7  Geometry for LOS Signal Path Tangent to the Earth’s Surface 

A slightly different situation is the siting a radar at U to provide visibility of an aircraft at S. 
Here ℎ𝑆𝑆 (minimum required coverage altitude) and 𝜃𝜃 = 𝜃𝜃𝑈𝑈 + 𝜃𝜃𝑆𝑆 (distance between the location 
where the radar is to be installed and the outer boundary of the coverage region) are known. 
Then the radar elevation ℎ𝑈𝑈 is found using Eq 37. If the minimum altitude ℎ𝑈𝑈 is selected 
consistent with LOS visibility, then 𝑑𝑑, 𝛼𝛼𝑈𝑈 and 𝛼𝛼𝑆𝑆, can be found from Eq 36. 

𝜃𝜃𝑆𝑆 = arccos �
𝑅𝑅𝑒𝑒

𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
� = arccos �1 −

ℎ𝑆𝑆
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

� = 2 arcsin��
ℎ𝑆𝑆

2(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)� 

𝜃𝜃𝑈𝑈 = 𝜃𝜃 − 𝜃𝜃𝑆𝑆 

ℎ𝑈𝑈 ≥ �
1

cos𝜃𝜃𝑈𝑈
− 1� 𝑅𝑅𝑒𝑒 =

2 sin2�12 𝜃𝜃𝑈𝑈�
cos(𝜃𝜃𝑈𝑈) 𝑅𝑅𝑒𝑒    for LOS visibility 

Eq 37 

In addition to the above geometric considerations, the analyst should be aware that radar signal 
propagation paths, such as US in Figure 7, may be subject to bending caused by changes in 
atmospheric density with altitude. A simple, commonly used method for modeling this phenom-
enon is discussed in Subsection 3.7.1. 

3.3 Computing Geocentric Angle 

3.3.1 Satellite Altitude and Elevation Angle Known – Basic Method 

In this subsection, the independent variables are the satellite altitude ℎ𝑆𝑆 and the elevation 
angle 𝛼𝛼. The dependent variable is the geocentric angle 𝜃𝜃. The same pair of independent 
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variables is considered in Subsection 3.5.2, in conjunction with determining the slant-range 𝑑𝑑. In 
terms of the classic taxonomy for triangles, this is an SSA (side-side-angle) situation. 

Manipulating Eq 5 and using the substitutions of Eq 34 yields the formal solution 

𝜃𝜃 = −𝛼𝛼 + arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

cos(𝛼𝛼)� Eq 38 

Due to the possibility of unsolvable formulations and multiple solutions, it is desirable to 
consider three cases.  

Constraints on Solution Existence — There are two constraints in generating a usable solution 
from Eq 38.  

 First, assume that 𝛼𝛼 ≥ 0. Since 𝜃𝜃 ≥ 0, (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(𝜃𝜃 + 𝛼𝛼) = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼). Thus, 
ℎ𝑆𝑆 ≥ ℎ𝑈𝑈.  

 Second, assume that 𝛼𝛼 < 0. Then (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(|𝛼𝛼| − 𝜃𝜃) = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(|𝛼𝛼|). It 
follows that (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) ≥ (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼).  

These constraints have geometric interpretations. The elevation angle 𝛼𝛼 describes an inclined 
line having one end that terminates at U, while the satellite altitude ℎ𝑆𝑆 describes a circle 
concentric with the earth’s center O. For a solution to exist, these loci must intersect. When   
𝛼𝛼 ≤ 0, (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼) is the shortest distance between the center of the earth O and locus of 
points with constant depression angle |𝛼𝛼|. This occurs when the triangle OUS has a right angle 
at S; then 𝛼𝛼 = −𝜃𝜃. These constraints to not prevent the line US from penetrating the earth. 

In summary, for a solution to exist: 

ℎ𝑆𝑆 > ℎ𝑈𝑈      when     𝛼𝛼 ≥ 0  
ℎ𝑆𝑆 ≥ (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼) − 𝑅𝑅𝑒𝑒      when     𝛼𝛼 < 0 Eq 39 

Let Arccos and Arcsin denote the principal values of the arccos and arcsin functions, 
respectively (Subsection 2.1.6). Then the solution in Eq 38 can be decomposed as follows. 

Case: 𝜶𝜶 ≥ 𝟎𝟎: This condition eliminates one of the ambiguous solutions that can occur in an SSA 
situation. (When 𝛼𝛼 ≥ 0 necessarily ℎ𝑆𝑆 > ℎ𝑈𝑈.) When it’s satisfied, the unique solution to Eq 38 is  

𝜃𝜃 = −𝛼𝛼 + Arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

cos(𝛼𝛼)� 

= −𝛼𝛼 + 2 Arcsin��
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin2� 12𝛼𝛼� + 1

2 (ℎ𝑆𝑆 − ℎ𝑈𝑈) 
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

� 
Eq 40 

Referring to Figure 6, the first line of Eq 40 can also be derived from the right triangle AUS, 
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where the length of the adjacent side is (𝑅𝑅𝑒𝑒 + ℎ) sin(𝜃𝜃) and the length of the hypotenuse is  
(𝑅𝑅𝑒𝑒 + ℎ) sin(𝜃𝜃) / cos(𝛼𝛼). Since the argument of the Arccos function is smaller than cos(𝛼𝛼), it 
yields an angle that is larger than 𝛼𝛼. Thus 𝜃𝜃 > 0.  

The two lines of Eq 40 are analytically equivalent. The first is more revealing geometrically, and 
likely better-conditioned numerically when 𝛼𝛼 is close to ½π, which can occur in satellite 
applications. The second line is better-conditioned numerically when 𝛼𝛼 is small, which occurs 
often in aviation applications. This case is the most common in aviation and is the only case 
relevant to satellite analysis. 

Case: 𝜶𝜶 < 𝟎𝟎 & (𝑹𝑹𝒆𝒆 + 𝒉𝒉𝑼𝑼) 𝐜𝐜𝐜𝐜𝐜𝐜(𝛼𝛼) − 𝑹𝑹𝒆𝒆 ≤ 𝒉𝒉𝑺𝑺 ≤ 𝒉𝒉𝑼𝑼: When both of these conditions are 
satisfied, the ambiguous solution for 𝜃𝜃 is  

𝜃𝜃 = −𝛼𝛼 ± Arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

cos(𝛼𝛼)� 

= −𝛼𝛼 ± 2 Arcsin��
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin2� 12𝛼𝛼� + 1

2 (ℎ𝑆𝑆 − ℎ𝑈𝑈) 
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

� 
Eq 41 

The ± sign ambiguity in Eq 41 cannot be resolved without additional information, except for two 
special cases: 𝛼𝛼 = −1

2 𝜋𝜋 and (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃). Since the argument of the Arccos 
function is equal to or larger than cos(𝛼𝛼), it yields an angle that is, at most, equal to |𝛼𝛼|. Thus 
0 ≤ 𝜃𝜃 ≤ 2 |𝛼𝛼|. The ‘−’ applies when the geocentric angle satisfies 𝜃𝜃 ≤ |𝛼𝛼| and the ‘+’ sign 
applies when 𝜃𝜃 ≥ |𝛼𝛼|. Therefore, approximate knowledge of 𝜃𝜃 may resolve the ambiguity. 

Case: 𝜶𝜶 < 𝟎𝟎 & 𝒉𝒉𝑼𝑼 ≤ 𝒉𝒉𝑺𝑺: The condition ℎ𝑈𝑈 ≤ ℎ𝑆𝑆 eliminates the possibility of an ambiguous 
solution in an SSA situation. When both of these conditions are satisfied, the unique solution for 
𝜃𝜃 is given by Eq 40. The difference in usage is that here 𝛼𝛼 < 0. This solution necessarily 
satisfies 𝜃𝜃 ≥ 2 |𝛼𝛼|.  

Special-case checks/examples for Eq 40 include:  

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, the first line of Eq 40 reduces to  

𝜃𝜃 = Arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

� 

 If the satellite altitude and elevation angle satisfy ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼)− 𝑅𝑅𝑒𝑒, where 
necessarily 𝛼𝛼 < 0 (i.e., triangle OUS has a right angle at S), then by eliminating ℎ𝑆𝑆 the 
first line of Eq 41 reduces to 

𝜃𝜃 = −𝛼𝛼 

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then by eliminating ℎ𝑆𝑆 the first line of Eq 41 reduces to 
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𝜃𝜃 = −2𝛼𝛼     ,     𝜃𝜃 = 0 
The first solution is consistent with OUS being an isosceles triangle. The second solution 
corresponds to the pathological situation where U and S merge. 

 If the elevation angle is 𝛼𝛼 = 1
2
𝜋𝜋 (i.e., S is directly above U), then by substituting this 

value the first line of Eq 40 reduces to 0. 
𝜃𝜃 = 0 

3.3.2 Satellite Altitude and Elevation Angle Known – Alternative Method 

An alternative expression for the geocentric angle can be found by starting with Eq 7 (which 
involves 𝑑𝑑, h and 𝛼𝛼). Then, using Eq 4 to introduce 𝜃𝜃 and eliminate 𝑑𝑑, and using the substitu-
tions of Eq 34, results in: 

�
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
cos(𝛼𝛼) �

2

sin2(𝜃𝜃) + [2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) tan(𝛼𝛼)]sin(𝜃𝜃)

+ [(ℎ𝑈𝑈)2 − (ℎ𝑆𝑆)2 + 2𝑅𝑅𝑒𝑒(ℎ𝑈𝑈 − ℎ𝑆𝑆)] = 0 
Eq 42 

This is a quadratic equation in sin(𝜃𝜃). Its solution is given by 

𝜃𝜃 = arcsin(𝑥𝑥)     where     𝑥𝑥 =
−𝐵𝐵 ± √𝐵𝐵2 − 4𝐴𝐴𝐴𝐴

2𝐴𝐴
 

𝐴𝐴 = �
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
cos(𝛼𝛼) �

2

     ,     𝐵𝐵 = 2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) tan(𝛼𝛼) 

𝐶𝐶 = (ℎ𝑈𝑈)2 − (ℎ𝑆𝑆)2 + 2𝑅𝑅𝑒𝑒(ℎ𝑈𝑈 − ℎ𝑆𝑆) = (ℎ𝑈𝑈 − ℎ𝑆𝑆) (2𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 + ℎ𝑆𝑆) 

Eq 43 

The correct value for 𝑥𝑥 must satisfy 0 ≤ 𝑥𝑥 ≤ 1. Thus when 𝛼𝛼 > 0, use of the ‘+’ sign before the 
radical appears to be correct.  

Special-case checks/examples for Eq 43 include:  

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, the expression for sin(𝜃𝜃) reduces to  

sin2(𝜃𝜃) =
(ℎ𝑆𝑆)2 − (ℎ𝑈𝑈)2 + 2𝑅𝑅𝑒𝑒(ℎ𝑆𝑆 − ℎ𝑈𝑈)

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 =
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2  

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., triangle OUS is isosceles with 
OU and OS equal), then by substituting these values, the expression for sin(𝜃𝜃) reduces to  

sin(𝜃𝜃) = −2 sin(𝛼𝛼) cos(𝛼𝛼) = − sin(2𝛼𝛼)      so     𝜃𝜃 = −2𝛼𝛼 

3.3.3 Satellite Altitude and Slant-Range Known 

In this subsection, the independent variables are the satellite altitude ℎ𝑆𝑆 and the slant-range 𝑑𝑑. 
The dependent variable is the geocentric angle 𝜃𝜃. The same pair of independent variables is 
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considered in Subsection 3.4.2, in conjunction with determining the elevation angle 𝛼𝛼. In terms 
of the classic taxonomy for triangles, this is an SSS (side-side-side) situation. 

From Eq 6, and using the substitutions of Eq 34, the geocentric angle 𝜃𝜃 is given by 

𝜃𝜃 = arccos�1 −
(𝑑𝑑 − ℎ𝑆𝑆 + ℎ𝑈𝑈)(𝑑𝑑 + ℎ𝑆𝑆 − ℎ𝑈𝑈)

2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) � 

= 2 arcsin�
1
2
�

(𝑑𝑑 − ℎ𝑆𝑆 + ℎ𝑈𝑈)(𝑑𝑑 + ℎ𝑆𝑆 − ℎ𝑈𝑈)
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) � 

𝜃𝜃 ≈
1
𝑅𝑅𝑒𝑒
�𝑑𝑑2 − (ℎ𝑆𝑆 − ℎ𝑈𝑈)2     for     ℎ𝑈𝑈 ,ℎ𝑆𝑆 ≪ 𝑅𝑅𝑒𝑒  

≈
𝑑𝑑
𝑅𝑅𝑒𝑒
�1 −

1
2
�
ℎ𝑆𝑆 − ℎ𝑈𝑈

𝑑𝑑
�
2

�      for     |ℎ𝑆𝑆 − ℎ𝑈𝑈| ≪ 𝑑𝑑 

Eq 44 

Using Figure 6, the first line of Eq 44 can also be derived by applying Pythagoras’s theorem to 
right triangle UAS, having hypotenuse 𝑑𝑑 and sides 𝑅𝑅𝑒𝑒sin (𝜃𝜃) and ℎ + 𝑅𝑅𝑒𝑒[1 − cos(𝜃𝜃)]. The first 
two lines of Eq 44 are analytically equivalent. The first is more revealing geometrically and is 
better-conditioned numerically when the fraction involved is close to 1 (which can occur in 
situations involving satellites). The second line is better-conditioned numerically when the 
fraction is much smaller than 1, which is usually the case in aviation applications.  

The slant-range 𝑑𝑑 describes a circle about U, while the satellite altitude ℎ𝑆𝑆 describes a circle 
about the earth’s center O. If 𝑑𝑑 and ℎ𝑆𝑆 include errors, their associated loci may not intersect. In 
that case, Eq 44 will not yield a solution for 𝜃𝜃. From both geometry and analysis, it is evident 
that the requirement for the existence of a solution is that 𝑑𝑑 and ℎ𝑆𝑆 satisfy 𝑑𝑑 ≥ |ℎ𝑆𝑆 − ℎ𝑈𝑈|. When 
a solution exists, it is unique. 

Analytically, the condition 𝑑𝑑 ≥ |ℎ𝑆𝑆 − ℎ𝑈𝑈| ensures that the numerator of the fraction on the right-
hand side of Eq 44 is positive; otherwise the argument of the arccos function would not be valid. 
Additionally, for the arccos argument to be valid, that fraction must be less than or equal to 2. In 
order for OUS to be a proper triangle, it must be true that 𝑑𝑑 ≤ (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) + (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆). 
Substituting this bound into the fraction yields 

(𝑑𝑑 − ℎ𝑆𝑆 + ℎ𝑈𝑈)(𝑑𝑑 + ℎ𝑆𝑆 − ℎ𝑈𝑈)
2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) ≤

(2𝑅𝑅𝑒𝑒 + 2ℎ𝑈𝑈)(2𝑅𝑅𝑒𝑒 + 2ℎ𝑆𝑆)
2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) = 2 

A common aviation application of Eq 44 is — assuming that the aircraft altitude ℎ𝑆𝑆 is known — 
converting a measured slant-range 𝑑𝑑 to a geocentric angle 𝜃𝜃 (which is generally more useful in 
geodetic navigation/surveillance calculations). In radar processing, this conversion is termed the 
‘slant-range correction’.  
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Special-case checks/examples for Eq 44 include:  

 If the satellite altitude and slant-range satisfy 𝑑𝑑2 = (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 (i.e., 
triangle OUS has a right angle at U), then by eliminating 𝑑𝑑, the first line of Eq 44 
reduces to 

𝜃𝜃 = arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

� 

 If the satellite altitude and slant-range satisfy 𝑑𝑑2 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 (i.e., 
triangle OUS has a right angle at S), then by eliminating 𝑑𝑑, the first line of Eq 44 reduces 
to 

𝜃𝜃 = arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈

� 

 If the user and satellite altitudes are equal, ℎ𝑆𝑆 = ℎ𝑈𝑈 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then by eliminating ℎ𝑆𝑆, the second line of Eq 44 reduces to 

𝜃𝜃 = 2 arcsin�
1
2  𝑑𝑑

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
� 

3.3.4 Elevation Angle and Slant-Range Known – Basic Method 

In this subsection, the independent variables are the elevation angle 𝛼𝛼 and the slant-range 𝑑𝑑. The 
dependent variable is the geocentric angle 𝜃𝜃. The same pair of independent variables is 
considered in Subsection 3.6.2, in conjunction with determining the satellite altitude ℎ𝑆𝑆. In terms 
of the classic taxonomy for triangles, this is an SAS (side-angle-side) situation. 

Eq 4 can be written 

𝑅𝑅𝑒𝑒sin(𝜃𝜃) = 𝑑𝑑  cos(𝛼𝛼) cos(𝜃𝜃) − 𝑑𝑑  sin(𝛼𝛼) sin(𝜃𝜃) Eq 45 

Thus, using the substitutions of Eq 34, the result is 

𝜃𝜃 = arctan�
𝑑𝑑  cos(𝛼𝛼)

(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) + 𝑑𝑑  sin(𝛼𝛼)� 

=
𝜋𝜋
2
− arctan �tan(𝛼𝛼) +

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
𝑑𝑑  cos(𝛼𝛼)� 

Eq 46 

The right-hand side of the first line in Eq 46 can also be derived from right triangle OBS in 
Figure 6, and is more revealing geometrically. The second line is simply an alternative form, as 
the arc tangent function is not ill-conditioned for any value of its argument. No combination of 
values for the elevation angle 𝛼𝛼 and slant-range 𝑑𝑑 can be specified for which Eq 46 does not 
yield a valid solution for the geocentric angle 𝜃𝜃. 

Special-case checks/examples for Eq 46 include:  

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, the first line of Eq 46 reduces to 
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𝜃𝜃 = arctan �
𝑑𝑑

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
� 

 If the elevation angle and slant-range satisfy 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)cos �1
2
𝜋𝜋 + 𝛼𝛼� (i.e., triangle 

OUS has a right angle at S and 𝛼𝛼 < 0), then by eliminating 𝑑𝑑, the first line of Eq 46 
reduces to 

𝜃𝜃 = −𝛼𝛼 

 If the elevation angle and slant-range satisfy 𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)sin(−𝛼𝛼),𝛼𝛼 < 0 (i.e., are 
consistent with OUS being an isosceles triangle with sides OU and OS equal), then by 
eliminating 𝑑𝑑, the first line of Eq 46 reduces to 

𝜃𝜃 = −2 𝛼𝛼 

 If the elevation angle is 𝛼𝛼 = 1
2
𝜋𝜋 (i.e., S is directly above U) or is 𝛼𝛼 = −1

2
𝜋𝜋 (i.e., S is 

directly beneath U), then by substituting these values, the first line of Eq 46 reduces to 
𝜃𝜃 = 0 

 If the slant-range is 𝑑𝑑 = 0 (i.e., S and U merge), then by substituting this value, the first 
line of Eq 46 reduces to 

𝜃𝜃 = 0 

3.3.5 Elevation Angle and Slant-Range Known – Alternative Method 

The law of tangents (Eq 8) applied to triangle OUS (Figure 1), specifically to sides OU and US 
and their opposite angles, and using the substitutions of Eq 34, yields 

𝜃𝜃 =   14𝜋𝜋 −  
1
2𝛼𝛼 − arctan�

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 − 𝑑𝑑
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 + 𝑑𝑑 

tan �14𝜋𝜋 −  
1
2𝛼𝛼�� Eq 47 

Special-case checks/examples for Eq 47 are: 

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, Eq 47 reduces to 

𝜃𝜃 =   14𝜋𝜋 − arctan �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 − 𝑑𝑑
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 + 𝑑𝑑 

� 

If, additionally, 𝑑𝑑 = 𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 (i.e., OUS is an isosceles right triangle), then the 
immediately previous expression reduces to 𝜃𝜃 =   14𝜋𝜋. 

 If the elevation angle is 𝛼𝛼 = 1
2
𝜋𝜋 (i.e., S is directly above U), then by substituting these 

values, Eq 47 reduces to 
𝜃𝜃 = 0 

 If the elevation angle approaches its minimum possible value, 𝛼𝛼 → −1
2
𝜋𝜋 (i.e., S 

approaches a location directly below U), then Eq 47 reduces to 
𝜃𝜃 → 0 
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3.4 Computing Elevation Angle 

3.4.1 Satellite Altitude and Geocentric Angle Known – Basic Method 

In this subsection, the independent variables are the satellite altitude ℎ𝑆𝑆 and the geocentric angle 
𝜃𝜃. The dependent variable is the elevation angle 𝛼𝛼. The same pair of independent variables is 
considered in Subsection 3.5.1, in conjunction with determining the slant-range 𝑑𝑑. In terms of the 
classic taxonomy for triangles, this is an SAS (side-angle-side) situation. 

Manipulating Eq 5 and using the substitutions of Eq 34 yields 

tan(𝛼𝛼) =
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(𝜃𝜃) − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) sin(𝜃𝜃)  

= cot(𝜃𝜃) −
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) sin(𝜃𝜃) 

= −
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) 
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) tan (12𝜃𝜃) +

(ℎ𝑆𝑆 − ℎ𝑈𝑈)
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cot(𝜃𝜃) 

Eq 48 
 

The expression on the first line of Eq 48 can also be derived from right triangle UBS in Figure 6. 
The three lines of Eq 48 are analytically equivalent. The first is more revealing geometrically. 
The second line is better suited to satellite applications where 𝑅𝑅𝑒𝑒 < ℎ𝑆𝑆. Then the second term on 
the right-hand side can be regarded as a parallax correction. The third line is better-conditioned 
numerically when ℎ𝑈𝑈 ≪ 𝑅𝑅𝑒𝑒 and 𝑑𝑑 ≪ 𝑅𝑅𝑒𝑒, which is generally the case in aviation applications. No 
combination of values for the satellite altitude ℎ𝑆𝑆 and geocentric angle 𝜃𝜃 can be specified for 
which Eq 48 does not yield a valid solution for the elevation angle 𝛼𝛼. 

Special-case checks/examples for Eq 48 are: 

 If the satellite altitude and geocentric angle satisfy (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) = (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(𝜃𝜃) (i.e., 
triangle OUS has a right angle at U), then by eliminating ℎ𝑆𝑆, the first line of Eq 48 
reduces to 

tan(𝛼𝛼) = 0     so     𝛼𝛼 = 0 

 If the satellite altitude and geocentric angle satisfy (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃) = (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) (i.e., 
triangle OUS has a right angle at S), then by eliminating ℎ𝑆𝑆, the first line of Eq 48 
reduces to 

tan(𝛼𝛼) = − tan(𝜃𝜃)      so     𝛼𝛼 = − 𝜃𝜃 

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then by eliminating ℎ𝑆𝑆, the first line of Eq 48 reduces to 

tan(𝛼𝛼) = − tan �12𝜃𝜃�     so     𝛼𝛼 = − 12𝜃𝜃     for     𝜃𝜃 ≠ 0 

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, the first line of Eq 48 reduces to 
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ℎ𝑆𝑆 =
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
cos (𝜃𝜃)

− 𝑅𝑅𝑒𝑒     for     𝜃𝜃 ≠ 0 

3.4.2 Satellite Altitude and Geocentric Angle Known – Alternative Method 

The law of tangents (Eq 8) applied to triangle OUS (Figure 1), specifically to sides OU and OS 
and their opposite angles, and using the substitutions of Eq 34, yields 

𝛼𝛼 = − 12𝜃𝜃 + arctan�
ℎ𝑆𝑆 − ℎ𝑈𝑈

(2𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 + ℎ𝑈𝑈) tan�12𝜃𝜃�
� Eq 49 

Special-case checks/examples for Eq 49 are: 

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then by substituting for ℎ𝑆𝑆, Eq 49 reduces to 

𝛼𝛼 = − 12𝜃𝜃     for     𝜃𝜃 ≠ 0 

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting for 𝛼𝛼, Eq 49 reduces to 

tan �12𝜃𝜃� = �
ℎ𝑆𝑆 − ℎ𝑈𝑈

2𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 + ℎ𝑈𝑈 
 

 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −𝜃𝜃 (which is consistent with 
triangle OUS having a right angle at S), then by substituting for 𝛼𝛼, Eq 49 reduces to 

tan �12𝜃𝜃� = �
ℎ𝑈𝑈 − ℎ𝑆𝑆

2𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 + ℎ𝑈𝑈 
 

3.4.3 Satellite Altitude and Slant-Range Known 

In this subsection, the independent variables are the satellite altitude ℎ𝑆𝑆 and the slant-range 𝑑𝑑. 
The dependent variable is the elevation angle 𝛼𝛼. The same pair of independent variables is 
considered in Subsection 3.3.3, in conjunction with determining the geocentric angle 𝜃𝜃. In terms 
of the classic taxonomy for triangles, this is an SSS (side-side-side) situation. 

Manipulating Eq 7 and using the substitutions of Eq 34 yields 

sin(𝛼𝛼) =
(ℎ𝑆𝑆 − ℎ𝑈𝑈)2 + 2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(ℎ𝑆𝑆 − ℎ𝑈𝑈) − 𝑑𝑑2

2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)𝑑𝑑
 

=
1
𝑑𝑑
�(ℎ𝑆𝑆 − ℎ𝑈𝑈) −

(𝑑𝑑 − ℎ𝑆𝑆 + ℎ𝑈𝑈)(𝑑𝑑 + ℎ𝑆𝑆 − ℎ𝑈𝑈)
2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) � 

Eq 50 

Using Figure 6, the first line of Eq 50 can also be derived by applying Pythagoras’s theorem to 
the right triangle OBS, with the length of the hypotenuse being (𝑅𝑅𝑒𝑒 + ℎ) and the lengths of the 
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sides being (𝑅𝑅𝑒𝑒 + 𝑑𝑑 sin(𝛼𝛼)) and 𝑑𝑑 cos(𝛼𝛼). The two lines of Eq 50 are analytically equivalent. 
The first is more revealing geometrically and is better-conditioned numerically when the fraction 
involved is close to 1 (which can occur in situations involving satellites). The second line is 
better-conditioned numerically when the fraction is much smaller than 1, which is generally the 
case in aviation applications.  

As noted in Subsection 3.3.3, when the available values for slant-range 𝑑𝑑 and satellite altitude ℎ𝑆𝑆 
have errors, it is possible to formulate a mathematically infeasible problem. The requirement on 
𝑑𝑑 and ℎ𝑆𝑆 for mathematical feasibility is that 𝑑𝑑 ≥ |ℎ𝑆𝑆 − ℎ𝑈𝑈|. When a solution exists, it is unique. 

To partially validate the geometric analysis analytically, note that if 𝑑𝑑 = ℎ𝑆𝑆 − ℎ𝑈𝑈 > 0, then the 
first line of Eq 50 reduces to sin(𝛼𝛼) = 1. Similarly, if 𝑑𝑑 = ℎ𝑈𝑈 − ℎ𝑆𝑆 > 0, then the first line of Eq 
50 reduces to sin(𝛼𝛼) = −1. Thus the limiting values for 𝑑𝑑 correspond to the limiting values for 
𝛼𝛼. Moreover, assume that ℎ𝑆𝑆 > ℎ𝑈𝑈 and let 𝑑𝑑 = ℎ𝑆𝑆 − ℎ𝑈𝑈 + 𝜀𝜀, where 𝜀𝜀 can be positive or negative. 
Then, to first order in 𝜀𝜀, the first line of Eq 50 reduces to 

sin(𝛼𝛼) = 1 − �
1

ℎ𝑆𝑆 − ℎ𝑈𝑈
+

1
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈

� 𝜀𝜀 + 𝑂𝑂(𝜀𝜀2) + ⋯ 

Thus when 𝜀𝜀 ≥ 0 (i.e., 𝑑𝑑 ≥ ℎ𝑆𝑆 − ℎ𝑈𝑈) the arcsin function has a valid argument, and when 𝜀𝜀 < 0 
(i.e., 𝑑𝑑 < ℎ𝑆𝑆 − ℎ𝑈𝑈) the arcsin function does not have a valid argument. A similar analysis can be 
done for the situation where ℎ𝑈𝑈 > ℎ𝑆𝑆. 

On the second line of Eq 50, the term in large brackets is the height of the satellite above the 
tangent plane at the user’s location. It can be interpreted as the satellite altitude relative to the 
user altitude, minus a term which corrects for the earth’s curvature. 

Special-case checks/examples for Eq 50 are: 

 If the satellite altitude and slant-range satisfy (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 + 𝑑𝑑2 (i.e., 
triangle OUS has a right angle at U), then by eliminating 𝑑𝑑, the first line of Eq 50 
reduces to 

sin(𝛼𝛼) = 0     so     𝛼𝛼 = 0 

 If the elevation angle 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, the first line of Eq 50 reduces to 

𝑑𝑑2 = (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then by eliminating ℎ𝑆𝑆, the first line of Eq 50 reduces to 

sin(𝛼𝛼) = −
1
2 𝑑𝑑

𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
= − sin �12𝜃𝜃�     so     𝛼𝛼 = − 12𝜃𝜃 
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3.4.4 Geocentric Angle and Slant-Range Known 

In this subsection, the independent variables are the geocentric angle 𝜃𝜃 and the slant-range 𝑑𝑑. 
The dependent variable is the elevation angle 𝛼𝛼. The same pair of independent variables is 
considered in Subsection 3.6.1, in conjunction with determining the satellite altitude ℎ𝑆𝑆. In terms 
of the classic taxonomy for triangles, this is an SSA (side- side-angle) situation. 

Manipulating Eq 4 and using the substitutions of Eq 34 yields the formal solution 

𝛼𝛼 = −𝜃𝜃 + arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈

𝑑𝑑
sin (𝜃𝜃)� Eq 51 

The permissible range for elevation angles is −1
2𝜋𝜋 ≤ 𝛼𝛼 ≤ 1

2𝜋𝜋. Thus the arccos function can yield 
two possible values that result in permissible values for 𝛼𝛼 (i.e., ambiguous solutions can occur). 
For clarity, the solution to Eq 51 is decomposed into two cases. 

Case: 𝒅𝒅 ≤ (𝑹𝑹𝒆𝒆 + 𝒉𝒉𝑼𝑼): In Eq 51, let the principal value (Subsection 2.1.6) of the result of the 
arccos function be 12𝜋𝜋 − 𝜃𝜃′. Satisfaction of this condition on 𝑑𝑑 (which virtually always applies in 
aviation applications) results in 𝜃𝜃′ ≥ 𝜃𝜃, so the two possible values for 𝛼𝛼, 𝛼𝛼 = −𝜃𝜃 ± �12𝜋𝜋 − 𝜃𝜃′� 
can both be valid. Thus, the ambiguous solutions to Eq 51 can be written 

𝛼𝛼 = −𝜃𝜃 ± Arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈

𝑑𝑑
sin (𝜃𝜃)� Eq 52 

This ambiguity cannot be resolved with the information available.  

Case: 𝒅𝒅 > (𝑹𝑹𝒆𝒆 + 𝒉𝒉𝑼𝑼): In Eq 51, again denote the principal value of the result of the arccos 
function as 12𝜋𝜋 − 𝜃𝜃′. Satisfaction of this condition (which in practice only applies to satellite 
applications) results in 𝜃𝜃′ < 𝜃𝜃, so of the two possible values for 𝛼𝛼, 𝛼𝛼 = −𝜃𝜃 ± �12𝜋𝜋 − 𝜃𝜃′�, the ‘–’ 
value is not valid. Thus, the unique solution to Eq 51 can be written: 

𝛼𝛼 = −𝜃𝜃 + Arccos �
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈

𝑑𝑑
sin (𝜃𝜃)� Eq 53 

Geometrically, Eq 53 can also be derived from right triangle AUS in Figure 6.  

Due measurement or other errors, it is possible that Eq 52 or Eq 53 will not have a solution for 
the available values for 𝑑𝑑 and 𝜃𝜃. The analytic requirement for a solution to exist is that    
𝑑𝑑 ≥ (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃). The geometric interpretation of this condition is that 𝑑𝑑 must be at least 
equal to the minimum distance between U and the locus for constant 𝜃𝜃. 

Special-case checks/examples for Eq 52/Eq 53 are: 

 If the slant-range and geocentric angle satisfy 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) tan(𝜃𝜃) (which is consistent 
with triangle OUS having a right angle at U), then by eliminating 𝑑𝑑, Eq 52 reduces to the 
ambiguous solutions 



DOT Volpe Center   

 3-16 

𝛼𝛼 = 0     ,     𝛼𝛼 = −2𝜃𝜃 
The first solution is also consistent with triangle OUS having a right angle at U. 
Concerning the second solution: If the geocentric angle 𝜃𝜃 and the computed elevation 
angle 𝛼𝛼 = −2𝜃𝜃 are substituted in Eq 61, the result is 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) tan(𝜃𝜃). Thus, it also 
a valid solution to Eq 52.  

 If the slant-range and geocentric angle satisfy 𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(12𝜃𝜃) (which is 
consistent with OUS being an isosceles triangle with sides OU and OS equal), then by 
eliminating 𝑑𝑑, Eq 52 reduces to the ambiguous solutions 

𝛼𝛼 = −1
2𝜃𝜃     ,     𝛼𝛼 = −3

2𝜃𝜃 

The first solution is also consistent with OUS being an isosceles triangle. Concerning the 
second solution: If the geocentric angle 𝜃𝜃 and the computed elevation angle 𝛼𝛼 = −3

2𝜃𝜃 are 
substituted in Eq 61, the result is 𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(12𝜃𝜃). Thus, it also a valid solution 
to Eq 52. Because −1

2𝜋𝜋 ≤ 𝛼𝛼, the second solution is only valid when 𝜃𝜃 ≤ 1
3𝜋𝜋.   

 If the slant-range and geocentric angle satisfy 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃) (i.e., triangle OUS 
has a right angle at S), then by eliminating 𝑑𝑑, Eq 52 reduces to the unique solution 

𝛼𝛼 = −𝜃𝜃 
 If the slant-range satisfies 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) (i.e., OUS is an isosceles triangle with sides 

OU and US equal), then by eliminating 𝑑𝑑, Eq 52 reduces to the ambiguous solutions 
𝛼𝛼 = −1

2𝜋𝜋     ,     𝛼𝛼 = 1
2𝜋𝜋 − 2𝜃𝜃 

The first solution is the pathological case where O and S merge. The second solution 
describes a possible satellite scenario, and includes the limiting situations where the 
satellite is directly above the user (𝛼𝛼 = 1

2𝜋𝜋, 𝜃𝜃 = 0) and is on the user’s horizon (𝛼𝛼 = 0,
𝜃𝜃 = 1

4𝜋𝜋).  

 If the geocentric angle is 𝜃𝜃 = 0 (i.e., S is above or below U), then by substituting this 
value, Eq 52 reduces to the ambiguous solutions  

𝛼𝛼 = −1
2𝜋𝜋     ,     𝛼𝛼 = 1

2𝜋𝜋 

3.5 Computing Slant-Range 

3.5.1 Satellite Altitude and Geocentric Angle Known 

In this subsection, the independent variables are the satellite altitude ℎ𝑆𝑆 and the geocentric angle 
𝜃𝜃. The dependent variable is the slant-range 𝑑𝑑. The same pair of independent variables is 
considered in Subsection 3.4.1, in conjunction with determining the elevation angle 𝛼𝛼. In terms 
of the classic taxonomy for triangles, this is an SAS (side-angle-side) situation. 

Using the substitutions of Eq 34, Eq 6 can be expressed as 

𝑑𝑑 = �(ℎ𝑆𝑆 − ℎ𝑈𝑈)2 + 2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)[1 − cos(𝜃𝜃)] Eq 54 
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= 2 𝑅𝑅𝑒𝑒  sin �12𝜃𝜃���1 +
ℎ𝑈𝑈
𝑅𝑅𝑒𝑒
� �1 +

ℎ𝑆𝑆
𝑅𝑅𝑒𝑒
� + �

ℎ𝑆𝑆 − ℎ𝑈𝑈
2 𝑅𝑅𝑒𝑒  sin�12𝜃𝜃�

�
2

     ,     𝜃𝜃 ≠ 0 

𝑑𝑑 ≈ 𝑅𝑅𝑒𝑒𝜃𝜃 + 1
2
(ℎ𝑈𝑈 + ℎ𝑆𝑆) 𝜃𝜃 +

ℎ𝑈𝑈 ℎ𝑆𝑆
2 𝑅𝑅𝑒𝑒

𝜃𝜃 +
(ℎ𝑆𝑆 − ℎ𝑈𝑈)2

2 𝑅𝑅𝑒𝑒𝜃𝜃 
     ,     0 < 𝜃𝜃 ≪ 1  &  ℎ𝑈𝑈,ℎ𝑆𝑆 ≪ 𝑅𝑅𝑒𝑒 

The first line of Eq 54 can also be derived by applying Pythagoras’s theorem to right triangle 
AUS in Figure 6. As would be expected from this formulation, this expression is symmetric in 
ℎ𝑈𝑈 and ℎ𝑆𝑆. The second line is analytically equivalent to the first, but numerically better-con-
ditioned when 𝜃𝜃 ≪ 1 and ℎ𝑈𝑈 ,ℎ𝑆𝑆 ≪ 𝑅𝑅𝑒𝑒, which is typically the case in aviation applications (at the 
surface of the earth, 𝜃𝜃 = 1 corresponds to spherical distance of 𝑠𝑠 ≈ 3,438 NM). No combination 
of values for the satellite altitude ℎ𝑆𝑆 and geocentric angle 𝜃𝜃 can be specified for which Eq 54 
does not yield a valid solution for the slant-range 𝑑𝑑. 

Special-case checks/examples for Eq 54 include:  

 If the geocentric angle is 𝜃𝜃 = 0 (i.e. U and S lie along the same radial), then the first line 
of Eq 54 reduces to  

𝑑𝑑 = |ℎ𝑆𝑆 − ℎ𝑈𝑈| 
 If the satellite altitude and geocentric angle satisfy ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) / cos(𝜃𝜃) − 𝑅𝑅𝑒𝑒 (which 

is consistent with triangle OUS having a right angle at U), then by eliminating ℎ𝑆𝑆, the 
first line of Eq 54 reduces to  

𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) tan(𝜃𝜃) 

 If the satellite altitude and geocentric angle satisfy ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃)− 𝑅𝑅𝑒𝑒 (i.e., 
triangle OUS has a right angle at S), then by eliminating ℎ𝑆𝑆, the first line of Eq 54 
reduces to  

𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃) 

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then by eliminating ℎ𝑆𝑆, the second line of Eq 54 reduces to 

2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin �12𝜃𝜃� 

3.5.2 Satellite Altitude and Elevation Angle Known 

In this subsection, the independent variables are the satellite altitude ℎ𝑆𝑆 and the elevation angle 
𝛼𝛼. The dependent variable is the slant-range 𝑑𝑑. The same pair of independent variables is 
considered in Subsection 3.3.1, in conjunction with determining the geocentric angle 𝜃𝜃. In terms 
of the classic taxonomy for triangles, this is an SSA (side-side-angle) situation. 

Eq 7 can be expressed, after applying the substitutions of Eq 34, as 
𝑑𝑑2 + [2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝛼𝛼)]𝑑𝑑 + [(ℎ𝑈𝑈2 − ℎ𝑆𝑆2) + 2𝑅𝑅𝑒𝑒(ℎ𝑈𝑈 − ℎ𝑆𝑆)] = 0 Eq 55 

The formal solution of Eq 55 is 
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𝑑𝑑 = −(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  sin(𝛼𝛼) ± �(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  sin2(𝛼𝛼) + (ℎ𝑆𝑆2 − ℎ𝑈𝑈2 ) + 2𝑅𝑅𝑒𝑒(ℎ𝑆𝑆 − ℎ𝑈𝑈)  Eq 56 

Due to the sign ambiguity in Eq 56 and the possibility of infeasible problem formulations, it is 
advantageous to address this situation in terms of cases. When interpreting the expressions 
below, note that the quantity under the radical in Eq 56 can be written in two alternative forms 

(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  sin2(𝛼𝛼) + (ℎ𝑈𝑈 − ℎ𝑆𝑆)(2𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 + ℎ𝑈𝑈) = (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  cos2(𝛼𝛼) 

Conditions for Solution Existence — Conditions for the existence of a solution are discussed in 
Subsection 3.3.1 and summarized by Eq 39, which is repeated here. 

ℎ𝑆𝑆 > ℎ𝑈𝑈      when     𝛼𝛼 ≥ 0  
ℎ𝑆𝑆 ≥ (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼) − 𝑅𝑅𝑒𝑒      when     𝛼𝛼 < 0 Eq 57 

Case: 𝜶𝜶 ≥ 𝟎𝟎: The condition 𝛼𝛼 ≥ 0 eliminates one of the ambiguous solutions that can occur in 
an SSA situation. Also, when 𝛼𝛼 ≥ 0, necessarily ℎ𝑆𝑆 > ℎ𝑈𝑈. In this situation, the unique solution 
to Eq 56 can be written 

𝑑𝑑 = −(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  sin(𝛼𝛼) + �(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  sin2(𝛼𝛼) + (ℎ𝑆𝑆2 − ℎ𝑈𝑈2 ) + 2𝑅𝑅𝑒𝑒(ℎ𝑆𝑆 − ℎ𝑈𝑈) 

𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  sin(𝛼𝛼)�
𝑥𝑥
2
−
𝑥𝑥2

8
+
𝑥𝑥3

16
 ± ⋯�  , 𝑥𝑥 ≡

(ℎ𝑆𝑆 − ℎ𝑈𝑈)(ℎ𝑆𝑆 + ℎ𝑈𝑈 + 2𝑅𝑅𝑒𝑒)
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  sin2(𝛼𝛼)  ,𝛼𝛼 > 0 

𝑑𝑑 ≈
ℎ𝑆𝑆 − ℎ𝑈𝑈
 sin(𝛼𝛼)      for     ℎ𝑈𝑈 ,ℎ𝑆𝑆 ≪ 𝑅𝑅𝑒𝑒   &   𝛼𝛼 > 0 

Eq 58 

Referring to Figure 6, the first line of Eq 58 can be interpreted as length(CS)-length (CU), where 
length(CS) is found by Pythagoras’s theorem applied to right triangle OCS having OS is its 
hypotenuse.  

Case: 𝜶𝜶 < 𝟎𝟎 & (𝑹𝑹𝒆𝒆 + 𝒉𝒉𝑼𝑼) 𝐜𝐜𝐜𝐜𝐜𝐜(𝛼𝛼) − 𝑹𝑹𝒆𝒆 ≤ 𝒉𝒉𝑺𝑺 ≤ 𝒉𝒉𝑼𝑼: When both of these conditions are satis-
fied, the ambiguous solution is  

𝑑𝑑 = −(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  sin(𝛼𝛼) ± �(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  sin2(𝛼𝛼) + (ℎ𝑆𝑆2 − ℎ𝑈𝑈2 ) + 2𝑅𝑅𝑒𝑒(ℎ𝑆𝑆 − ℎ𝑈𝑈) Eq 59 

The ± sign ambiguity in Eq 59 cannot be resolved without additional information, except 
extreme case of 𝛼𝛼 = −1

2
𝜋𝜋. The ‘−’ applies when the geocentric angle satisfies 𝜃𝜃 ≤ |𝛼𝛼| and the 

‘+’ sign applies when 𝜃𝜃 ≥ |𝛼𝛼|. 

Case: 𝜶𝜶 < 𝟎𝟎 & 𝒉𝒉𝑼𝑼 ≤ 𝒉𝒉𝑺𝑺: The condition ℎ𝑈𝑈 ≤ ℎ𝑆𝑆 eliminates one of the ambiguous solutions that 
can occur in an SSA situation.  When these conditions are satisfied, the unique solution is  

𝑑𝑑 = −(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  sin(𝛼𝛼) + �(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  sin2(𝛼𝛼) + (ℎ𝑆𝑆2 − ℎ𝑈𝑈2 ) + 2𝑅𝑅𝑒𝑒(ℎ𝑆𝑆 − ℎ𝑈𝑈) Eq 60 
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This is the same expression as the first line of Eq 58; however, here 𝛼𝛼 < 0. 

Special-case checks/examples include:  

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U) and the satellite 
altitude satisfies ℎ𝑆𝑆 > ℎ𝑈𝑈, then by substituting for 𝛼𝛼, the first line of Eq 58 reduces to 

𝑑𝑑 = �(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 

 If the elevation angle is 𝛼𝛼 = 1
2
𝜋𝜋 (i.e., S is directly above U) and the satellite altitude 

satisfies ℎ𝑆𝑆 > ℎ𝑈𝑈, then by substituting for 𝛼𝛼, the first line of Eq 58 reduces to  
𝑑𝑑 = ℎ𝑆𝑆 − ℎ𝑈𝑈 

 If the elevation angle is 𝛼𝛼 = −1
2
𝜋𝜋 (i.e., S is directly beneath U) and the satellite altitude 

satisfies ℎ𝑆𝑆 < ℎ𝑈𝑈, then by substituting for 𝛼𝛼, Eq 59 reduces to  
𝑑𝑑 = ℎ𝑈𝑈 − ℎ𝑆𝑆 

 If the user and satellite altitudes are equal, ℎ𝑈𝑈 = ℎ𝑆𝑆 (i.e., OUS is an isosceles triangle 
with sides OU and OS equal), then the elevation angle must satisfy 𝛼𝛼 < 0 and, by 
eliminating ℎ𝑆𝑆, Eq 60 reduces to  

𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(|𝛼𝛼|) = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin �12𝜃𝜃� 

 If the satellite altitude and elevation angle satisfy ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝛼𝛼)− 𝑅𝑅𝑒𝑒 (i.e., 
triangle OUS has a right angle at S), the elevation angle necessarily satisfies 𝛼𝛼 < 0. 
Then by eliminating ℎ𝑆𝑆, Eq 59 reduces to  

𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  sin(|𝛼𝛼|) 

 If the elevation angle is 𝛼𝛼 = 1
6
𝜋𝜋, the user altitude is ℎ𝑈𝑈 = 0 and the satellite altitude is 

ℎ𝑆𝑆 = 3 𝑅𝑅𝑒𝑒 (i.e., an approximation to a GPS user’s situation), then, by substituting these 
values, the first line of Eq 58 reduces to 𝑑𝑑 = 3.4 𝑅𝑅𝑒𝑒  

3.5.3 Geocentric Angle and Elevation Angle Known 

In this subsection, the independent variables are the geocentric angle 𝜃𝜃 and the elevation angle 𝛼𝛼. 
The dependent variable is the slant-range 𝑑𝑑. The same pair of independent variables is 
considered in Subsection 3.6.3, in conjunction with determining the satellite altitude ℎ𝑆𝑆. In terms 
of the classic taxonomy for triangles, this is an ASA (angle-side-angle) situation. 

Eq 5 can be written, after applying the substitutions of Eq 34, as 

𝑑𝑑 =
sin (𝜃𝜃)

cos (𝛼𝛼 + 𝜃𝜃)
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) Eq 61 

Eq 61 is a manipulation of the two expressions for the length of AU in Figure 6. A valid solution 
for 𝑑𝑑 only exists if 𝛼𝛼 + 𝜃𝜃 < 1

2𝜋𝜋 (because the three angles of a plane triangle must sum to 𝜋𝜋). 
However, due to errors, the available values for 𝛼𝛼 and 𝜃𝜃 may sum to 12𝜋𝜋 (whereby the loci of 
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constant elevation angle and constant geocentric angle are parallel) or a larger number (whereby 
the loci diverge). When a solution exists, it is unique. 

Special-case checks/examples for Eq 61 include:  

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, Eq 61 reduces to 

𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) tan(𝜃𝜃) 
 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −𝜃𝜃 (i.e., triangle OUS has a right 

angle at S), then by eliminating 𝛼𝛼, Eq 61 reduces to 
𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃) 

 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −1
2
𝜃𝜃 (i.e., OUS is an isosceles 

triangle with sides OU and OS equal), then by eliminating 𝛼𝛼, Eq 61 reduces to 

𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin �12𝜃𝜃� 

3.6 Computing Satellite Altitude 

3.6.1 Slant-Range and Geocentric Angle Known 

In this subsection, the independent variables are the slant-range 𝑑𝑑 and the geocentric angle 𝜃𝜃. 
The dependent variable is the satellite altitude ℎ𝑆𝑆. The same pair of independent variables is 
considered in Subsection 3.4.4, in conjunction with determining the elevation angle 𝛼𝛼. In terms 
of the classic taxonomy for triangles, this is an SSA (side-side-angle) situation. 

Eq 6 can be written as a quadratic equation in 𝑅𝑅𝑒𝑒 + ℎ. Applying the substitutions of Eq 34 yields 
the formal solution 

ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃) − 𝑅𝑅𝑒𝑒 ± �𝑑𝑑2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2[1 − cos2(𝜃𝜃)] Eq 62 

For a valid solution to exist, the expression under the radical in Eq 62 must be non-negative; 
thus, validity requires that 𝑑𝑑 ≥ (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃). Because an ambiguous solution is possible, for 
clarity, the solution description is decomposed into two cases. Note that, if 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈), then 
‘–’ solution in Eq 62 reduces to 𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 = 0. 

Case: 𝒅𝒅 ≤ (𝑹𝑹𝒆𝒆 + 𝒉𝒉𝑼𝑼): Satisfaction of this condition on 𝑑𝑑 (which virtually always applies in 
aviation applications) ensures, in Eq 62, that (ℎ𝑆𝑆 + 𝑅𝑅𝑒𝑒) ≥ 0 for both the ‘+’ and ‘–’ signs and 
any value of 𝜃𝜃. Thus, the ambiguous solutions to Eq 62 can be written 

ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃) − 𝑅𝑅𝑒𝑒 ± �𝑑𝑑2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 sin2(𝜃𝜃) 

= ℎ𝑈𝑈 − 2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin2(12𝜃𝜃) ± �𝑑𝑑 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃)�𝑑𝑑 + (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃) 
Eq 63 

The two lines of Eq 63 are analytically equivalent. However, the second line is numerically 
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better-conditioned when 𝜃𝜃 is small, as is often the case in aviation applications. The choice 
between the ‘+’ and ‘–’ signs cannot be resolved from the information available.  

Case: 𝒅𝒅 > (𝑹𝑹𝒆𝒆 + 𝒉𝒉𝑼𝑼): Satisfaction of this condition (which in practice only applies to satellite 
applications) ensures, in Eq 62, that, for the ‘–’ sign and any value of 𝜃𝜃, 𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 < 0, and thus is 
invalid. Therefore, the unique solution to Eq 62 can be written: 

ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃) − 𝑅𝑅𝑒𝑒 + �𝑑𝑑2 − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 sin2(𝜃𝜃) Eq 64 

Referring to Figure 6, Eq 64 can be interpreted as length(AS)-length(AN), where length(AS) is 
found by Pythagoras’s theorem applied to right triangle AUS. Another interpretation is that ℎ𝑆𝑆 is 
the projection of 𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 onto OS, with 𝑅𝑅𝑒𝑒 then subtracted, followed by an adjustment for the 
length of 𝑑𝑑 in excess of the minimum distance between U and OS. The solutions in Eq 63 and 
Eq 64 both require that (ℎ𝑆𝑆 + 𝑅𝑅𝑒𝑒) ≥ 0, which is equivalent to requiring that OUS form at least a 
degenerate form of a triangle.  

Special-case checks/examples for Eq 63/Eq 64 include:  

 If the geocentric angle satisfies 𝜃𝜃 = 0 (i.e., S is above or below U), then by substituting 
this value, Eq 63 reduces to  

ℎ𝑆𝑆 = ℎ𝑈𝑈 ± 𝑑𝑑 

 If the slant-range and geocentric angle satisfy 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(𝜃𝜃) (which is consistent 
with triangle OUS having a right angle at S), then by eliminating 𝑑𝑑, the first line of in the 
first line of Eq 63 the expression under the radical is zero and the unique solution is 

ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) cos(𝜃𝜃) − 𝑅𝑅𝑒𝑒 
This solution is consistent with triangle OUS having a right angle at S. 

 If the slant-range and geocentric angle satisfy 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) tan(𝜃𝜃) (which is consistent 
with triangle OUS having a right angle at U), then by eliminating 𝑑𝑑, the first line of Eq 
63 reduces to the ambiguous solutions 

ℎ𝑆𝑆 = −𝑅𝑅𝑒𝑒 +
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)

cos(𝜃𝜃)      ,     ℎ𝑆𝑆 = −𝑅𝑅𝑒𝑒 +
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)

cos(𝜃𝜃) cos(2𝜃𝜃) 

The first solution is consistent with triangle OUS having a right angle at U. Concerning 
the second solution: If the geocentric angle 𝜃𝜃 and the computed satellite altitude ℎ𝑆𝑆 are 
substituted in Eq 54, the result is 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) tan(𝜃𝜃). Thus, it is also a valid solution 
to Eq 63.  

 If the slant-range and geocentric angle satisfy 𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(12𝜃𝜃) (which is 
consistent with OUS being an isosceles triangle with sides OU and OS equal), then by 
eliminating 𝑑𝑑, the first line of Eq 63 reduces to the ambiguous solutions 

ℎ𝑆𝑆 = ℎ𝑈𝑈      ,     ℎ𝑆𝑆 = ℎ𝑈𝑈 − 4 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin2(12𝜃𝜃) 
The first solution is consistent with OUS being an isosceles triangle. Concerning the 
second solution: If the geocentric angle 𝜃𝜃 and the computed satellite altitude ℎ𝑆𝑆 are 
substituted in Eq 54, the result is 𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(12𝜃𝜃). Thus, it is also a valid 
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solution to Eq 63.  

3.6.2 Slant-Range and Elevation Angle Known 

In this subsection, the independent variables are the slant-range 𝑑𝑑 and the elevation angle 𝛼𝛼. The 
dependent variable is the satellite altitude ℎ𝑆𝑆. The same pair of independent variables is 
considered in Subsection 3.3.4, in conjunction with determining the geocentric angle 𝜃𝜃. In terms 
of the classic taxonomy for triangles, this is an SAS (side-angle-side) situation. 

Rearranging Eq 7 and using the substitutions of Eq 34 yields 

ℎ𝑆𝑆 = −𝑅𝑅𝑒𝑒 + �(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 + 𝑑𝑑2 + 2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) 𝑑𝑑 sin(𝛼𝛼) 

ℎ𝑆𝑆 = ℎ𝑈𝑈 + (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) �
𝑥𝑥
2
−
𝑥𝑥2

8
+
𝑥𝑥3

16
 ± ⋯�      for     𝑥𝑥 ≡

2 𝑑𝑑 sin(𝛼𝛼)
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈

+
𝑑𝑑2

(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2 

ℎ𝑆𝑆 ≈ ℎ𝑈𝑈 +  𝑑𝑑 sin(𝛼𝛼)     for     𝑑𝑑 ≪ 𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 

Eq 65 

Referring to Figure 6, the first line in Eq 65 can be interpreted as length(OS)-length(ON), where 
length(OS) is found by Pythagoras’s theorem applied to right triangle OBS. The first two lines 
of Eq 65 are analytically equivalent. The first is more revealing geometrically. The second line is 
better-conditioned numerically when ℎ𝑈𝑈 ≪ 𝑅𝑅𝑒𝑒 and 𝑑𝑑 ≪ 𝑅𝑅𝑒𝑒, which is generally the case in 
aviation applications. The quantity under the radical on first line of Eq 65 is guaranteed to be 
non-negative. Thus, no combination of values for the slant-range 𝑑𝑑 and elevation angle 𝛼𝛼 can be 
specified for which Eq 65 does not yield a valid solution for the satellite altitude ℎ𝑆𝑆. 

Special-case checks/examples for Eq 65 are: 

 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then by 
substituting this value, the first line of Eq 65 reduces to 

ℎ𝑆𝑆 = −𝑅𝑅𝑒𝑒 + �(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)2  + 𝑑𝑑2 

 If the slant-range and elevation angle satisfy 𝑑𝑑 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(−𝛼𝛼) where 𝛼𝛼 < 0 (i.e., 
triangle OUS has a right angle at S), then by eliminating 𝑑𝑑, the first line of Eq 65 reduces 
to 

ℎ𝑆𝑆 = −𝑅𝑅𝑒𝑒 + (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)cos(−𝛼𝛼) 

 If the slant-range and elevation angle satisfy 𝑑𝑑 = 2 (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) sin(−𝛼𝛼) where 𝛼𝛼 < 0 (i.e., 
are consistent with OUS being an isosceles triangle with sides OU and OS equal), then 
the first line of Eq 65 reduces to 

ℎ𝑆𝑆 = ℎ𝑈𝑈 

 If the elevation angle is 𝛼𝛼 = 1
2𝜋𝜋 (i.e., S is directly above U), then the first line of Eq 65 

reduces to  
ℎ𝑆𝑆 = ℎ𝑈𝑈 + 𝑑𝑑 

 If the elevation angle is 𝛼𝛼 = −1
2𝜋𝜋 (i.e., S is directly beneath U), then the first line of Eq 
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65 reduces to 
ℎ𝑆𝑆 = ℎ𝑈𝑈 − 𝑑𝑑 

3.6.3 Elevation Angle and Geocentric Angle Known – Basic Method 

In this subsection, the independent variables are the elevation angle 𝛼𝛼 and the geocentric angle 𝜃𝜃. 
The dependent variable is the satellite altitude ℎ𝑆𝑆. The same pair of independent variables is 
considered in Subsection 3.5.3, in conjunction with determining the slant-range 𝑑𝑑. In terms of the 
classic taxonomy for triangles, this is an ASA (angle-side-angle) situation. 

Manipulating Eq 5 and using the substitutions of Eq 34 yields 

ℎ𝑆𝑆 =
cos (𝛼𝛼)

cos (𝛼𝛼 + 𝜃𝜃)
(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) − 𝑅𝑅𝑒𝑒 = ℎ𝑈𝑈 + �

cos (𝛼𝛼)
cos (𝛼𝛼 + 𝜃𝜃) − 1� (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) 

= ℎ𝑈𝑈 + 2
sin (𝛼𝛼 + 1

2𝜃𝜃) sin (12𝜃𝜃)
cos (𝛼𝛼 + 𝜃𝜃)

(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) 

ℎ𝑆𝑆 ≈ ℎ𝑈𝑈 + 𝜃𝜃  �𝛼𝛼 + 1
2𝜃𝜃�  𝑅𝑅𝑒𝑒    for     𝛼𝛼 ≪ 1 ,𝜃𝜃 ≪ 1 ,ℎ𝑈𝑈 ≪ 𝑅𝑅𝑒𝑒 

Eq 66 

Eq 66 can also be derived by manipulating the two expressions for the length of OC in Figure 6. 
The first two lines of Eq 66 are analytically equivalent. The first is more revealing geometrically. 
The second line is better-conditioned numerically when ℎ𝑈𝑈 ≪ 𝑅𝑅𝑒𝑒 and both angles are small, 
which is generally the case in aviation applications.  

A valid solution for ℎ𝑆𝑆 only exists if 𝛼𝛼 + 𝜃𝜃 < 1
2𝜋𝜋 (because the angles of a plane triangle must 

sum to 𝜋𝜋). However, due errors, the available values for 𝛼𝛼 and 𝜃𝜃 may sum to 12𝜋𝜋 (whereby the 
loci of constant elevation angle and constant geocentric angle are parallel) or a larger number 
(whereby the two loci diverge). When a solution exists, it is unique. 

Special-case checks/examples for Eq 66 include:  
 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then the first 

line of Eq 66 reduces to  

ℎ𝑆𝑆 =
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
cos (𝜃𝜃)

− 𝑅𝑅𝑒𝑒 

 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −𝜃𝜃 (i.e., are consistent with 
triangle OUS having a right angle at S), then the first line of Eq 66 reduces to 

ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)cos (𝜃𝜃) − 𝑅𝑅𝑒𝑒 

 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −1
2
𝜃𝜃 (i.e., are consistent with 

OUS being an isosceles triangle with sides OU and OS equal), then the first two lines of 
Eq 66 reduce to  

ℎ𝑆𝑆 = ℎ𝑈𝑈 



DOT Volpe Center   

 3-24 

3.6.4 Elevation Angle and Geocentric Angle Known – Alternative Method 

The law of tangents (Eq 8) applied to triangle OUS (Figure 1), specifically to sides OU and OS 
and their opposite angles, and using the substitutions of Eq 34, yields 

ℎ𝑆𝑆 =
 ℎ𝑈𝑈 + (2 𝑅𝑅𝑒𝑒 +  ℎ𝑈𝑈) tan �𝛼𝛼 + 1

2𝜃𝜃� tan �12𝜃𝜃� 
1 −  tan �𝛼𝛼 + 1

2𝜃𝜃� tan �12𝜃𝜃�
=

(2 𝑅𝑅𝑒𝑒 +  ℎ𝑈𝑈) +  ℎ𝑈𝑈 cot �𝛼𝛼 + 1
2𝜃𝜃�cot �12𝜃𝜃�

cot �𝛼𝛼 + 1
2𝜃𝜃�cot �12𝜃𝜃� − 1

 

ℎ𝑆𝑆 ≈ ℎ𝑈𝑈 + 𝜃𝜃 �𝛼𝛼 + 1
2𝜃𝜃� 𝑅𝑅𝑒𝑒    for     𝛼𝛼 ≪ 1 ,𝜃𝜃 ≪ 1 ,ℎ𝑈𝑈 ≪ 𝑅𝑅𝑒𝑒 

Eq 67 

Special-case checks/examples for Eq 67 are:  
 If the elevation angle is 𝛼𝛼 = 0 (i.e., triangle OUS has a right angle at U), then the first 

line of Eq 67 reduces to  

ℎ𝑆𝑆 =
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
cos (𝜃𝜃)

− 𝑅𝑅𝑒𝑒 

 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −1
2
𝜃𝜃 (i.e., are consistent with 

OUS being an isosceles triangle with sides OU and OS equal), then the first line of Eq 
67 reduces to  

ℎ𝑆𝑆 = ℎ𝑈𝑈 

 If the elevation angle and geocentric angle satisfy 𝛼𝛼 = −𝜃𝜃 (i.e., are consistent with 
triangle OUS having a right angle at S), then the first line of Eq 67 reduces to 

ℎ𝑆𝑆 = (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)cos (𝜃𝜃) − 𝑅𝑅𝑒𝑒 

3.7 Example Applications 

Three example applications are presented in this section, with the intent of providing a sense of 
how the mathematical equations presented earlier in this chapter relate to real problems. The 
examples are intended to illustrate that it is necessary to understand the application in order to 
utilize the equations properly and to interpret the results. Also, these examples suggest that, 
while providing useful information, the equations in this chapter cannot answer some relevant 
question. For that reason, the same examples are re-visited at the end of Chapter 4. 

3.7.1 Example 1:  En Route Radar Coverage 

Application Context — A frequent surveillance engineering task is predicting a radar instal-
lation’s ‘coverage’. There are two common formulations: Calculate either the minimum visible 
aircraft (a) Elevation MSL for a known ground range (geocentric angle) from the radar; or 
(b) Ground range (geocentric angle) from the radar, for a known elevation MSL. For either case, 
the issues to be considered, and the approach taken herein, are: 
 Terrain Effects — As stated in Chapter 1, blockage of electromagnetic waves by 

hills/mountains/structures is not addressed herein. These effects would be included in a 
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more thorough analysis, and are particularly important in mountainous areas. However, 
terrain effects are handled numerically, rather than by an analytic model, and are thus 
outside the scope of this document. The earth surrounding the radar is assumed to be 
smooth, although not necessarily at sea level. 

 Propagation Model — As stated in Chapter 1, real sensors may not have the straight line 
propagation paths. Relevant to radars: electromagnetic waves behave according to Snell’s 
Law and refract towards the vertical as the atmospheric density increases with decreased 
altitude. Refraction effects are most pronounced for long, predominantly horizontal paths 
within the earth’s atmosphere (such as occur for an en route radar). A widely used model 
that approximates the effects of refraction and is compatible with the equations developed 
earlier in this chapter is the ‘four-thirds earth’ model (Refs. 19 and 20). According to 
Ref. 19: “The 4/3 Earth radius rule of thumb is an average for the Earth's atmosphere 
assuming it is reasonably homogenized, absent of temperature inversion layers or unusual 
meteorological conditions.” Ref. 20 is an in-depth treatment of radar signal refraction. 

 Radar Antenna Height — Three values are used for the height of the radar antenna 
phase center above the surrounding terrain, ℎ𝑈𝑈: 50 ft, representative of the antenna height 
for a radar mounted on a tower; 500 ft, representative of the antenna height for a radar on 
a hill top; and 5,000 ft, representative of the antenna height for a radar on a mountain top. 

Based on these considerations, the two known/independent variables are taken to be:  

(1) The satellite/aircraft elevation angle 𝛼𝛼 (provided it is equal to or greater than the 
minimum value for the associated antenna height ℎ𝑈𝑈); and  

(2) Either  

(a) The geocentric angle 𝜃𝜃 between the radar and a target aircraft (so the unknown/ 
dependent variable is the aircraft altitude ℎ𝑆𝑆 above the terrain) — governed by Eq 66; or  

(b) The aircraft altitude ℎ𝑆𝑆 (so the unknown/dependent variable is the geocentric angle 𝜃𝜃) 
— governed by Eq 40. 

Associating U with the radar antenna location (because its elevation is known) and S with 
aircraft locations, the resulting equations are shown in Eq 68 below. The first line is derived from 
Eq 66, with substitutions to account for the four-thirds earth model. Similarly, the second line, is 
derived from the second line of Eq 40. Also included is the equation for the geocentric angle 𝜃𝜃𝑈𝑈 
between the radar and the location T where the signal path (for elevation angle 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚) is tangent 
to the earth (Figure 7). In Eq 68: Arcsin and Arccos yield the smallest non-negative angle 
solution for arcsin and arccos, respectively; and on the second line, the ‘+’ is correct except when 
𝛼𝛼 < 0 and the aircraft is between the radar U and the radial passing through the point of 
tangency T.  

ℎ𝑆𝑆 = ℎ𝑈𝑈 + �
cos (𝛼𝛼)

cos (𝛼𝛼 + 3
4𝜃𝜃)

− 1� �43𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈�      ,     𝛼𝛼 ≥ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 

𝜃𝜃 = −
4
3
𝛼𝛼 ±

8
3
 Arcsin��

�43 𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈� sin2� 12𝛼𝛼� + 1
2 (ℎ𝑆𝑆 − ℎ𝑈𝑈) 

4
3 𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

�      ,     𝛼𝛼 ≥ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 
Eq 68 
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𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = −Arccos �
4
3 𝑅𝑅𝑒𝑒

4
3 𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

� = −2 Arcsin��
ℎ𝑈𝑈

2 �43 𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆�
� 

𝜃𝜃𝑈𝑈 = −4
3 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 

The results of exercising the first line of Eq 68 are shown in Figure 8. The maximum range 
depicted, 250 NM, is the specified value for current en route ATC radars (e.g., ARSR-4 and 
ATCBI-6). Curves are shown that correspond to three radar elevations above mean sea level 
(MSL) when 𝛼𝛼 = 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚, the theoretical minimum elevation angle for which targets are visible 
(blue) and for 𝛼𝛼 = 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚+1 deg larger than the minimum elevation angle (violet). Aircraft whose 
range / altitude combinations are above a given curve are visible to the radar; otherwise they are 
said to be ‘below the radar horizon’. If the visibility of aircraft relative to terrain (rather than 
mean sea level) is needed, the elevation of the terrain is subtracted from the MSL values in 
Figure 8. 

 
Figure 8  Minimum Visible Altitude vs. Range for Three Radar Antenna Altitudes 

Sensitivity to radar antenna elevation — Increasing the height of the radar’s antenna decreases 
the minimum altitude at which aircraft are visible. In this example, at the maximum radar range, 
raising the antenna from 50 feet to 5,000 feet decreases the visible aircraft altitude by almost 
21,000 feet — i.e., the ratio is greater than 4:1. The reason can be appreciated by examining 
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Figure 7. Line US acts like a lever arm with its fulcrum at T. Raising U lowers S, and since T is 
generally closer to U than S, the change in the elevation of S is greater than it is in U. 

Sensitivity to antenna boresight angle — Increasing the elevation angle of a radar antenna 
above the minimum required to avoid blockage of the signal by the earth has a significant 
coverage penalty. At the radar’s maximum range, a 1 degree increase in elevation angle corres-
ponds to an increase in the minimum altitude at which targets are visible by approximately 

Δα d ≈ (1 deg)(π rad/180 deg)(250 NM)(6,076 ft/NM) ≈ 26,500 feet Eq 69 

The resulting decrease in surveillance coverage is more than is gained by raising the radar 
elevation to 5,000 feet. Thus, aligning (often called ‘bore sighting’) the antenna is an important 
aspect of a radar installation. 

Cone of Silence — ‘Visibility’ is necessary for an aircraft to be detected by a radar. But it is not 
sufficient. Energy transmitted by the radar must reach the aircraft; then, energy scattered (pri-
mary radar) or transmitted (secondary radar) by the aircraft must return to the radar at a detec-
table level. When a radar performs well for most targets (the case here) and a target is visible, the 
determining factor for detectability is the antenna pattern. ATC radar antennas are designed to 
have their gain concentrated near the horizon, where most aircraft are. Conversely, ATC radar 
antenna are not designed to detect aircraft almost directly above them (the ‘cone of silence’).  

A ‘rule of thumb’ for detecting a target by an ATC radar is that the target range be at least twice 
its height above the radar antenna — e.g., an aircraft at 10,000 ft above the antenna would not be 
detected when less than 20,000 ft or 3.3 NM from the radar (Ref. 21). Figure 8 includes the pre-
dicted cone of silence for an ATC radar antenna on the surface; larger antenna elevation values 
will result in slightly smaller cones of silence. Generally, the cone of silence is an issue to be 
aware of, but is not a major concern. 

Targets ‘Below’ the Radar — While the cone of silence is a concern for aircraft nearly above a 
radar, when a radar antenna is installed significantly higher than the local terrain level, a similar 
issue arises for aircraft close to but at lower altitudes than the antenna. Figure 9 depicts the 
vertical plane (analogous to Figure 1) containing the radar antenna and the signal paths (for a 
4/3rds earth model) that are unblocked by the earth for antenna heights of 50 ft, 500 ft and 
5,000 ft above the earth. (Data for these curves are the same as data for Figure 8.) The points of 
tangency T with the earth’s surface for these signal paths are 8.7, 27.5 and 86.9 NM from the 
radar U. Aircraft located between U and T and vertically below the paths that are tangent to the 
earth’s surface are visible to the radar (i.e., the propagation paths between those aircraft and the 
antenna are unblocked). Whether the radar can detect them is primarily an issue of the antenna 
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vertical pattern. Some radars are designed with a ‘look down’ mode to detect such aircraft. Thus, 
Figure 8 and Figure 9 may understate coverage for such targets.  

Earth Model — For either the standard-size or 4/3rds earth model, the minimum visible aircraft 
altitudes are small at short ranges, and model differences are not important. However, the 
minimum visible altitudes for the separate models, and their differences, are substantial at longer 
ranges. For example, at a ground range of 250 NM, the predicted visible aircraft altitude for a 
4/3rds earth model is less than that for a normal-size earth by between 13.4 kft (for a radar 
antenna elevation of 50 ft) and 9.4 kft (for a radar antenna elevation of 5,000 ft). 

 
Figure 9  Radar Minimum Visible Altitude vs. Horizontal Range 

3.7.2 Example 2:  Aircraft Precision Approach Procedure 

Design of a Precision Instrument Approach Procedure (IAP) is a straightforward application of 
the analyses in this chapter. The RNAV (GPS) LPV approach to Kansas City International 
Airport (MCI) runway 19L is selected as an example. The approach plate is shown as Figure 10. 

The first consideration is that, since the navigation fixes on the approach plate quantify vertical 
height in terms of altitude MSL, the same quantity must be used for procedure design. Second, 
the user location U is chosen as the point where aircraft crosses the runway threshold. The 
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elevation above MSL of U is the sum of the elevation of the runway threshold (THRE = 978 ft) 
and the threshold crossing height (TCH = 59 ft); thus, ℎ𝑈𝑈 = ℎ𝑇𝑇 = 1,037 ft (where T denotes 
threshold). 

 
Figure 10  Approach Plate: RNAV (GPS) Y for MCI Runway 19L 

In terms of the four variables defined in Subsection 3.1.1, the elevation angle 𝛼𝛼 is set equal to the 
specified glide path (GP) angle — i.e., 𝛼𝛼 = 3.00 deg — and is one independent variable. The 
second independent variable describes movement along the approach route. Either 𝜃𝜃 or ℎ𝑆𝑆 = ℎ𝐴𝐴 
(A denoting aircraft) could be used; in this example, 𝜃𝜃 is selected because it has fewer draw-
backs. While its published precision (0.1 NM) is less than desired, the limits of its precision are 
known. Conversely, only lower bounds for ℎ𝐴𝐴 are specified on the approach plate; the amount 
that each is below the glide path angle is not known. (A reason for selecting this example is that 
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there are six positions along the approach route where the minimum altitude MSL is stated.) 

For this set of variables — 𝛼𝛼 and 𝜃𝜃 known, and ℎ𝐴𝐴 unknown — Subsection 3.6.3 provides the 
solution (Eq 66). Evaluating this equation, repeated here as Eq 70, using the TERPS value for 𝑅𝑅𝑒𝑒 
(Eq 32), yields Table 5. 

ℎ𝐴𝐴 = −𝑅𝑅𝑒𝑒 +
cos (𝛼𝛼)

cos (𝛼𝛼 + 𝜃𝜃)
(𝑅𝑅𝑒𝑒 + ℎ𝑇𝑇) Eq 70 

Table 5  Specified and Computed Fix Altitudes for MCI Runway 19L LPV Approach 

Fix Name UMREW FELUR REMNS ZASBO YOVNU GAYLY 
Dist. from Threshold, NM (Figure 10) 1.9 4.9 6.2 9.3 12.4 15.5 

Chart Min. Altitude, ft MSL (Figure 10) 1,640 2,600 3,000 4,000 5,000 6,000 
Computed GP Altitude, ft MSL (Eq 70) 1,645 2,619 3,046 4,075 5,122 6,187 

The computed values in the last row of Table 5 are slightly larger than the published minimum 
altitudes in Figure 10. Since published minimum altitudes are usually rounded down to the 
largest multiple of one hundred feet, it is reasonable to conclude that the IAP design process 
described in the subsection closely replicates FAA process. 

3.7.3 Example 3:  Satellite Visibility of/from Earth 

A question that is readily addressed using the equations in this chapter is: What fraction of the 
earth’s surface can see (and be seen by) a satellite at altitude ℎ𝑆𝑆? Clearly, ℎ𝑆𝑆 is one independent 
variable in such an analysis. The other independent variable is taken to be the minimum 
elevation angle 𝛼𝛼 (often called the mask angle in this context) at which the satellite provides a 
usable signal. The quality of signals received at low elevation angles can be degraded due to 
multipath and attenuation by the atmosphere; and terrain blockage is an issue at low elevation 
angles. The dependent variable is taken to be 𝜃𝜃, the geocentric angle between the satellite nadir 
N and the user U. For this set of variables, Subsection 3.3.1 provides the solution approach. 

An issue is whether to use a normal-size or 4/3rds earth model. Here, normal-size is selected, 
because (unlike radar signals) satellite signals are outside of the earth’s atmosphere over most of 
their propagation path. The earth’s atmosphere extends to an altitude of approximately 5 NM, 
while satellite altitudes are at least several hundred nautical miles. The basic equation to be 
evaluated is thus taken from Eq 40. To visualize the impact of satellite altitude on visibility, a 
modified version of Eq 33 is used to generate Figure 11. 
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Figure 11  Fraction of Earth Visible vs. Satellite Altitude 
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4. TWO-POINT / SPHERICAL-SURFACE FORMULATION 

4.1 Basics of Spherical Trigonometry 

4.1.1 Basic Definitions 

Spherical trigonometry deals with relationships among the sides and angles of spherical 
triangles. Spherical triangles are defined by three vertices (points 
A, B and C in Figure 12) on the surface of a sphere and three arcs 
of great circles (a, b and c in Figure 12), termed sides, connecting 
the vertices. The angles at the vertices are A, B and C, and the 
lengths of the sides are quantified by their corresponding 
geocentric angles (a, b and c). In this document, the sphere always 
represents the earth. 

Spherical trigonometry originated over 2,000 years ago, largely 
motivated by maritime navigation and understanding the relation-
ship of the earth to the ‘heavenly bodies’. Early contributors were 
from Greece, Persia and Arabia. The subject was completed by Europeans in the 18th and 19th 
centuries. Until the 1950s, spherical trigonometry was a standard part of the mathematics 
curriculum in U.S. high schools (Refs. 22 and 23). 

4.1.2 Application to Navigation and Surveillance 

In this document, a distinction is made between ‘mathematical’ and ‘navigation’ spherical 
triangles. The three vertices of a ‘mathematical’ spherical triangle can be arbitrarily located on 
the surface of a sphere — i.e., all three points can be problem-specific. The sides and interior 
angles are all positive in the range (0, π). A ‘mathematical’ spherical triangle does not have an 
defined relationship with the sphere’s latitude/longitude grid.  

In contrast, ‘navigation’ spherical triangles involve only two problem-specific locations, 
typically labeled U and S in this chapter. The third vertex is chosen as the North Pole P*, 
enabling U and S to be related to the latitude/longitude grid. (In many texts, ‘navigation’ 
triangles are called ‘polar’ triangles.) Six triangle parts (requiring seven navigation variables) 
define a ‘navigation’ spherical triangle (Figure 13): 

                                                 
* While the North Pole is used in deriving navigation equations, the resulting expressions are valid for points in the 
southern hemisphere as well. 

 
Figure 12  Example 
Spherical Triangle 
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(a) Angular lengths of sides PU and PS — 
complements of the latitudes of points U and S, 
respectively;  

(b) Angle at P — the difference in the longitude of the 
points U and S;  

(c) Angular length of side US — the geocentric angle 
between points U and S; and  

(d) Angles at U and S — the azimuth angles of the leg 
joining U and S with respect to north. 

This chapter is devoted to problems involving two-points 
on the surface of a sphere. These can be solved using 
navigation spherical triangles. Chapter 6 addresses 
situations involving three problem-specific points.  

4.1.3 Applicability to Two-2D Problem Formulation 

A drawback of spherical trigonometry is that it not suited to 
problems involving locations above the earth’s surface — i.e., it does not ‘handle’ altitude. 
However, the vertical plane defined by two vertices of a spherical triangle and the center of the 
sphere conform to the assumptions employed in Chapter 3. Points directly above the two vertices 
lie in that plane as well. Thus, for situations involving two problem-specific points, plane and 
spherical trigonometry are complementary techniques that can be employed for their analysis. 
Moreover, situations involving three problem-specific points can be analyzed in the same way, 
so long as the altitude components can be handled in a pairwise manner. Often, problems 
involving an aircraft and two navigation or surveillance sensors satisfy this condition. 

4.1.4 General Characteristics of Spherical Triangles 

The interior angles of a spherical triangle do not necessarily sum to π, and right triangles do not 
play as prominent a role as they do in plane trigonometry; interest is largely focused on oblique 
triangles. Although Figure 12 and Figure 13 depicts all angles and sides as acute, angles and 
sides of mathematical spherical triangles lie in the range (0, π). Angles in navigation analysis 
have a wider range of values: latitude varies over [-π/2, π/2], longitude varies over (-π, π], 
geocentric angles vary over (0, π) and azimuths vary over (-π, π]. Thus, preferable: latitudes are 
found with the arc sine or arc tangent function; longitudes with the two-argument arc tangent; 
geocentric angles with the arc cosine; and azimuths with the two-argument arc tangent. 
Difference between two longitudes or two azimuth angles may need to be adjusted by ±2π, so 
that the magnitude of the difference is less than or equal to π. 

Two points on a sphere are diametrically opposite (antipodal) if the straight line connecting them 

 
Figure 13  Navigation 

Spherical Triangle 
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passes through the center of the sphere. Mathematically, U and S are antipodal when 𝐿𝐿𝑆𝑆 = – 𝐿𝐿𝑈𝑈 
and 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈 ± 𝜋𝜋. If that is the case, the geocentric angle between U and S is π, and an infinite 
number of great circle paths connect U and S. Many spherical trigonometry equations, and 
particularly those for azimuth angles, are indeterminate for antipodal points. 

The expressions developed in this chapter are based on triangle UPS Figure 13 — specifically, 
U is west of S. The positive interior angles of mathematical triangle UPS are: 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈, 𝜓𝜓𝑆𝑆/𝑈𝑈, 
and 2𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆 If, in fact, S is west of U, the expressions derived remain correct. It is apparent 
(and shown in Subsection 4.6.2) that if 0 < 𝜓𝜓𝑆𝑆/𝑈𝑈 < 𝜋𝜋 then −𝜋𝜋 < 𝜓𝜓𝑈𝑈/𝑆𝑆 < 0, and vice versa.  

4.1.5 Resources on the Web 

The internet has many useful resources concerning spherical trigonometry. Examples, in 
approximate decreasing order of their complexity, are: 
 I. Todhunter, Spherical Trigonometry, 5th Edition (Ref. 24) — Written by a British 

academic. Considered to be the definitive work on the subject, and readily understood 
as well. Later editions were published but are not available without charge. 

 W.M. Smart and R.M. Green, Spherical Astronomy (Ref. 25) — Also written by a 
British academics. Chapter 1 is devoted to spherical trigonometry. It has equations 
and their derivations (including more complex and useful ones).  

 Wikipedia, Spherical Trigonometry (Ref. 26) — A fine collection of equations and 
background information. 

 Wolfram MathWorld (Ref. 27) — Another good collection of equations 
 Ed Williams’ Aviation Formulary (Ref. 28) — A website with equations similar to 

those in this chapter, without derivations. Also offers an Excel spreadsheet with 
formulas as macros. 

 Spherical Trigonometry (Ref. 29) — An easily understood, unintimidating 
introduction to the topic. 

4.1.6 Key Formulas/Identities 

The key formulas/identities for oblique spherical triangles are presented below. These formulas 
presume the existence of a solution — i.e., that the known angles and sides correspond to an 
actual triangle. Some formulas do not have a solution if that is not the case.  

In general, the labeling of the angles and sides of a spherical triangle is arbitrary. Thus, referring 
to Figure 12, cyclic substitutions — i.e., A → B, a → b, etc. — can be made to derive alternate 
versions of each identity. In addition to the formulas displayed below, there is a rich set of other 
identities that can be found in the literature. 

Law of Cosines for Sides (also simply called Law of Cosines): 

cos(𝑎𝑎) = cos(𝑏𝑏) cos(𝑐𝑐) + sin(𝑏𝑏) sin(𝑐𝑐) cos(𝐴𝐴) Eq 71 
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The right-hand side contains two sides (here, b and c) and their included angle (A). The left-hand 
side contains the third side (a), which is opposite to the included angle. This is the most used 
identity (or law) of spherical trigonometry. 

Primary applications: (1) finding the third side of a triangle, given two sides and their included 
angle; and (2) finding any angle of a triangle (using cyclic substitution), given three sides.  

The right-hand side of Eq 71 is similar to the expression for cos(𝑏𝑏 ± 𝑐𝑐), except that another 
factor, whose absolute value is no greater than unity, is present. It follows that the right-hand 
side must have absolute value no greater than unity, regardless of the values of the three 
variables.  

Law of Cosines for Angles (also called Supplemental Law of Cosines): 

cos(𝐴𝐴) = − cos(𝐵𝐵) cos(𝐶𝐶) + sin(𝐵𝐵) sin(𝐶𝐶) cos(𝑎𝑎) Eq 72 

The right-hand side contains two angles (here, B and C) and their included side (a). The left-hand 
side contains the third angle (A), which is opposite to the included side. The right-hand side must 
have absolute value no greater than unity, regardless of the values of the three variables. 

Primary applications: (1) finding the third angle of a triangle, given the other two angles and 
their included side; and (2) finding any side of a triangle (by cyclic substitution) from all three 
angles.  

Law of Sines: 
sin(𝑎𝑎)
sin(𝐴𝐴)

=
sin(𝑏𝑏)
sin(𝐵𝐵)

 Eq 73 

Primary application: Considering two angles and their opposite sides, and given three of these 
parts, find the remaining part. It is possible to select values for three of the parts such that a 
solution for the fourth part does not exist.  

When a solution does exist, the ambiguity of the arc sine function must be considered. From 
Ref. 24, Article 83: “the point may be sometimes settled by observing that the greater angle of a 
triangle is opposite to the greater side.” Article 86 addresses this topic further. For angle 𝐵𝐵 
unknown, it states “if 𝑎𝑎 lies between 𝑏𝑏 and 𝜋𝜋 − 𝑏𝑏, there will be one solution; if 𝑎𝑎 does not lie 
between 𝑏𝑏 and 𝜋𝜋 − 𝑏𝑏, either there are two solutions or there is no solution”. The cases of 𝑎𝑎 = 𝑏𝑏 
and 𝑎𝑎 = 𝜋𝜋 − 𝑏𝑏 are addressed separately.  

Analog of Law of Cosines for Sides (also called the Five-Part Rule): 

( ) ( )
( ) ( ) )cos(cossin)sin()cos()cos()sin(

)cos(cossin)sin()cos()cos()sin(
A b c  b c=Ca
A c b  c b=Ba

−
−

 Eq 74 
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These equations can also be written as 
sin(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎) cos(𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋)

= cos(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) sin(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦)− sin(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) cos(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦) cos (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴) 

For the formulas herein, the right-hand sides of both lines of Eq 74 have the same two sides and 
included angle (and almost identical functions) as the right-hand side of the law of cosines for 
sides (Eq 71). However, whereas the law of cosines for sides has the opposite side on the left-
hand side, the analogue law has the opposite side and an adjacent angle.  

Primary application: This law is not often used; herein, it’s employed in situations where two 
sides and the included angle are known, and it is desired to unambiguously find the two adjacent 
angles directly from the known quantities — e.g., see Subsection 4.2.2.  

Four-Part Cotangent Formula: 

cos(𝑎𝑎) cos(𝐵𝐵) = sin(𝑎𝑎) cot(𝑐𝑐) − sin(𝐵𝐵) cot(𝐶𝐶)         (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
cos(𝑎𝑎) cos(𝐶𝐶) = sin(𝑎𝑎) cot(𝑏𝑏) − sin(𝐶𝐶) cot(𝐵𝐵)         (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 

Eq 75 

These equations can also be written as 
cos(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) cos(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

= sin(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) cot(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − sin(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) cot (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

The six elements (or parts) of a triangle may be written in cyclic order as (aCbAcB). The four-
part cotangent formula relates two sides and two angles constituting four consecutive elements. 
The outer side and angle (i.e., at the ends of such a sequence) each appears once in Eq 75, as the 
argument of a cotangent function, whereas the inner parts appear twice. 

Primary applications: (1) Given two angles (here, B and C) and their included side (a), find the 
adjacent sides (b and c). (2) Given two sides (c and a, or a and b) and their included angle (B or 
C), find the adjacent angles (C and B).  

For same three known quantities as the two cosine laws (Eq 71 and Eq 72), the four-part 
cotangent formula provides solutions for the adjacent quantities that the cosine laws do not. 
However, application (2) can also be accomplished by a combination of the law of cosines (Eq 
71) and the analogue law (Eq 74). 

Napier’s Analogies*: 

tan �12(𝐴𝐴 + 𝐵𝐵)� =
cos�12(𝑎𝑎 − 𝑏𝑏)�
cos�12(𝑎𝑎 + 𝑏𝑏)�

 cot �12𝐶𝐶�           tan �12(𝑎𝑎 + 𝑏𝑏)� =
cos�12(𝐴𝐴 − 𝐵𝐵)�
cos�12(𝐴𝐴 + 𝐵𝐵)�

 tan �12𝑐𝑐� 

tan �12(𝐴𝐴 − 𝐵𝐵)� =
sin�12(𝑎𝑎 − 𝑏𝑏)�
sin�12(𝑎𝑎 + 𝑏𝑏)�

 cot �12𝐶𝐶�           tan �12(𝑎𝑎 − 𝑏𝑏)� =
sin�12(𝐴𝐴 − 𝐵𝐵)�
sin�12(𝐴𝐴 + 𝐵𝐵)�

 tan �12𝑐𝑐� 
Eq 76 

                                                 
* In mathematics, the term ‘analogies’ was historically used for proportions. 
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For each equation, either: (a) the right-hand side contains two sides and their included angle, and 
the left-hand side contains the opposite two angles; or (b) the right-hand side contains two angles 
and their included side, and the left-hand side contains the opposite two sides. 

Primary applications (1): Given two sides (here, a and b) and their opposite angles (A and B), 
find the remaining side (c) and remaining angle (C). (2) By combining two equations: (a) given 
two sides and the included angle, find the opposite two angles, or (b) given two angles and the 
included side, find the opposite two sides. 

Considering the lower left-hand equation, tan�12(𝐴𝐴 − 𝐵𝐵)� and sin�12(𝑎𝑎 − 𝑏𝑏)� must have the same 
sign. Thus, 𝐴𝐴 > 𝐵𝐵 if and only if 𝑎𝑎 > 𝑏𝑏. It follows that, if the sides of a spherical triangle are 
ordered based on length, their opposite angles must have the same order based on magnitude, 
and vice versa. The lower right-hand equation leads to the same result. 

The Law of Tangents for spherical triangles is the ratio of the lower to the upper equations on 
either side of Eq 76. It is not used herein. 

Delambre’s Analogies: 

cos�12(𝐴𝐴 + 𝐵𝐵)�
cos�12(𝑎𝑎 + 𝑏𝑏)�

=
sin�12𝐶𝐶�
cos�12𝑐𝑐�

                         
cos�12(𝐴𝐴 − 𝐵𝐵)�
sin�12(𝑎𝑎 + 𝑏𝑏)�

=
sin�12𝐶𝐶�
sin�12𝑐𝑐�

 

sin�12(𝐴𝐴 + 𝐵𝐵)�
cos�12(𝑎𝑎 − 𝑏𝑏)�

=
cos�12𝐶𝐶�
cos�12𝑐𝑐�

                         
sin�12(𝐴𝐴 − 𝐵𝐵)�
sin�12(𝑎𝑎 − 𝑏𝑏)�

=
cos�12𝐶𝐶�
sin�12𝑐𝑐�

 

Eq 77 

For each equation: the left-hand side contains two angles and their their opposites sides, and the 
right-hand side contains the remaining angle and its opposite side. Angles are always in the num-
erator, and sides in the denominator. Napier’s Analogies are ratios of Delambre’s Analogies. 

Primary application: Checking a solution for a triangle (as each expression contains all six parts 
of a spherical triangle).  

Same Affection for Sums/Difference of Opposite Sides/Angles: 

The sides and angles of a ‘mathematical’ spherical triangle all lie in (0, π). Thus ½(𝐴𝐴 + 𝐵𝐵) and 
½(𝑎𝑎+ 𝑏𝑏) must as well. Considering the upper left-hand equation in Eq 77, it follows that these 
two sums are less-than/equal-to/greater-than ½𝜋𝜋 synchronously (Ref. 24). Also, ½(𝐴𝐴 − 𝐵𝐵) and 
½(𝑎𝑎 − 𝑏𝑏) both lie in (-½π, ½π). Considering the lower right-hand equation in Eq 77, it follows 
that these differences are less-than/equal-to/greater-than zero simultaneously. Ref. 24 terms this 
characteristic as ‘having the same affection’. 
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Solving for Angles and Sides: 

When solving for angles and sides using the above formulas, one must be aware of the possi-
bility of multiple angle solutions to inverse trigonometric functions (Subsection 2.1.6). In the 
realm of ‘mathematical’ spherical triangles, where angles and sides are in the range (0, π), the arc 
sine function (often arising from use of the law of sines) is the primary source of concern, as two 
angles in the range (0, π) can have the same sine value. (However, some physical problems have 
two possible solutions — i.e., one solution is ambiguous [not extraneous] and additional infor-
mation must be used to select the correct physical solution.) In the following text, an attempt is 
made to avoid these situations, or at least to point them out when they do occur. 

4.1.7 Taxonomy of Mathematical Spherical Triangle Problems 

A spherical triangle is fully defined by its six parts. The case of five known parts is trivial, 
requiring only a single application of either cosine law or the sine law. For four known parts, 
there is one non-trivial case. For three known parts there are six cases. Each of the seven cases is 
illustrated in Figure 14 and enumerated below (Ref. 26), along with a solution approach. For 
some cases, others solutions exist. 

 

Figure 14  Taxonomy of Mathematical Spherical Triangle Problems  

Mathematical spherical triangle taxonomy: 
(1) Three sides known; SSS (side-side-side) case — Eq 71, three times 
(2) Two sides and the included angle known; SAS (side-angle-side) case — Eq 71 for a, 

Eq 73 and/or Eq 74 for B and C 
(3) Two sides and a non-included angle known; SSA (side-side-angle) case — Eq 73 for 

C, then follow case 7 
(4) Two angles and the included side known; ASA (angle-side-angle) case — Eq 72 for 

A, then Eq 73 or Eq 75 b and c 
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(5) Two angles and a non-included side known; AAS (angle-angle-side) case — Eq 73 
for b, then follow case 7 

(6) Three angles known; AAA (angle-angle-angle) case — Eq 72, three times 
(7) Two sides and their opposite angles known; AASS (angle-angle-side-side) case — Eq 

76 for A and a. 

4.1.8 Taxonomy of Navigation Spherical Surface Problems 

The spherical surface formulation introduced in Section 1.2.2 involves seven variables. For a full 
solution to a situation, four variables must be known; from these, the remaining three can be 
found. Thus, 35 mathematical problems and 105 solution equations can be posed. However, the 
spherical surface situation is symmetric in U and S; interchanging U and S only changes the 
notation, but does not change the underlying problem. Of the 35 possible problems, three are 
self-symmetric and 16 have symmetric versions — see Table 6.  

Table 6  Taxonomy of Spherical Surface Navigation Problems 

Prob
# 

Known Quantities Problem Structure 
Comment 

LU λU ψS/U LS λS ψU/S θ SP1 SS2 No λ3 Case4 
1 X X  X X    X  2 Section 4.2 
2 X X X X    X   3 Section 4.6 
3 X X  X  X  X   3 Similar to #2 
4 X X  X   X X   1  
5 X X X  X   X   4 Section 4.5 
6 X X   X X  X   5  
7 X X   X  X X   3  
8 X X X   X  X   5  
9 X X X    X X   2 Section 4.3 

10 X X    X X X   3 Section 4.4 
11 X  X X  X   X X 7 Over-specified 
12 X  X X   X X  X 1, 2, + Over-specified 
13 X  X  X X  X   5 Similar to #8 
14 X  X  X  X X   2 Similar to #9 
15 X    X X X X   3  
16 X  X   X X X  X 2, 4, + Over-specified 
17  X X  X X   X  6  
18  X X  X  X X   5  
19  X X   X X X   4 Subsection 4.2.3 

1 Symmetric Problem exists  
2 This problem is Self-Symmetric  
3 Insufficient information to determine longitude 
4 Spherical Triangle Case (Subsection 4.1.7) 
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As noted in Table 6 (column labeled ‘No 𝜆𝜆’), 3 of 19 problems summarized (and 5 of the full 35) 
do not involve either longitude being known. Thus the solution can only yield a longitude 
difference rather than an actual longitude. Table 6 also references the corresponding spherical 
triangle case (Subsection 4.1.7) and the cases that are addressed in the remainder of this chapter. 
All seven spherical triangle cases presented in Subsection 4.1.7 occur in Table 6 

4.2 The Indirect Problem of Geodesy 

The Indirect problem of geodesy (introduced in Sub-
section 1.2.2) is illustrated in Figure 15 (also see Figure 
13). The known elements (and their values) of triangle 
PUS are sides PU (½𝜋𝜋 − 𝐿𝐿𝑈𝑈) and PS (½𝜋𝜋 − 𝐿𝐿𝑆𝑆) and the 
included angle at P (𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈). In terms of the taxonomy 
of spherical triangles of Subsection 4.1.7, this problem 
falls under Case (2) – a SAS (side-angle-side) situation. 

4.2.1 Computing the Geocentric Angle 

Finding the geocentric angle between two locations on the 
spherical earth is fundamental navigation task. Referring to Figure 13, the angular distance 
between U and S is readily derived from the law of cosines for sides (Eq 71), with the length 𝜃𝜃 
of the great circle are connecting U and S as the unknown quantity 

cos(𝜃𝜃) = cos(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆) + sin(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) Eq 78 

The right-hand side of Eq 78 evaluates to a value in [-1, 1]; thus 𝜃𝜃 can be found uniquely in [0, 
π]. As ‘sanity’ checks, this expression reduces to 𝜃𝜃 = |𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈| when 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈, and to 𝜃𝜃 =
|𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈| when 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈 = 0.  

Forms of Eq 78 (e.g., involving logarithms) were utilized for centuries using paper-and-pencil 
and rudimentary tables. However, great circle routes only 
became practical with the introduction of steam power. During 
this era, since Eq 78 is ill-conditioned for small values of 𝜃𝜃, 
alternatives were sought. Thus, a modification was formulated 
utilizing the versine (Latin: sinus versus, or flipped sine) – see 
Figure 16 (Ref. 30). 

vers(𝜃𝜃) ≡ 1 − cos(𝜃𝜃) = 2 sin2 �12𝜃𝜃� Eq 79 

In early terminology, the ordinary sine function was called sinus 
rectus, or vertical sine. Tables for the versine or haversine (half 

 
Figure 15  Indirect Problem 

of Geodesy 

 
Figure 16  Sine, Cosine and 
Versine, and the Unit Circle 
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of versine) date to the third century BC. 

Using the haversine function, the geocentric angle 𝜃𝜃 between known locations U and S can be 
found from the historically significant ‘haversine formula’ (Ref. 31) 

hav(𝜃𝜃) = hav(𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈) + cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑆𝑆) hav(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) Eq 80 

Without explicitly utilizing the versine or haversine functions (which are less needed today, due 
to the availability of computers), an analytically equivalent version of the haversine formula is 

sin �12𝜃𝜃� = �sin2 �12(𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)� + cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) sin2 �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)� Eq 81 

The right-hand side of Eq 81 evaluates to a value in [0, 1], so 𝜃𝜃 can then be found uniquely in 
[0, π]. Latitude and longitude differences only involve the sine function. This expression reduces 
to 𝜃𝜃 = |𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈| when 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈, and to sin�12𝜃𝜃� = cos(𝐿𝐿𝑈𝑈) �sin �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)�� when 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈.  

A drawback of Eq 81 (although of far less concern than the problem it solves) is that it’s ill-
conditioned for geocentric angles near π. One solution is to use the original equation (Eq 78) in 
these situations. Another is to use the following:  

cos �12𝜃𝜃� = �cos2 �12(𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)� − cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) sin2 �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)� Eq 82 

The previous two equations can be combined to create a form that is monotonically increasing 
for 0 < 𝜃𝜃 < π and thus not ill-conditioned for any value of 𝜃𝜃 when finding an inverse  

tan �12𝜃𝜃� =
�sin2 �12(𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)� + cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) sin2 �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)�

�cos2 �12(𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)� − cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) sin2 �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)�
 Eq 83 

Remarks: (a) All of the equations for 𝜃𝜃 in this subsection are unchanged if U and S are inter-
changed. (b) When the three points P, U and S are aligned (so the triangle PUS is degenerate), 
the equations remain valid. (c) An expression for tan(𝜃𝜃), vice that for tan(½𝜃𝜃) in Eq 83, can also 
be derived; see the following two subsections and Section 5.2 (Eq 143). 

4.2.2 Computing the Azimuth Angles of the Connecting Arc 

Having solved for the geocentric angle, the remaining goal of the Indirect problem of geodesy is 
finding the azimuth angles at U and S of the great circle arc connecting these two points. This 
determination is slightly complicated by the fact that azimuth angles can vary over the range 
[-π, π], so that a two-argument arc tangent function should be used. 
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First, the spherical trigonometry law of sines (Eq 73), applied to the angles at P and at U, yields 

sin�𝜓𝜓𝑆𝑆/𝑈𝑈� =
cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

sin(𝜃𝜃)
 Eq 84 

Second, the analogue to the law of cosines for sides (Eq 74) yields 

cos�𝜓𝜓𝑆𝑆/𝑈𝑈� =
sin(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) − cos(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

sin(𝜃𝜃)
 Eq 85 

Combining Eq 84 and Eq 85 yields 

tan�𝜓𝜓𝑆𝑆/𝑈𝑈� =
cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

sin(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) − cos(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)
 Eq 86 

While Eq 84 and Eq 85 depend upon the geocentric angle 𝜃𝜃 (which is not a ‘given’ for the 
Indirect problem), the solution (Eq 86) for 𝜓𝜓𝑆𝑆/𝑈𝑈 only depends upon the latitudes and longitudes 
of the great circle arc end points, which are ‘givens’. Thus, the solution for 𝜓𝜓𝑆𝑆/𝑈𝑈 does not chain 
from the solution for 𝜃𝜃.  

The spherical trigonometry methodology employed is symmetric with respect to U and S, so 

tan�𝜓𝜓𝑈𝑈/𝑆𝑆� =
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆)

sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) − cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆)
 Eq 87 

As mentioned previously, in navigation analyses it is useful to employ azimuth angles in the 
range [-π, π], where negative values denote angles west of north. In some texts, the azimuth 
angle at S is taken to be the angle the path would take if it were to continue — i.e., implicitly or 
explicitly, point U is taken as the origin and S as the destination of a trajectory. However, herein, 
the two points are on an equal basis and the azimuth angle at the second point is that for the great 
circle path toward the first point. Eq 86 and Eq 87 reflect this point of view. 

Remarks:  
 When the three points P, U and S are aligned (so the triangle PUS is degenerate), the 

equations in this subsection remain valid. 

 If Eq 84 and Eq 85 are squared and added, the result is . 

sin(𝜃𝜃) = �[cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 + [cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 Eq 88 

This expression for the geocentric angle does not have the historical significance of Eq 78 
or Eq 80 in Subsection 4.2.1, but is now used in software routines, often in conjunction 
with Eq 78 to form tan(𝜃𝜃). It is derived using vector analysis in Section 5.2 (Eq 142). 
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4.2.3 Alternate Solution Using Napier’s Analogies 

Referring to Figure 13 (with P=C, S=B and U=A), Napier’s Analogies yields  

tan �12�𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆�� =
cos�12(𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆)�
sin�12(𝐿𝐿𝑈𝑈 + 𝐿𝐿𝑆𝑆)�

 cot �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)� 

tan �12�𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆�� =
sin�12(𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆)�
cos�12(𝐿𝐿𝑈𝑈 + 𝐿𝐿𝑆𝑆)�

 cot �12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)� 

Eq 89 

Because the left-hand side of Eq 89 uses half-angle formulas, the sum and difference of 𝜓𝜓𝑈𝑈/𝑆𝑆 and 
𝜓𝜓𝑆𝑆/𝑈𝑈 can be found uniquely in the range (−𝜋𝜋,𝜋𝜋). Since 𝜓𝜓𝑈𝑈/𝑆𝑆 and 𝜓𝜓𝑆𝑆/𝑈𝑈 have opposite signs, the 
result of the arc tangent function will be correct for the sum but the difference may require 
adjustment by 2𝜋𝜋.  

Special cases: When 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈, the second line of Eq 89 yields 𝜓𝜓𝑆𝑆/𝑈𝑈 = −𝜓𝜓𝑈𝑈/𝑆𝑆 and the first line 
yields tan�𝜓𝜓𝑆𝑆/𝑈𝑈� = cot[½(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)] / sin[𝐿𝐿𝑈𝑈]. When 𝐿𝐿𝑆𝑆 = −𝐿𝐿𝑈𝑈, the first line of Eq 89 yields 
𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆 = 𝜋𝜋 and the second line yields tan�𝜓𝜓𝑆𝑆/𝑈𝑈�  = −tan[½(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)] / sin[𝐿𝐿𝑈𝑈].  

The remaining two Napier’s Analogies yield the following espressions for the geocentric angle, 
which requiring chaining.  

tan �12𝜃𝜃� =
cos�12�𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆��
cos�12�𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆��

cot �12(𝐿𝐿𝑈𝑈 + 𝐿𝐿𝑆𝑆)�  

tan �12𝜃𝜃� =
sin�12�𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆��
sin�12�𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆��

tan �12(𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆)�  

Eq 90 

Eq 89 and Eq 90, in reverse order, can also be used to solve what may be termed the complement 
of the Indirect problem of geodesy (Table 6, Row 19): Given the geocentric angle 𝜃𝜃 between 
points U and S and the path azimuth angles 𝜓𝜓𝑈𝑈/𝑆𝑆 and 𝜓𝜓𝑆𝑆/𝑈𝑈 at both points, what are the latitudes 
and the longitude differences for the points? 

4.3 The Direct Problem of Geodesy 

The Direct problem of geodesy, introduced in Subsection 
1.2.2, is illustrated in Figure 17 (also see Figure 13). The 
known elements (values) of triangle PUS are side PU (½π - 
𝐿𝐿𝑈𝑈) and side US (𝜃𝜃), and their included angle at U (𝜓𝜓𝑆𝑆/𝑈𝑈). 
In the taxonomy of Subsection 4.1.7, this problem falls 
under case (2) – a SAS (side-angle-side) situation. 

The coordinates 𝐿𝐿𝑈𝑈 and 𝜆𝜆𝑈𝑈 and the azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 

 
Figure 17  Direct Problem 

of Geodesy 
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define a great circle. The Direct problem is the determination of the coordinates of S which is a 
given distance 𝜃𝜃 from U.along that great circle Related problems are addressed in Sections 4.4, 
4.5 and 4.6.  

4.3.1 Computing the Satellite Latitude 

Applying the spherical law of cosines for sides, where the unknown is the side PS, yields 

sin(𝐿𝐿𝑆𝑆) = sin(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) + cos(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� Eq 91 

Latitude angles are restricted to the range [-π/2, π/2], so the principal value of the arc sine 
function always yields the correct solution to Eq 91. As checks: when 𝜓𝜓𝑆𝑆/𝑈𝑈 = 0, 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈 + 𝜃𝜃; 
when 𝜓𝜓𝑆𝑆/𝑈𝑈 = 𝜋𝜋, 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈 − 𝜃𝜃; and when 𝜓𝜓𝑆𝑆/𝑈𝑈 = ½ 𝜋𝜋, 𝐿𝐿𝑆𝑆 = arcsin[sin(𝐿𝐿𝑈𝑈) cos(𝜃𝜃)]. 
Alternatives to Eq 91 for finding 𝐿𝐿𝑆𝑆 are presented in Subsections 4.3.2 and 4.3.3. 

4.3.2 Computing the Satellite Longitude 

Finding the satellite longitude 𝜆𝜆𝑆𝑆 is more complex, as longitude angles are in the range [-π, π]. 
First, apply the spherical law of sines to the angels at P and U  

sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) =
sin(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜃𝜃)

cos(𝐿𝐿𝑆𝑆)
 Eq 92 

Then apply the analogue to the law of cosines for sides 

cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) =
cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) − sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)

cos(𝐿𝐿𝑆𝑆)
 Eq 93 

Thus the satellite longitude can be found from 

tan(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) =
sin(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜃𝜃)

cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) − sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)
 Eq 94 

The right-hand side of the above equation only depends upon ‘given’ quantities for the Direct 
problem, and not on the solution for 𝐿𝐿𝑆𝑆. By employing a two-argument arc tangent function, the 
solution will yield a value of 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 in the range [-π, π]. If this is added to a value of 𝜆𝜆𝑈𝑈 (also in 
the range [-π, π]), the result will be in the range [-2π, 2π]. Adjustments of ±2π must then be made 
to obtain a value of 𝜆𝜆𝑆𝑆 in the range (-π, π]. 

Two checks on Eq 94, assuming that 𝐿𝐿𝑈𝑈 = 0 are: (1) if 𝜓𝜓𝑆𝑆/𝑈𝑈 = 0, then 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈; (2) if 𝜓𝜓𝑆𝑆/𝑈𝑈 =
±½ 𝜋𝜋, then 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈 ± 𝜃𝜃. 

Remarks: 
 If Eq 92 and Eq 93 are squared and added, the result is . 
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cos(𝐿𝐿𝑆𝑆) = ��sin(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜃𝜃)�
2

+ �cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) − sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)�
2
 Eq 95 

This expression for the satellite latitude is not well known, but may have a numerical 
advantage over Eq 91 when 𝐿𝐿𝑆𝑆 is near a pole. 

4.3.3 Computing the Path Azimuth at the Satellite 

After 𝐿𝐿𝑆𝑆 and 𝜆𝜆𝑆𝑆 have been found, the Direct problem solution can be completed by finding the 
azimuth of the great circle arc at the satellite’s location, 𝜓𝜓𝑈𝑈/𝑆𝑆, using Eq 87. An alternative 
approach that does not chain solutions is to first apply the law of sines,  

sin�𝜓𝜓𝑈𝑈/𝑆𝑆� = −
sin(𝜓𝜓𝑆𝑆/𝑈𝑈) cos(𝐿𝐿𝑈𝑈)

cos(𝐿𝐿𝑆𝑆)
 Eq 96 

A minus sign is present in Eq 96 because, for triangle PUS, the interior angle at S is 2𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆. 
Subsection 4.6.2 elaborates on this topic. 

Then apply the analogue to the law of cosines for sides 

cos�𝜓𝜓𝑈𝑈/𝑆𝑆� =
sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) − cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�

cos(𝐿𝐿𝑆𝑆)
 Eq 97 

Thus 

tan�𝜓𝜓𝑈𝑈/𝑆𝑆� =
− cos(𝐿𝐿𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈)

sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) − cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�
 Eq 98 

Remarks: 

 Once 𝐿𝐿𝑆𝑆 and 𝜆𝜆𝑆𝑆 have been found, 𝜓𝜓𝑈𝑈/𝑆𝑆 may also be computed using Eq 87. 

 If Eq 96 and Eq 97 are squared and added, an alternative expression to Eq 95 results: 

cos(𝐿𝐿𝑆𝑆) = ��cos(𝐿𝐿𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈)�
2

+ �sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) − cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)�
2
 Eq 99 

4.3.4 Alternate Solution Using Napier’s Analogies 

Referring to Figure 13 (with P=B, S=A and U=C), the two expressions on left-hand of Eq 76 
(Napier’s Analogies) yield  

tan �12�𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆�� =
cos�12�

1
2𝜋𝜋 − 𝐿𝐿𝑈𝑈 − 𝜃𝜃��

cos�12�
1
2𝜋𝜋 − 𝐿𝐿𝑈𝑈 + 𝜃𝜃��

 cot �12𝜓𝜓𝑆𝑆/𝑈𝑈� 

tan �12�𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆 − 𝜓𝜓𝑈𝑈/𝑆𝑆�� =
sin�12�

1
2𝜋𝜋 − 𝐿𝐿𝑈𝑈 − 𝜃𝜃��

sin�12�
1
2𝜋𝜋 − 𝐿𝐿𝑈𝑈 + 𝜃𝜃��

 cot �12𝜓𝜓𝑆𝑆/𝑈𝑈� 

Eq 100 
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Because both 𝜓𝜓𝑈𝑈/𝑆𝑆 and 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 lie in (−𝜋𝜋,𝜋𝜋], both angles can be found uniquely by using other 
than the principal value of the arc tangent function. Using these results, either of the two right-
hand expressions in Eq 76 yield the satellite latitude 𝐿𝐿𝑆𝑆  

tan �12 �
1
2𝜋𝜋 − 𝐿𝐿𝑆𝑆�� =

cos�12�𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆��
cos�12�𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆 − 𝜓𝜓𝑈𝑈/𝑆𝑆��

tan �12 �
1
2𝜋𝜋 − 𝐿𝐿𝑈𝑈 + 𝜃𝜃�� 

tan �12 �
1
2𝜋𝜋 − 𝐿𝐿𝑆𝑆�� =

sin�12�𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆��
sin�12�𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆 − 𝜓𝜓𝑈𝑈/𝑆𝑆��

tan �12 �
1
2𝜋𝜋 − 𝐿𝐿𝑈𝑈 − 𝜃𝜃�� 

Eq 101 

Eq 100 and Eq 101 (in reverse order) can also be used to solve what may be termed the 
complement of the Direct problem of geodesy (Table 6, Row 5); also see Section 4.5.  

 Given the latitude of point S, the longitude difference 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 between points U and S 
the azimuth angle 𝜓𝜓𝑈𝑈/𝑆𝑆 from S to U  

 What is the latitude 𝐿𝐿𝑈𝑈 of point U, the geocentric angle 𝜃𝜃 between U to S and the 
azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 from U to S? 

4.3.5 Remarks 

Two applications of the equations in this section to ‘real world’ problems are  
 Finding intermediate points on the trajectory from U to S (using Eq 91 and Eq 94) by 

replacing 𝜃𝜃 by 𝜇𝜇 𝜃𝜃 , where 0 < 𝜇𝜇 < 1. A similar functionality that applies to the 
vector approach is described in Subsection 5.3.2. 

 Determining the latitude and longitude of aircraft S using range/bearing measure-
ments from a VOR/DME ground station U at a known location (Subsection 4.8.6). 

For future reference, using Eq 91-Eq 93, Eq 95 and Eq 98, if 𝜃𝜃 = ½ 𝜋𝜋, then  

sin(𝐿𝐿𝑆𝑆) = cos(𝐿𝐿𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�                cos(𝐿𝐿𝑆𝑆) = �sin2(𝜓𝜓𝑆𝑆/𝑈𝑈) + sin2(𝐿𝐿𝑈𝑈) cos2(𝜓𝜓𝑆𝑆/𝑈𝑈) 

sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) =
sin(𝜓𝜓𝑆𝑆/𝑈𝑈)

cos(𝐿𝐿𝑆𝑆)
               cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) = −

sin(𝐿𝐿𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)
cos(𝐿𝐿𝑆𝑆)

 

sin(𝜆𝜆𝑆𝑆) =
sin(𝜓𝜓𝑆𝑆/𝑈𝑈) cos(𝜆𝜆𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜆𝜆𝑈𝑈)

�sin2(𝜓𝜓𝑆𝑆/𝑈𝑈) + sin2(𝐿𝐿𝑈𝑈) cos2(𝜓𝜓𝑆𝑆/𝑈𝑈)
 

cos(𝜆𝜆𝑆𝑆) = −
sin(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈) cos(𝜆𝜆𝑈𝑈)

�sin2(𝜓𝜓𝑆𝑆/𝑈𝑈) + sin2(𝐿𝐿𝑈𝑈) cos2(𝜓𝜓𝑆𝑆/𝑈𝑈)
 

tan�𝜓𝜓𝑈𝑈/𝑆𝑆� = − cot(𝐿𝐿𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈) 

Eq 102 
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4.4 A Modified Direct Problem: Path Azimuth at Satellite Known 

In this modification to the Direct problem of geodesy (Section 4.3), the azimuth angle 𝜓𝜓𝑈𝑈/𝑆𝑆 of 
the path at the satellite S toward the user U is known, while the azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 of the path 
at U toward S is unknown (the opposite of the assumptions for these quantities in unmodified 
problem). In the taxonomy of spherical triangles in Subsection 4.1.7, this problem falls under 
case (3) – a SSA (side-side-angle) situation. In terms of the navigation triangle UPS, the known 
elements (values) are sides UP (½𝜋𝜋 − 𝐿𝐿𝑈𝑈) and US (𝜃𝜃) and angle USP (2𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆).  

4.4.1 Computing the Satellite Longitude 

The approach begins by applying the law of sines to triangle UPS 

sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) = −
sin(𝜃𝜃) sin(𝜓𝜓𝑈𝑈/𝑆𝑆)

cos(𝐿𝐿𝑈𝑈)
 Eq 103 

A minus sign is present on the right-hand side of Eq 103 because the interior angle of triangle 
PUS at S is 2𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆 (Figure 13). In computing 𝜆𝜆𝑆𝑆 from Eq 103, two solutions are possible. 
One solution satisfies |𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈| ≤ 𝜋𝜋 2⁄ , and the other satisfies 𝜋𝜋 2⁄ ≤ |𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈| ≤ 𝜋𝜋. Except 
near the poles, the incorrect solution will typically require that the distance between U and S be 
much further than the correct solution, and often is not consistent with the sensors’ ranges; thus, 
the correct solution can usually be deduced. It may be necessary to adjust 𝜆𝜆𝑆𝑆 to lie in (-π, π]. 

4.4.2 Computing the Satellite Latitude 

The satellite latitude 𝐿𝐿𝑆𝑆 is found from Napier’s Analogies (Eq 76), using the solutions for 𝜆𝜆𝑆𝑆 
obtained from Eq 103 

tan �12 �
𝜋𝜋
2 − 𝐿𝐿𝑆𝑆�� =

cos�12�𝜓𝜓𝑈𝑈/𝑆𝑆 + 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈��
cos�12�𝜓𝜓𝑈𝑈/𝑆𝑆 − 𝜆𝜆𝑆𝑆 + 𝜆𝜆𝑈𝑈��

 tan �12 �
𝜋𝜋
2 − 𝐿𝐿𝑈𝑈 + 𝜃𝜃�� 

tan �12 �
𝜋𝜋
2 − 𝐿𝐿𝑆𝑆�� =

sin�12�𝜓𝜓𝑈𝑈/𝑆𝑆 + 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈��
sin�12�𝜓𝜓𝑈𝑈/𝑆𝑆 − 𝜆𝜆𝑆𝑆 + 𝜆𝜆𝑈𝑈��

 tan �12 �
𝜋𝜋
2 − 𝐿𝐿𝑈𝑈 − 𝜃𝜃�� 

Eq 104 

The two expressions in Eq 104 are mathematically equivalent, but one may be preferred 
numerically in some situations.  

4.4.3 Computing the Azimuth of the Connecting Arc at the User 

There are multiple ways to find the azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈. Napier’s Analogies (Eq 76) is used 
because it raises the possibility of using the four-quadrant arc tangent function. 
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tan �12𝜓𝜓𝑆𝑆/𝑈𝑈� =
cos�12�𝜃𝜃 −

𝜋𝜋
2 + 𝐿𝐿𝑈𝑈��

cos�12�𝜃𝜃 + 𝜋𝜋
2 − 𝐿𝐿𝑈𝑈��

 tan �12�𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆�� 

tan �12𝜓𝜓𝑆𝑆/𝑈𝑈� =
sin�12�𝜃𝜃 −

𝜋𝜋
2 + 𝐿𝐿𝑈𝑈��

sin�12�𝜃𝜃 + 𝜋𝜋
2 − 𝐿𝐿𝑈𝑈��

 tan �12�𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆�� 

Eq 105 

4.5 A Modified Direct Problem: Satellite Longitude Known 

For this modification to the Direct problem of geodesy (Section 4.3), the longitude of satellite S, 
 𝜆𝜆𝑆𝑆, is known, and the geocentric angle, 𝜃𝜃, between the user U and satellite S is unknown. These 
are the reverse of the assumptions for these quantities in the Direct problem. In taxonomy of 
spherical triangles in Subsection 4.1.7, this problem falls under case (4) – an ASA (angle-side-
angle) situation. The known elements (values) are angles UPS (𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) and SUP (𝜓𝜓𝑆𝑆/𝑈𝑈) and 
their included side UP (½π - 𝐿𝐿𝑈𝑈). Subsection 4.3.4 addesses this problem using Napier’s 
Analogies; a different approach is used here. 

In the development below, it is assumed that 𝜆𝜆𝑆𝑆 ≠ 𝜆𝜆𝑈𝑈, because when 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈 there is either no 
solution (𝜓𝜓𝑆𝑆/𝑈𝑈 ≠ 0 and 𝜓𝜓𝑆𝑆/𝑈𝑈 ≠ π) or an infinite number of solutions. With this assumption, the 
problem is well-posed, since every non-meridian great circle crosses every line of longitude 
exactly once.  

4.5.1 Computing the Satellite Latitude 

The latitude 𝐿𝐿𝑆𝑆 is found from the four-part cotangent formula (Eq 75) 

tan(𝐿𝐿𝑆𝑆) =
sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) cot(𝜓𝜓𝑆𝑆/𝑈𝑈)

cos(𝐿𝐿𝑈𝑈)  Eq 106 

When using the arc tangent function, 𝐿𝐿𝑆𝑆 can be unambiguously found in (-π/2, π/2).  

4.5.2 Computing the Geocentric Angle 

The geocentric angle 𝜃𝜃 is found from the four-part cotangent formula (Eq 75) 

cot(𝜃𝜃) =
sin(𝐿𝐿𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� + sin�𝜓𝜓𝑆𝑆/𝑈𝑈� cot(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

cos(𝐿𝐿𝑈𝑈)  Eq 107 

When using the arc cotangent function, 𝜃𝜃 can be unambiguously found in (0, π).  

4.5.3 Computing the Azimuth of the Connecting Arc at the Satellite 

The azimuth angle 𝜓𝜓𝑈𝑈/𝑆𝑆 is found without chaining from the law of cosines for angles (Eq 72) 
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cos�𝜓𝜓𝑈𝑈/𝑆𝑆� = sin�𝜓𝜓𝑆𝑆/𝑈𝑈� sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) sin(𝐿𝐿𝑈𝑈) − cos�𝜓𝜓𝑆𝑆/𝑈𝑈� cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) Eq 108 

Using the arc cosine function, 𝜓𝜓𝑈𝑈/𝑆𝑆 can be found uniquely in either [0, π] or [-π, 0], whichever of 
the two ranges does not contain 𝜓𝜓𝑆𝑆/𝑈𝑈 (see Eq 110 and associated discussion). Using chaining, 
𝜓𝜓𝑈𝑈/𝑆𝑆 can also be found unambiguously from the four-quadrant arc tangent function. 

tan�𝜓𝜓𝑈𝑈/𝑆𝑆� =
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

sin(𝜃𝜃) �sin�𝜓𝜓𝑆𝑆/𝑈𝑈� sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) sin(𝐿𝐿𝑈𝑈) − cos�𝜓𝜓𝑆𝑆/𝑈𝑈� cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)�
 Eq 109 

4.6 The Hybrid Problem of Geodesy 

4.6.1 Problem Characterization 

For this modification to the Direct problem of geodesy (Section 4.3), the latitude 𝐿𝐿𝑆𝑆 of satellite S 
is known, and the geocentric angle 𝜃𝜃 between the user U and satellite S is unknown. These are 
the reverse of the assumptions for these quantities in the Direct problem. In the taxonomy of 
mathematical spherical triangle problems (Subsection 4.1.7), this situation falls under case (3) – 
a SSA (side-side-angle) situation. Referring to Figure 13,the known elements (values) are sides 
PU (½𝜋𝜋 − 𝐿𝐿𝑈𝑈) and PS (½𝜋𝜋 − 𝐿𝐿𝑆𝑆) and angle PUS (𝜓𝜓𝑆𝑆/𝑈𝑈). The user’s longitude 𝜆𝜆𝑈𝑈 is not used 
in solving the mathematical triangle, but is used in situating that triangle on the earth’s surface. 

This problem, which has been termed the Hybrid problem of geodesy, may not have a solution. 
The reason is that, except a meridian, every great circle has a maximum latitude 𝐿𝐿max and 
minimum latitude −𝐿𝐿max. If the |𝐿𝐿max| associated with a specified 𝐿𝐿𝑈𝑈 and 𝜓𝜓𝑆𝑆/𝑈𝑈 is less than the 
specified |𝐿𝐿𝑆𝑆|, then a solution does not exist.  

Conversely, if the |𝐿𝐿max| associated with a specified 𝐿𝐿𝑈𝑈 and 𝜓𝜓𝑆𝑆/𝑈𝑈 is larger than the specified |𝐿𝐿𝑆𝑆|, 
then two solutions exist. Solutions pairs are symmetric in longitude about 𝜆𝜆max, the longitude 
corresponding to 𝐿𝐿max. For convenience, assume that 𝐿𝐿𝑈𝑈 > 0:  

 When 𝟎𝟎 < 𝝍𝝍𝑺𝑺/𝑼𝑼 < 𝟏𝟏
𝟐𝟐𝝅𝝅: If 𝐿𝐿𝑈𝑈 < 𝐿𝐿𝑆𝑆 < 𝐿𝐿max, there is a solution pair with both satisfying 

0 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 𝜋𝜋; if 𝐿𝐿𝑈𝑈 = 𝐿𝐿𝑆𝑆, there is one solution satisfying 0 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 𝜋𝜋 (U is the 
other ‘solution’ in the pair); if −𝐿𝐿𝑈𝑈 < 𝐿𝐿𝑆𝑆 < 𝐿𝐿𝑈𝑈, there is a solution pair with one 
satisfying 0 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 𝜋𝜋 and one satisfying −𝜋𝜋 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 0; if −𝐿𝐿max < 𝐿𝐿𝑆𝑆 <
−𝐿𝐿𝑈𝑈, there is a solution pair with both satisfying −𝜋𝜋 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 0. 

 When 𝟏𝟏𝟐𝟐𝝅𝝅 < 𝝍𝝍𝑺𝑺/𝑼𝑼 < 𝝅𝝅: If 𝐿𝐿𝑈𝑈 < 𝐿𝐿𝑆𝑆 < 𝐿𝐿max, there is a solution pair with both satisfying 
−𝜋𝜋 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 0; if 𝐿𝐿𝑈𝑈 = 𝐿𝐿𝑆𝑆, there is one solution satisfying −𝜋𝜋 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 0 (U is 
the other ‘solution’ in the pair); if −𝐿𝐿𝑈𝑈 < 𝐿𝐿𝑆𝑆 < 𝐿𝐿𝑈𝑈, there is a solution pair with one 
satisfying 0 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 𝜋𝜋 and one satisfying −𝜋𝜋 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 0; if −𝐿𝐿max < 𝐿𝐿𝑆𝑆 < −𝐿𝐿𝑈𝑈, 
there is a solution pair with both satisfying 0 < 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 < 𝜋𝜋. 
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4.6.2 Computing the Azimuth of the Connecting Arc at the Satellite 

The solution approach begins by applying the law of sines to find 𝜓𝜓𝑈𝑈/𝑆𝑆  

sin (𝜓𝜓𝑈𝑈/𝑆𝑆) = −
cos(𝐿𝐿𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈)

cos(𝐿𝐿𝑆𝑆)
 Eq 110 

As in Eq 103, a minus sign is present on the right-hand side of Eq 110. Thus, Eq 110 requires 
that if 0 < 𝜓𝜓𝑆𝑆/𝑈𝑈 < 𝜋𝜋 then −𝜋𝜋 < 𝜓𝜓𝑈𝑈/𝑆𝑆 < 0, and vice versa. 

The absolute value computed for the right-hand side of Eq 110 can be: (a) greater than unity (in 
which case there is no solution, as |𝐿𝐿𝑆𝑆| > 𝐿𝐿max); (b) equal to unity (in which case there is one 
solution, as |𝐿𝐿𝑆𝑆| = 𝐿𝐿max); and (c) less than unity (in which case there usually two solutions, as 
|𝐿𝐿𝑆𝑆| < 𝐿𝐿max). If (c) is true, label the two possible solutions 𝜓𝜓𝑈𝑈/𝑆𝑆,1 and 𝜓𝜓𝑈𝑈/𝑆𝑆,2 and proceed. If (b) 
is true, proceed assuming 𝜓𝜓𝑈𝑈/𝑆𝑆,1 = 𝜓𝜓𝑈𝑈/𝑆𝑆,2 (also, refer to Section 4.7). 

4.6.3 Computing the Satellite Longitude 

For the two solutions for 𝜓𝜓𝑆𝑆/𝑈𝑈,𝑖𝑖 found in Eq 110, the corresponding longitudes 𝜆𝜆𝑆𝑆,𝑖𝑖 are found 
using Napier’s Analogies (Eq 76) applied to triangle PUS.  

tan �12�𝜆𝜆𝑆𝑆,𝑖𝑖 − 𝜆𝜆𝑈𝑈�� =
cos�12(𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆)�
sin�12(𝐿𝐿𝑈𝑈 + 𝐿𝐿𝑆𝑆)�

 cot �12�𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖�� 

tan �12�𝜆𝜆𝑆𝑆,𝑖𝑖 − 𝜆𝜆𝑈𝑈�� =
sin�12(𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆)�
cos�12(𝐿𝐿𝑈𝑈 + 𝐿𝐿𝑆𝑆)�

 cot �12�𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖�� 

Eq 111 

Because a half-angle formula is used on the left-hand side of Eq 111, given a value for 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖, 
each solution for 𝜆𝜆𝑆𝑆,𝑖𝑖 can be unambiguously found in the range (𝜆𝜆𝑈𝑈,𝜆𝜆𝑈𝑈 ± 𝜋𝜋). Selecting between 
the two expressions in Eq 111 can be based on numerical behavior. Limiting cases are: 

 North-South Path — For both expressions, the cotangent function fails on a perfect 
north-south route (𝜓𝜓𝑆𝑆/𝑈𝑈 = 0 or 𝜓𝜓𝑆𝑆/𝑈𝑈 = 𝜋𝜋). By inspection, in this situation 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈; 
handling it as a special-case is one way to address it.  

 ‘East-West’ Path — When 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈, then 𝜓𝜓𝑈𝑈/𝑆𝑆 = −𝜓𝜓𝑆𝑆/𝑈𝑈 and the second expression in 
Eq 111 reduces to the indeterminate form 0 x ∞. However, the first expression yields the 
correction solution: tan�12(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)� = cot�𝜓𝜓𝑆𝑆/𝑈𝑈� / sin[𝐿𝐿𝑈𝑈]. (The last expression reduces 
to the indeterminate form 0 x ∞ at the equator, as there is not a unique solution then.) 

4.6.4 Computing the Geocentric Angle 

The geocentric angle 𝜃𝜃 is found from ‘the other half’ of Napier’s Analogies (Eq 76), again using 
the solutions for 𝜓𝜓𝑆𝑆/𝑈𝑈 found using Eq 110. 
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tan �12 𝜃𝜃𝑖𝑖� =
cos�12�𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖��
cos�12�𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖��

 cot �12(𝐿𝐿𝑈𝑈 + 𝐿𝐿𝑆𝑆)� 

tan �12 𝜃𝜃𝑖𝑖� =
sin�12�𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖��
sin�12�𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝜓𝜓𝑈𝑈/𝑆𝑆,𝑖𝑖��

 tan �12(𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆)� 

Eq 112 

The choice between the two expressions in Eq 112 can be based on the numerical behavior and 
avoidance of singularities. Limiting cases are:  

 North-South Path —If 𝜓𝜓𝑆𝑆/𝑈𝑈 = 0 then 𝜓𝜓𝑈𝑈/𝑆𝑆 = 𝜋𝜋, and vice versa. In both cases, the 
fraction in the first expression reduces to the indeterminate form 0/0. However, for either 
direction of travel, the second expression yields the correction solution, 𝜃𝜃 = |𝐿𝐿𝑈𝑈 − 𝐿𝐿𝑆𝑆|.  

 ‘East-West’ Path — When 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈, then 𝜓𝜓𝑈𝑈/𝑆𝑆 = −𝜓𝜓𝑆𝑆/𝑈𝑈 and the second expression 
reduces to the indeterminate form 0/0. However, the first expression yields the correction 
solution (Subsection 4.2.3), tan�12 𝜃𝜃𝑖𝑖� = cos�𝜓𝜓𝑆𝑆/𝑈𝑈�  cot[𝐿𝐿𝑈𝑈]. (This expression reduces to 
the indeterminate form 0 x ∞ at the equator, because there is not a unique solution in that 
situation.) 

4.6.5 Remarks 
 Unlike the solution for the Direct problem of geodesy (Section 4.3), the solution 

sequence here involves chaining (which is typical of SSA problems). Thus, 𝜓𝜓𝑈𝑈/𝑆𝑆 must be 
found, even if it is not needed. 

 One way this problem could arise in aviation is using a sextant to measure latitude 
(‘shoot’ the North Star) and using a VOR to measure 𝜓𝜓𝑆𝑆/𝑈𝑈.  

 While the topic of lines (or surfaces) of position is deferred to Chapter 6, it’s clear that 
for this set of known quantities, the geometry favors (approximately) north-south routes. 
On (approximately) east-west routes, the latitude and bearing information are close to 
being redundant while there is little information about change in east-west location. 

 With minimal modifications, the analysis of this section applies to the problem where 
𝜓𝜓𝑈𝑈/𝑆𝑆 is known, rather than 𝜓𝜓𝑆𝑆/𝑈𝑈. The only explicit change in the above equations is that 
Eq 110 is modified to place 𝜓𝜓𝑆𝑆/𝑈𝑈 on the left-hand side. 

4.7 Vertices of a Great Circle 

4.7.1 Clairaut’s Equation 

A special case of Clairaut’s equation* applies to great circles (i.e., encircling the earth), and can 
be simply derived by applying the law of sines to ‘mathematical’ triangle UPS. The result is: 

cos(𝐿𝐿𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� = −cos(𝐿𝐿𝑆𝑆) sin�𝜓𝜓𝑈𝑈/𝑆𝑆� Eq 113 

The minus sign occurs in Eq 114 because the interior angle at S is 2𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆 and 

                                                 
* Alexis Claude de Clairaut (or Clairault) (1713 –1765) was a prominent French mathematician, astronomer and 
geophysicist.  



DOT Volpe Center   

 4-21 

sin(2𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆) = −sin(𝜓𝜓𝑈𝑈/𝑆𝑆). So at all points on a great circle, when moving in one direction: 

cos(𝐿𝐿) sin(𝜓𝜓) = 𝐶𝐶     ,     𝐶𝐶 a constant Eq 114 

Clearly, |𝐶𝐶| ≤ 1; 𝐶𝐶 is positive for eastward routes and negative for westward routes. Satisfying 
Eq 114 is a necessary, but not sufficient, condition for the path to be a great circle — e.g., a 
counterexample is a constant-latitude route.  

4.7.2 Great Circle Vertex Latitude 

A common application of Eq 114 is finding the northern-most and southern-most latitudes of a 
full great circle — termed ‘vertices’ in Ref. 1. At a vertex, sin(𝜓𝜓) =  ±1, so if the latitude 𝐿𝐿𝑈𝑈 
and azimuth 𝜓𝜓𝑆𝑆/𝑈𝑈 of one point on a great circle are known: 

cos(𝐿𝐿max) = cos(𝐿𝐿𝑈𝑈) �sin�𝜓𝜓𝑆𝑆/𝑈𝑈�� = |𝐶𝐶| Eq 115 

The great circle lies in a plane containing the center of the earth O. 𝐿𝐿max is the angle between the 
great circle plane and the equatorial plane (and |𝐶𝐶| is the cosine of that angle). The latitude of the 
Southern Hemisphere vertex is −𝐿𝐿max. 

If two points U (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) and S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) on a great circle are known, the Indirect problem of 
geodesy can be used to find  𝜓𝜓𝑆𝑆/𝑈𝑈; then Eq 115 can be used to find 𝐿𝐿max. An alternative is to use 
the Indirect problem to find the geocentric angle 𝜃𝜃𝑈𝑈𝑈𝑈 between U and S; then  𝜓𝜓𝑆𝑆/𝑈𝑈 can be found 
in terms of 𝜃𝜃𝑈𝑈𝑈𝑈 using Eq 84 and the result substituted into Eq 115: 

cos(𝐿𝐿max) = �
cos(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

sin(𝜃𝜃𝑈𝑈𝑈𝑈) � Eq 116 

With 𝐿𝐿max, the geocentric angle 𝜃𝜃𝑈𝑈𝑈𝑈 between U and the vertex V can be found from the law of 
cosines applied to triangle UPV with a right-angle at V (where 𝐿𝐿𝑈𝑈 may be positive or negative) 

cos(𝜃𝜃𝑈𝑈𝑈𝑈) =
sin(𝐿𝐿𝑈𝑈)

sin(𝐿𝐿max) Eq 117 

4.7.3 Great Circle Azimuth Angles 

At the two points displaced in longitude by ±π/2 from a vertex, the great circle crosses the 
equator. There sin(𝜓𝜓) = 𝐶𝐶, so |𝜓𝜓| = 1

2
𝜋𝜋 ± 𝐿𝐿max. For an eastward route, 𝜓𝜓 satisfies      

1
2
𝜋𝜋– 𝐿𝐿max ≤ 𝜓𝜓 ≤ 1

2
𝜋𝜋 + 𝐿𝐿max; for a westward route, −1

2
𝜋𝜋– 𝐿𝐿max ≤ 𝜓𝜓 ≤ −1

2
𝜋𝜋 + 𝐿𝐿max.  

4.7.4 Great Circle Vertex Longitude 

The longitude 𝜆𝜆max corresponding to 𝐿𝐿max can be found unambiguously using equations from 
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Section 4.6. At vertex V, the path azimuth 𝜓𝜓 is ±π/2. If V is thought of as S, the sign of what 
would be 𝜓𝜓𝑈𝑈/𝑆𝑆 is the opposite of the sign of 𝜓𝜓𝑆𝑆/𝑈𝑈. Thus from Eq 111: 

tan �12(𝜆𝜆max − 𝜆𝜆𝑈𝑈)� =
cos�12(𝐿𝐿𝑈𝑈 − 𝐿𝐿max)�
sin�12(𝐿𝐿𝑈𝑈 + 𝐿𝐿max)�

 cot �12 �𝜓𝜓𝑆𝑆/𝑈𝑈 + sgn(𝜓𝜓𝑆𝑆/𝑈𝑈)12𝜋𝜋�� 

tan �12(𝜆𝜆max − 𝜆𝜆𝑈𝑈)� =
sin�12(𝐿𝐿𝑈𝑈 − 𝐿𝐿max)�
cos�12(𝐿𝐿𝑈𝑈 + 𝐿𝐿max)�

 cot �12 �𝜓𝜓𝑆𝑆/𝑈𝑈 − sgn(𝜓𝜓𝑆𝑆/𝑈𝑈)12𝜋𝜋�� 
Eq 118 

The longitude of the Southern Hemisphere vertex is 𝜆𝜆max ± 𝜋𝜋. An expression for 𝜆𝜆max that does 
not involve chaining from the solution for 𝐿𝐿max is derived by vector analysis in Chapter 5 (Eq 
156).  

Using geocentric angle 𝜃𝜃𝑈𝑈𝑈𝑈, an alternative but ambiguous expression for 𝜆𝜆max can found using 
the law of sines 

sin(𝜆𝜆max − 𝜆𝜆𝑈𝑈) =
sin(𝜃𝜃𝑈𝑈𝑈𝑈)
cos(𝐿𝐿𝑈𝑈)  Eq 119 

4.7.5 Conditions for a Path Containing a Vertex 

As stated in Section 4.6, not all great circle paths connecting points U and S pass through the 
vertex at (𝐿𝐿max,𝜆𝜆max) or its Southern Hemisphere counterpart. To pass through a vertex, the route 
between U and S must have enough of a change in longitude to bend towards, and away from, a 
pole. The path between U and S will pass through (𝐿𝐿max,𝜆𝜆max) if the absolute values of the 
azimuth angles at U and S are both less than 90 deg: 

�𝜓𝜓𝑆𝑆/𝑈𝑈� < 1
2 𝜋𝜋     and     �𝜓𝜓𝑈𝑈/𝑆𝑆� < 1

2 𝜋𝜋 Eq 120 

In this situation, the great circle route connecting U and S will pass closer to the North Pole than 
either end point, U or S.  

The great circle route connecting U and S will pass closer to the South Pole than either U or S if 
the absolute values of both azimuth angles are obtuse 

�𝜓𝜓𝑆𝑆/𝑈𝑈� > 1
2 𝜋𝜋     and     �𝜓𝜓𝑈𝑈/𝑆𝑆� > 1

2 𝜋𝜋 Eq 121 

4.8 Example Applications 

The example applications presented at the end of Chapter 3 are extended in the first three (of the 
seven) subsections below. These demonstrate the capabilities of spherical trigonometry to pro-
vide more complete solutions to problems. Then, four examples are added — flight route 
planning, display of radar measurements, determining an aircraft’s coordinates from a single 
VOR/DME station and the error in modeling the ellipsoidal earth as a sphere.  
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4.8.1 Example 1, Continued:  En Route Radar Coverage 

Predictions of radar visibility of aircraft as a function of the aircraft’s range and altitude, intro-
duced in Subsection 3.7.1, are useful. However, for a specific radar installation, a more valuable 
analysis product is a depiction of the radar’s altitude coverage overlaid on a map. As an example, 
the ARSR-4/ATCBI-6 installation at North Truro, MA (FAA symbol: QEA) is selected. Assoc-
iating U with the radar location, its coordinates are 𝐿𝐿𝑈𝑈 = 42.034531 deg and 𝜆𝜆𝑈𝑈 = -70.054272 
deg, and its antenna elevation is ℎ𝑈𝑈 = 224 ft MSL. Assumming that the terrain elevation in the 
coverage area is 0 ft MSL, which is correct for the nearby ocean and optimistic (i.e., terrain 
blocking is not considered) for the nearby land.  

Associating S with the aircraft location,the sequence of calculations is: 
 Using Eq 68 (third line), the radar’s minimum usable elevation angle is found to be 

𝛼𝛼min = −0.230 deg 
 Aircraft altitudes ℎ𝑆𝑆 of 3,000 ft, 10,000 ft and 25,000 ft MSL are selected for the 

contours to be depicted.  
 Using Eq 68 (second line), the geocentric angles 𝜃𝜃 corresponding to the selected 

altitudes are found. The associated ground ranges 𝑅𝑅𝑒𝑒  𝜃𝜃 are 85.7 NM, 141.2 NM and 
212.6 NM, respectively. 

 Using Eq 68 (first line), the minimum visible aircraft altitude at the radar’s maximum 
ground range of 250 NM is found to be ℎ𝑆𝑆 = 35,590 ft. 

 A set of equally spaced azimuth angles 𝜓𝜓𝑆𝑆/𝑈𝑈 are selected for the radials from the 
radar U to each point S on a coverage contour  

 For the geocentric angle 𝜃𝜃 corresponding to each contour, and for each azimuth angle 
𝜓𝜓𝑆𝑆/𝑈𝑈, the latitude/longitude (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) of the corresponding point S on the contour are 
found from Eq 91 and Eq 94. 

The result of performing the above steps for the North Truro radar system is shown in Figure 18. 
(An alternative method for finding coverage contours is described in Subsection 4.8.3. The 
method described immediately above can be adapted to situations where terrain blocking must be 
considered, while the method of Subsection 4.8.3 cannot, but is more efficient.) 

Significance of contours: (a) Inside a contour, aircraft having altitudes equal to or greater than 
the contour value are visible to the radar; and (b) Outside the contour, aircraft having altitudes 
less than the contour value are not visible to the radar. The contours in Figure 18 appear as 
circles, but that is not true in every case. When terrain is not accounted for, the contours appear 
smooth, but their shape depends upon the map projection employed. When a terrain blocking is 
accounted for, the contours are irregular/jagged. 
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Figure 18  Aircraft Altitude Visibility Contours for the North Truro, MA, Radar System 

Consistency Check — The primary purposes of QEA are (1) surveillance of higher altitude 
airspace, for use by ARTCC controllers; and (2) surveillance of much of the New England off 
shore airspace, for use by the Department of Defense (DoD). A third purpose is backup 
surveillance of the Boston TRACON airspace; horizontally, this airspace is a circle centered on 
Logan Airport with a radius of 60 NM. Boston TRACON controllers have stated that they 
consider QEA coverage to extend upward from an altitude of 3,000 ft MSL. Figure 18 is 
consistent with that statement. 

Cone of Silence — As discussed in Subsection 3.7.1, ATC radars usually have a cone of silence 
directly above the antenna; aircraft within this (relatively small) cone may not be detectable. 
Following the usual practice, contours for QEA’s cone of silence are not shown in Figure 18.  

The U.S. has an extensive ATC radar infrastructure. Generally, one radar station’s cone of 
silence will be within the coverage area of one or more other radars. In the case of QEA, the 
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Boston ARTCC also receives feeds from: the Nantucket, MA, terminal radar (46.5 NM from 
QEA, at essentially sea level), which covers QEA’s cone of silence down to approximately 
500 ft MSL; and the Cummington, MA, en route radar (132.1 NM from QEA, at an elevation of 
2,000 ft MSL) which covers QEA’s cone of silence down to approximately 5,000 ft MSL. 

4.8.2 Example 2, Continued:  Aircraft Precision Approach Procedure 

Subsection 3.7.2 illustrates computation of the flight profile (altitude vs. distance from threshold) 
for an aircraft precision approach procedure. However, for the procedure to be used 
operationally, the coordinates of the fixes are needed by ATC personnel. Computing them is a 
straightforward application of spherical geometry. 

The sequence of calculations is as follows: 
 Using the FAA’s National Flight Data Center (NFDC, Ref. 32) or the AirNav 

(Ref. 33) websites, the latitudes and longitudes of the ends of KMCI runway 19L / 1R 
are obtained. 

 Associating U with the 1R end and S with the 19L end of the runway, the azimuth of 
the approach course in the direction away the 19R end is computed, using Eq 86, to 
be 𝜓𝜓𝑆𝑆/𝑈𝑈 = 12.89 deg 

 Associating U with the 19R end of the runway and S with the fix locations, the 
coordinates of the fixes are found using Eq 91 and Eq 94. 

The results of carrying out steps 1-3 are shown in Table 7. 

Table 7  Computed Fix Coordinates for MCI Runway 19L LPV Approach 

Fix Name UMREW FELUR REMNS ZASBO YOVNU GAYLY 
Range from Threshold, NM 1.9 4.9 6.2 9.3 12.4 15.5 

Latitude, deg 39.337737 39.386470 39.407586 39.457940 39.508292 39.558642 
Longitude, deg -94.692345 -94.677907 -94.671645 -94.656696 -94.641725 -94.626732 

4.8.3 Example 3, Continued:  Satellite Visibility of/from Earth 

Extending the analysis in Subsection 3.7.3 to calculating the latitude/longitude coordinates of the 
perimeter of the footprint of a geostationary satellite is an example of the application of the 
topics in this chapter. Geostationary satellites are approximated as having circular orbits and 
being positioned above the earth’s equator. Their altitudes are selected so that their orbital speed 
matches the earth’s rotation rate. Thus, from the earth, they appear to be stationary.  

The Wide Area Augmentation System (WAAS) satellites (which augment the Global Positioning 
System (GPS)) are chosen for this example. The FAA currently operates three geostationary 
WAAS satellites (Ref. 34) in order to satisfy the requirements of demanding civil aviation 
operations — e.g., precision approaches similar to ILS Category I.  
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This analysis is done in two distinct steps. The first step (discussed in Subsection 3.7.3) is to find 
the geocentric angle 𝜃𝜃 from the nadir N (of satellite S) to user U on the perimeter of the foot-
print. The parameters used in this calculation are: 
 Satellite altitude ℎ𝑆𝑆 = 35,786,000 m = 19,323 NM 
 Mask angle 𝛼𝛼 =  5 deg 
 Radius of the earth 𝑅𝑅𝑒𝑒 = 6,378,137 m = 3,444 NM (Eq 23) 

Substituting these values into Eq 40 yields 𝜃𝜃 = 76.3 deg. Thus the a user U on the earth’s surface 
can be up to 76.3 deg (in terms of the geocentric angle) away from the satellite nadir N and 
WAAS satellite will be visible. Since geostationary satellites are directly above the equator, the 
maximum user latitudes with visibility are ±76.3 deg if the user is at the same longitude as the 
satellite. Similarly, if the user is on the equator, the longitude extremes at which the satellite is 
visible are ±76.3 deg from the satellite longitude.  

The second step of the analysis is obtaining the latitude/longitude coordinates (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) of an 
arbitrary point U on the perimeter of the visible region. This step can be done in at least two 
ways. One way, described in Subsection 4.8.1, utilizes Eq 91 and Eq 94 (with subscript U 
replaced by N, and subscript S replaced by U).  

An alternative method for finding the coordinates of coverage perimeter locations employs a 
modified version of Eq 81. Taking the coordinates of the satellite nadir to be (𝐿𝐿𝑁𝑁 ,𝜆𝜆𝑁𝑁), where 
𝐿𝐿𝑁𝑁 = 0, for a given (or assumed) user latitude 𝐿𝐿𝑈𝑈, the corresponding user longitude 𝜆𝜆𝑈𝑈 given by 

𝜆𝜆𝑈𝑈 = 𝜆𝜆𝑁𝑁 ± 2 arcsin��
sin2�12𝜃𝜃� − sin2 �12(𝐿𝐿𝑈𝑈)�

cos(𝐿𝐿𝑈𝑈) � Eq 122 

Using Eq 122 and a set values is assumed for 𝐿𝐿𝑈𝑈 in the interval [-𝜃𝜃, 𝜃𝜃], the corresponding two 
sets of values for 𝜆𝜆𝑈𝑈 are computed (which are symmetrically located about 𝜆𝜆𝑁𝑁).  

The WAAS satellite labels and longitudes are: AMR, -98 deg; CRE, -107.3 deg; and 
CRW, -133 deg. After the calculations of Eq 122 are carried out, the results are depicted in 
Figure 19. For context, the locations of a few airports are also shown in Figure 19. Ref. 34 has a 
page, “WAAS GEO Footprint”, which contains a figure that is similar to Figure 19. 



DOT Volpe Center   

 4-27 

 

Figure 19  WAAS Satellite Visibility Contours for 5 deg Mask Angle 

4.8.4 Example 4:  Great Circle Flight Route 

For many reasons — e.g., siting of ground-based communications, navigation and surveillance 
equipment; estimation of fuel consumption; positioning of search and rescue assets; and analysis 
of flight routes — there is a need to calculate path distances between any two locations on the 
earth. Such calculations are a straightforward application of the equations presented earlier in 
this chapter. The basic approach is: (a) solve the Indirect problem of geodesy (Section 4.2), so 
that geocentric angle (i.e., path length) and the azimuth angles of the path end points are known; 
then (b) divide the path into equal-length segments and solve the Direct problem of geodesy 
(Section 4.3) for each segment, starting at one end of the path and progressing to the other. 

The result of carrying out these steps for the route between the Boston Logan (BOS) and Tokyo 
Narita (NRT) airports is shown in Figure 20. This figure employs Cartesian coordinates to 
display longitude on the abscissa (which is effectively a Mercator scaling) versus latitude on the 
ordinate utilizing equal map distances for equal angles (which is not Mercator scaling). In 
addition to showing the great circle flight path for a spherical earth model (green curve), Figure 
20 also shows the shortest path for an ellipsoidal earth model using Vincenty’s algorithm 
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(Subsection 2.2.3). On this graphic, the separation between the curves is not perceptible. The 
largest separation occurs at the highest latitude, where the ellipsoidal-earth path latitude is 
0.06 deg greater than the great circle/spherical earth path.  

 

Figure 20  Mercator-Like View of BOS-NRT Great Circle and Rhumb Line Routes 

For the great circle/spherical earth route; the azimuth angle at BOS is 334.8 (-25.2) deg, the 
azimuth angle at NRT is 22.8 deg, and the geocentric angle is 𝜃𝜃 = 1.689 rad, or 53.8% of π rad 
(π rad being the longest possible great circle route). The computed distance (using the earth 
radius defined in Eq 31) is 5,810.4 NM, while the distance computed using Vincenty’s algorithm 
is 5,823.5 NM. The ellipticity error for the spherical-earth path length is 0.2%. 

The trajectory’s northern-most latitude is N71.7 deg (Eq 116), which occurs at a longitude of 
W143.42 deg. Equations from Section 4.6 predict that the trajectory crosses the Arctic Circle 
(N67 deg latitude) at longitudes of W104.7 deg and E177.9 deg. The trajectory is within the 
Arctic Circle for 29.2% of its length, although in Figure 20 it appears to be a larger fraction 
because the convergence of longitude lines at the Pole is not depicted. 

Figure 20 also shows the course from BOS to NRT for the rhumb line (constant azimuth angle) 
method historically used for marine navigation (Section 9.3). The azimuth angle for a rhumb line 
from BOS to NRT is 266.7 (-93.3) deg. The rhumb line path is 19% or 1,106.7 NM longer than 
the great circle route calculated using Vincenty’s algorithm.  

Figure 21 depicts a polar view of the great circle and rhumb line routes. For this perspective, 
(a) the great circle route is almost a straight line while the rhumb line route is circular, and 
(b) the difference in the lengths of the paths is obvious.  
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Figure 21  Polar View of BOS-NRT Great Circle and Rhumb Line Routes 

Contrasting Figure 20 and Figure 21 illustrates value of matching the charting technique to the 
method for defining a route. Figure 20 is similar to a Mercator projection*, with both having the 
property that rhumb lines are straight; and Figure 21 similar to a gnomonic projection†, which 
has the property that great circles are depicted as straight lines. Mercator projections were 
preferred for maritime navigation before the equivalent of autopilots were available, while 
gnomonic projections are preferred for aircraft navigation. 

The BOS-NRT city pair has all three factors that favor great circle navigation over rhumb line 
navigation: widely separated origin and destination, approximately co-latitude origin and 
destination, and the end points are at mid-latitudes. A contrasting route is Boston (BOS) - 
Buenos Aires (EZE). It has a roughly similar length, but is oriented north-south. For BOS-EZE 
the rhumb line path is 0.007% (0.3 NM) longer than the great circle path.  

4.8.5 Example 5:  Radar Display Coordinate Transformations 

In this subsection, an ATC radar is associated with the user U and an aircraft under surveillance 
with the satellite S. The radar’s installation information will include: 
                                                 
* For a true Mercator projection, the displayed linear distance between equal latitude angular increments as well as 
between equal longitude angular increments increases towards the poles. 
† For a true gnomonic projection, the displayed linear distance between equal latitude increments increases toward 
the equator. 
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𝐿𝐿𝑈𝑈 – Radar latitude 
𝜆𝜆𝑈𝑈 – Radar longitude 
ℎ𝑈𝑈 – Radar antenna elevation above sea level   

For each scan (antenna revolution), a secondary surveillance radar provides three quantities 
concerning an aircraft: 

𝜓𝜓𝑆𝑆/𝑈𝑈 – Aircraft azimuth relative to North (determined from the antenna direction) 
𝑑𝑑 – Slant-range between the aircraft and the radar (determined from interrogation-reply time) 
ℎ𝑆𝑆 – Aircraft barometric elevation above sea level (reported by the aircraft transponder). 

Some long-range radars may correct for propagation phenomena (e.g., refraction), but those 
capabilities are not addressed here.  

The first goal in ATC radar display is to accurately 
depict the horizontal separation between aircraft pairs. 
When two aircraft are only separated vertically (i.e., are 
at the same latitude and longitude) then their screen 
icons should overlay each other — or at least be close in 
comparison to the minimum allowable separation. Figure 
22 illustrates the effect of directly displaying the slant-
range of two aircraft that are only separated vertically 
(although it exaggerates the effect). Without altitude or 
elevation angle information, this may be the best that can 
be done. Partly for this reason, aircraft operating in busy 
airspace are required to have a Mode C capable 
transponder.  

Generally, the display processing methodology depends upon the radar’s maximum range. Two 
situations are addressed. 

Tangent Plane Display — This method displays targets on a plane that is tangent to the earth at 
the radar’s latitude/longitude and sea level. Locations on the plane can be computed in Cartesian 
(east/north) or polar (range/azimuth) coordinates. The steps in the calculation are: 

 The aircraft elevation angle, 𝛼𝛼, is found using Eq 50, repeated here: 

sin(𝛼𝛼) =
(ℎ𝑆𝑆 − ℎ𝑈𝑈)2 + 2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)(ℎ𝑆𝑆 − ℎ𝑈𝑈) − 𝑑𝑑2

2(𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)  𝑑𝑑
 Eq 123 

 The aircraft range along the tangent plane, 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 , is found (sometimes called the 
slant-range correction) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑑𝑑  cos(𝛼𝛼) Eq 124 

 
Figure 22  Effect of Displaying a 

Target’s Slant-Range 
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 If needed, TPRng can be resolved into east and north components 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 sin(𝜓𝜓𝑆𝑆/𝑈𝑈) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 cos(𝜓𝜓𝑆𝑆/𝑈𝑈) 

Eq 125 

This method accounts for the difference between slant-range and ground range, but does not 
account for the curvature of the earth. Figure 23 shows the slant-range correction error (differ-
ence in computed 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 values for two aircraft at the same latitude/longitude but different 
altitudes) for ranges/altitudes characteristic of a terminal area radar.  

 
Figure 23  Slant-Range Correction Error for Tangent Plane Terminal Radar Display 

The maximum slant-range correction error is approximately 260 ft. This may be contrasted with 
the difference in the slant-ranges, 644 ft, and the nominal terminal area separation standard of 3 
NM. Thus the display processing removes more than half of the error that would occur with 
display of measured ranges, but there remains a residual error of 1.5% of the separation standard. 

Latitude/Longitude Display — Because errors for a tangent plane display increase with the 
ranges and altitude differences of aircraft targets, en route radars use a more accurate method that 
fully accounts for the earth’s curvature.  
 The aircraft’s geocentric angle relative to the radar is found using Eq 44  

 The aircraft’s latitude/longitude are found from Eq 91 and Eq 94 

 The aircraft’s latitude and longitude are converted to the coordinates of a map 
projection (e.g., Lambert conformal conic) for display to a controller. 
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En route radar coverage area will include multiple airports, including possibly several major 
ones. It’s advantageous to display targets relative to the airport locations. 

4.8.6 Example 6:  Single-Station VOR / DME RNAV Fix 

A single VOR/DME station S provides an aircraft A with its azimuth angle 𝜓𝜓𝐴𝐴/𝑆𝑆 (VOR function) 
and slant-range distance 𝑑𝑑𝑆𝑆𝑆𝑆 (DME function) relative to the station. For area navigation 
(RNAV), it may be necessary to use those measurements to determine the aircraft’s latitude and 
longitude A (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴). The aircraft’s altitude ℎ𝐴𝐴 is assumed known, as are the station coordinates 
(𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) and DME antenna altitude ℎ𝑆𝑆. 

The first step is to convert the measured slant-range 𝑑𝑑𝑆𝑆𝑆𝑆 to the geocentric angle 𝜃𝜃𝑆𝑆𝑆𝑆 (sometimes 
called the slant-range correction). This is accomplished by utilizing Eq 44, except that subscript 
U is replaced by S, and subscript S is replaced by A. The Direct problem of geodesy is then 
applicable (Section 4.3). The aircraft’s latitude and longitude are found from Eq 91 and Eq 94, 
with the same subscript substitutions applied. Finally, if desired, the azimuth angle of the station 
relative to the aircraft may found from Eq 98 (again, with the same subscript substitutions).  

Remarks: 
 While the terminology and notation are different, the processing steps in this 

subsection are identical to those used for an en route radar latitude/longitude display 
in Subsection 4.8.5.  

 While the slant-range correction of is usually considered a necessary step in en route 
radar processing, it is often not performed in navigation applications. The distances 
involved are generally shorter, and the measurements are generally less accurate 
(particularly the VOR measurement of 𝜓𝜓𝐴𝐴/𝑆𝑆). Thus, for RNAV, the approximation 
𝜃𝜃𝑆𝑆𝑆𝑆 ≈ 𝑑𝑑𝑆𝑆𝑆𝑆/𝑅𝑅𝑒𝑒 (in lieu of Eq 44) may be sufficient.  

 If the station only provides a range (DME) measurement, but the azimuth angle from 
the aircraft to the station, 𝜓𝜓𝑆𝑆/𝐴𝐴, can be measured, then the expressions in Section 4.4 
can be used to find the aircraft latitude/longitude and the aircraft azimuth from the 
station. 

4.8.7 Example 7:  Path-Length Ellipticity Error for Selected Airport Pairs 

To provide an indication of the accuracy of the spherical earth approximation, a set of fourteen 
airports were selected. These airports are intended to be representative of current aviation 
activity. However, in terms of frequency of operations, they over-emphasize longer routes (and 
some are too long for commercial transport aircraft at this time). The result is a total of 91 
possible paths between airport pairs. For each pair, estimates of the length of the paths are 
computed for:  
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a) WGS-84 ellipsoidal earth model utilizing Vincenty’s algorithm cited in Subsection 2.2.3 
(which is treated as a ‘black box’), and  

b) Spherical approximation of the earth utilizing the radius in Eq 31 and the expressions in 
Eq 143, Eq 144 and Eq 145. 

The fourteen airports are partitioned into two groups of seven each — CONUS (Table 8) and 
International (Table 9). The CONUS group spans the CONUS land area and includes paths of 
various lengths and orientations. The International group, which includes airports in Alaska and 
Hawaii, has airport pairs with greater separation and paths that cross the equator. The longest 
path is HNL-JNB (10,365 NM), which is not feasible with current commercial aircraft. As a 
point of interest, the longest scheduled commercial flight route was 8,285 NM, between Newark 
and Singapore; it is no longer in operation, reportedly for business reasons. 

Table 8  CONUS Airports Used in Ellipticity Error Analysis 

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served 
Gen. Edward L. Logan International (BOS) 42.3629722 -71.0064167 Boston, MA 
Ronald Reagan Washington National (DCA) 38.8522 -77.0378 Washington, DC 
O'Hare International (ORD) 41.9786 -87.9047 Chicago, IL 
Miami International (MIA) 25.7933 -80.2906 Miami, FL 
San Diego International (SAN) 32.7336 -117.1897 San Diego, CA 
Dallas/Fort Worth International (DFW) 32.8969 -97.0381 Dallas/Fort Worth, TX 
Seattle–Tacoma International (SEA) 47.4489 -122.3094 Seattle, WA 

Table 9  International Airports Used in Ellipticity Error Analysis 

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served 
Wiley Post–Will Rogers Memorial (BRW) 71.2848889 -156.7685833 Barrow, Alaska 
Honolulu International (HNL) 21.318681 -157.9224287 Honolulu, Hawaii 
London Heathrow (LHR) 51.4775 -0.4614 London, England 
Narita International (NRT) 35.7647 140.3864 Tokyo, Japan 
Ministro Pistarini International (EZE) -34.8222 -58.5358 Buenos Aires, Argentina 
Oliver Reginald Tambo International (JNB) -26.1392 28.246 Johannesburg, South Africa 
Sydney (SYD) -33.946111 151.177222 Sydney, Australia 

Figure 24 is a histogram of the path length differences for the 91 paths analyzed using the 
methods labeled a) and b) above (a positive error corresponds to the spherical earth path being 
longer than the ellipsoidal earth path).  
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Figure 24  Histogram of Path Length Ellipticity Errors for 91 Airport Pairs 

 For all 91 paths: the average of the absolute value of the relative path length ellipticity 
errors is 0.17%; the maximum is 0.43% (NRT-SYD); the minimum is 0.005% (DCA-
SYD). Over 90% (83 of 91) of the paths have path length ellipticity errors whose absolute 
values less than the ‘rule of thumb’ of 0.3%. At the path end points, the average absolute 
azimuth error is 0.10 deg, and the maximum is 1.87 deg (HNL-JNB). 

 For the 21 paths within CONUS: the average of the absolute value of the relative path 
length ellipticity errors is 0.18%; the maximum is 0.27% (BOS-SEA); the minimum is 
0.02% (ORD-DFW). At the path end points, the average absolute azimuth error is 
0.07 deg, and the maximum is 0.12 deg (ORD-DFW). 
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5. TWO-POINT / 3D-VECTOR FORMULATION 

Many of the expressions derived in Chapter 4 using spherical trigonometry can also be 
developed using vectors and matrices. In utilizing this approach, one: (a) forms the relevant 
vectors/matrices, generally by assigning values to individual elements (which often involves 
computing trigonometric functions); (b) manipulates the vectors/matrices as entities, typically 
utilizing vector/matrix addition and multiplication, vector dot and cross products, etc., but not 
involving calculation of trigonometric functions; and (c) computes the desired scalar quantites, 
often utilizing inverse trigonometric functions. The purposes of this chapter are to demonstrate 
this approach in detail and to show that the results are identical to those found using spherical 
trigonometry.  

Section 5.1 provides definitions of the vectors and coordinate frames needed to analyze the 
geometry of two points (user U and satellite S) relative to a spherical earth. Section 5.2 addresses 
the Indirect problem of geodesy, and provides vector versions of the key equations derived in 
Section 4.2 using spherical trigonometry. Section 5.3 returns to the Indirect problem, and 
demonstrates that for some combinations of known and unknown variables, vector analysis 
provides an alternative method of deriving other solutions found in Chapter 4. Section 5.4 
addresses the Direct problem of geodesy, and shows that the equations in Section 4.3 can be 
found by vector/matrix analysis as well. Section  addresses the intersection of two small circles 
on the earth’s surface, a classic celestial navigation problem and an application of the Indirect 
and Direct problems of geodesy. Lastly, Section 5.5 demonstrates that vector analysis provides 
an alternative method of deriving certain expressions found in Chapter 3.  

An advantage of the vector/matrix technique is ease of coding. Once the vector/matrix elements 
have been assigned, the calculations can largely utilize general- and special-purpose software 
packages. Matlab’s Mapping Toolbox is an example; Ref. 35 has another. A disadvantage of the 
vector/matrix technique is that it can obscure geometric aspects of the problem being addressed. 

5.1 Vector and Coordinate Frame Definitions 

5.1.1 Earth-Centered Earth-Fixed (ECEF) Coordinate Frame 

The coordinates of two locations of interest on the earth’s surface are: 
 User position: latitude 𝐿𝐿𝑈𝑈, longitude 𝜆𝜆𝑈𝑈 and altitude ℎ𝑈𝑈 
 Satellite position: latitude 𝐿𝐿𝑆𝑆, longitude 𝜆𝜆𝑆𝑆 and altitude ℎ𝑆𝑆 

Define the earth-centered earth-fixed (ECEF) coordinate frame e by (see Figure 25, where the 
figure’s φ denotes latitude): 
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 x-axis:  lies in the plane of the equator and points toward Greenwich meridian 
 y-axis:  completes the right-hand orthogonal system 
 z-axis:  lies along the earth's spin axis. 

The location of the user and satellite in the e-frame are, respectively 

𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = �
rOU,𝑥𝑥
e

rOU,𝑦𝑦
e

rOU,𝑧𝑧
e

� = 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞   (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) = �
1OU,𝑥𝑥
e

1OU,𝑦𝑦
e

1OU,𝑧𝑧
e

� (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) = �
cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈)
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈)

sin(𝐿𝐿𝑈𝑈)
� (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) 

𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = �
rOS,𝑥𝑥
e

rOS,𝑦𝑦
e

rOS,𝑧𝑧
e

� = 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞   (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) = �
1OS,𝑥𝑥
e

1OS,𝑦𝑦
e

1OS,𝑧𝑧
e

� (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) = �
cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆)
cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆)

sin(𝐿𝐿𝑆𝑆)
� (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) 

Eq 126 

Here 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  are unit vectors associated with 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  and 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 , respectively. Note that the e-
frame, as are all frames used herein, is right-handed — e.g., 1OU,𝑥𝑥

e ⨯ 1OU,𝑦𝑦
e = 1OU,𝑧𝑧

e . 

 
Figure 25  Vector Technique Coordinate Frames of Interest (φ = Latitude) 

Given 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 , the user’s latitude, longitude and altitude can be found (respectively) from 

𝐿𝐿𝑈𝑈 = arctan

⎝

⎛ rOU,𝑧𝑧
e

��rOU,𝑥𝑥
e �

2
+ �rOU,𝑦𝑦

e �
2
⎠

⎞ = arcsin�
rOU,𝑧𝑧
e

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
� 

𝜆𝜆𝑈𝑈 = arctan�rOU,𝑦𝑦
e  , rOU,𝑥𝑥

e � 

ℎ𝑈𝑈 = ��rOU,𝑥𝑥
e �

2
+ �rOU,𝑦𝑦

e �
2

+ �rOU,𝑧𝑧
e �

2
− 𝑅𝑅𝑒𝑒 

Eq 127 

Similarly, given 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 , the satellite’s latitude, longitude and altitude can be found from 

This image cannot currently be displayed.
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𝐿𝐿𝑆𝑆 = arctan

⎝

⎛ rOS,𝑧𝑧
e

��rOS,𝑥𝑥
e �

2
+ �rOS,𝑦𝑦

e �
2
⎠

⎞ = arcsin�
rOS,𝑧𝑧
e

𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆
� 

𝜆𝜆𝑆𝑆 = arctan�rOS,𝑦𝑦
e  , rOS,𝑥𝑥

e � 

ℎ𝑆𝑆 = ��rOS,𝑥𝑥
e �

2
+ �rOS,𝑦𝑦

e �
2

+ �rOS,𝑧𝑧
e �

2
− 𝑅𝑅𝑒𝑒 

Eq 128 

5.1.2 Local-Level Coordinate Frame at User’s Position 

Define a local-level  coordinate frame u that is parallel to a plane tangent to the earth at the user's 
position having coordinate axes: 
 e-axis point east 
 n-axis points north 
 u-axis points up (away from earth's center). 

The direction cosine matrix (DCM) which rotates the e-frame into the u-frame (e.g., Eq 134) is 

Ce
u = T T2(−𝐿𝐿𝑈𝑈) T3(𝜆𝜆𝑈𝑈) Eq 129 

Here Ti(ξ) denotes the rotation matrix about axis i by angle ξ and and T denotes an axis-
permutation matrix 

T1(ξ) = �
1 0 0
0 cos(ξ) sin(ξ)
0 −sin(ξ) cos(ξ)

�                T2(ξ) = �
cos(ξ) 0 −sin(ξ)

0 1 0
sin(ξ) 0 cos(ξ)

� 

T3(ξ) = �
cos(ξ) sin(ξ) 0
−sin(ξ) cos(ξ) 0

0 0 1
�                          T = �

0 1 0
0 0 1
1 0 0

� 

Eq 130 

Thus Ce
u is given by 

Ce
u = �

−sin(𝜆𝜆𝑈𝑈) cos(𝜆𝜆𝑈𝑈) 0
−sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) −sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) cos(𝐿𝐿𝑈𝑈)
cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) sin(𝐿𝐿𝑈𝑈)

� Eq 131 

Clearly, 𝐿𝐿𝑈𝑈 and 𝜆𝜆𝑈𝑈 can be found from Ce
u as well as from 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  — e.g., by  

𝐿𝐿𝑈𝑈 = arctan�
Ce

u(3,3)
Ce

u(2,3)
�                   𝜆𝜆𝑈𝑈 = arctan�

−Ce
u(1,1)

Ce
u(1,2)

� Eq 132 

As is the case for any DCM, Ce
u is orthonormal; thus 

Cu
e  = (Ce

u)−1 = (Ce
u)𝑇𝑇   Eq 133 
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5.1.3 User and Satellite Positions in User’s Local-Level Frame 

Using the DCM Ce
u, the positions of the user and satellite in the u-frame are, respectively 

𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 = �
rOU,𝑒𝑒
u

rOU,𝑛𝑛
u

rOU,𝑢𝑢
u

� = 𝐂𝐂𝐞𝐞𝐮𝐮 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = 𝐂𝐂𝐞𝐞𝐮𝐮 �
rOU,𝑥𝑥
e

rOU,𝑦𝑦
e

rOU,𝑧𝑧
e

�  = �
0
0
1
� (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) Eq 134 

and 

𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 = �
rOS,𝑒𝑒
u

rOS,𝑛𝑛
u

rOS,𝑢𝑢
u

� = 𝐂𝐂𝐞𝐞𝐮𝐮 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = 𝐂𝐂𝐞𝐞𝐮𝐮 �
rOS,𝑥𝑥
e

rOS,𝑦𝑦
e

rOS,𝑧𝑧
e

� 

 = �
cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

−cos(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈)
cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈)

� (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) 

Eq 135 

Thus, using Eq 134 and Eq 135, the vector from U to S is 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 − 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 , is 

𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 − 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 = [rUS,𝑒𝑒
u rUS,𝑛𝑛

u rUS,𝑢𝑢
u ]𝑇𝑇 

= �
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)[−cos(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈)]
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)[cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈)] − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)

� 
Eq 136 

The horizontal and vertical components of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  can be expressed as 

rUS,horiz
u = ��rUS,𝑒𝑒

u �
2

+ �rUS,𝑛𝑛
u �

2
= (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) sin(𝜃𝜃) 

rUS,vert
u = rUS,𝑢𝑢

u = (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(𝜃𝜃) − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈) 
Eq 137 

Here, 𝜃𝜃 is the geocentric angle between vectors 𝐫𝐫𝐎𝐎𝐎𝐎 and 𝐫𝐫𝐎𝐎𝐎𝐎. The far right-hand sides of both 
lines of Eq 137 can be found from Figure 1 by inspection. Expressions for cos(𝜃𝜃) and sin(𝜃𝜃) in 
terms of (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) and (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) are given below, in Eq 141 and Eq 142, respectively. Agreement 
of those expressions with the elements of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  in Eq 136 can be readily verified. 

Two angles associated with 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  are of interest 
 𝜓𝜓𝑆𝑆/𝑈𝑈 – The azimuth angle of the horizontal component of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 , measured clockwise 

from north 
 𝛼𝛼 – The elevation angle of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 , measured from the horizontal plane 

𝜓𝜓𝑆𝑆/𝑈𝑈 = arctan�rUS,𝑒𝑒
u  , rUS,𝑛𝑛

u � Eq 138 
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𝛼𝛼 = arctan

⎝

⎛ rUS,𝑢𝑢
u

��rUS,𝑒𝑒
u �

2
+ �rUS,𝑛𝑛

u �
2
⎠

⎞ Eq 139 

The two-argument arc tangent function is used in Eq 138. 

The Euclidean length 𝑑𝑑 of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  is also of interest, and is given by 

𝑑𝑑 = �𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 � = ��rUS,𝑒𝑒
u �

2
+ �rUS,𝑛𝑛

u �
2

+ �rUS,𝑢𝑢
u �

2
 Eq 140 

5.2 The Indirect Problem of Geodesy 

5.2.1 Computing the Geocentric Angle 

The vectors 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  and 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  meet at the earth’s center, in geocentric angle 𝜃𝜃. The dot product of 
these vectors, normalized by the product of their lengths, yields 

cos(𝜃𝜃) = 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  ⦁ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =
rOU,𝑥𝑥
e  rOS,𝑥𝑥

e + rOU,𝑦𝑦
e  rOS,𝑦𝑦

e + rOU,𝑧𝑧
e  rOS,𝑧𝑧

e

��rOU,𝑥𝑥
e �

2
+ �rOU,𝑦𝑦

e �
2

+ �rOU,𝑧𝑧
e �

2��rOS,𝑥𝑥
e �

2
+ �rOS,𝑦𝑦

e �
2

+ �rOS,𝑧𝑧
e �

2
 

= cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈) 

Eq 141 

Eq 141 demonstrates that if one forms either vector expression indicated on the first line, the 
result will be the same as if one performed the scalar operations indicated on the second line, 
which is identical to the equation for cos(𝜃𝜃) found by spherical trigonometry (Eq 78). 

The cross product of vectors 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  (see Eq 153 for the components of 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ) yields 
another expression for the geocentric angle: 

sin(𝜃𝜃) = �𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 � 

= �[cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 + [cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 
Eq 142 

This expression for sin(𝜃𝜃) on the second line is identical to Eq 88, which is derived by spherical 
trigonometry. If used to find 𝜃𝜃 in the range [0, π], Eq 142, yields ambiguous solutions. Also, 
precision issues may occur near 𝜃𝜃 = ½𝜋𝜋. As ‘sanity’ checks: when 𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈, Eq 142 reduces to 
sin(𝜃𝜃) = |sin(𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)|; when 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈 = 0, Eq 142 reduces to sin(𝜃𝜃) = |sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)|.  

Utilizing Eq 141 and Eq 142, a third expression (Eq 143) for the geocentric angle 𝜃𝜃 in terms of U 
and S follows. Generalization of the expression on the second line to an ellipsoidal-shaped earth 
has been termed the Vincenty formula. 
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tan(𝜃𝜃) =
�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  ⦁ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞

=
�𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 �
𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  ⦁ 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞

 

=
�[cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 + [cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2

cos(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈)  

Eq 143 

In using Eq 143, the two-argument arc tangent function should be employed, to avoid issues 
when 𝜃𝜃 is near ½𝜋𝜋. The result will be unambiguous for 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋.  

5.2.2 Computing the Path Azimuth Angles 
By substituting two elements of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  from Eq 136 into Eq 138, 𝜓𝜓𝑆𝑆/𝑈𝑈 is found to be equal to 

𝜓𝜓𝑆𝑆/𝑈𝑈 = arctan�rUS,𝑒𝑒
u  , rUS,𝑛𝑛

u � 

= arctan�
cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)

cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)� 
Eq 144 

Eq 144 demonstrates that if 𝜓𝜓𝑆𝑆/𝑈𝑈 is computed using the arc tangent function with elements of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  
as arguments, the result will be identical to that found by spherical trigonometry (Eq 86). 

The labeling of the points U and S in Eq 144 can be reversed, yielding 

𝜓𝜓𝑈𝑈/𝑆𝑆 = arctan�rSU,𝑒𝑒
s  , rSU,𝑛𝑛

s � 

= arctan�
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆)

cos(𝐿𝐿𝑆𝑆) sin(𝐿𝐿𝑈𝑈) − sin(𝐿𝐿𝑆𝑆) cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑆𝑆)� 
Eq 145 

While the arguments on right-hand sides of Eq 144 and Eq 145 are shown as ratios, the azimuth 
angles should be computed using the two-argument arc tangent function. 

In Eq 145, vector 𝐫𝐫𝐒𝐒𝐒𝐒𝐬𝐬  is found from 

𝐫𝐫𝐒𝐒𝐒𝐒𝐬𝐬 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐬𝐬 − 𝐫𝐫𝐎𝐎𝐎𝐎𝐬𝐬 = Ce
s  �𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 − 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 � Eq 146 

Here 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  and 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  are given by Eq 126; interpreting Eq 131, Ce
s is given by 

Ce
s = �

−sin(𝜆𝜆𝑆𝑆) cos(𝜆𝜆𝑆𝑆) 0
−sin(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆) −sin(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆) cos(𝐿𝐿𝑆𝑆)
cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆) sin(𝐿𝐿𝑆𝑆)

� Eq 147 

5.3 Corollaries of the Indirect Problem Solution 

5.3.1 Locations Along the Straight-Line between U and S  

Route planning generally requires selecting a set of intermediate points along a planned route 
from U to S. One option is to select a set of equally-spaced points along the straight-line 
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connecting U and S. (If ℎ𝑈𝑈 = ℎ𝑆𝑆 = 0, then the straight line path is a chord corresponding to 
great circle arc.) A way to do this is to choose points along the vector 𝐫𝐫𝐔𝐔𝐔𝐔𝐞𝐞 , then find their 
associated latitudes, longitudes and altitudes. Accordingly, let 𝜇𝜇, 0 ≤ 𝜇𝜇 ≤ 1, be the fractional 
distance of point X from U to S along the vector 𝐫𝐫𝐔𝐔𝐔𝐔𝐞𝐞 . Thus,  

𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 + 𝜇𝜇𝐫𝐫𝐔𝐔𝐔𝐔𝐞𝐞 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 + 𝜇𝜇 �𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 − 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 � = (1 − 𝜇𝜇)𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 + 𝜇𝜇𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  Eq 148 

Then, as in Eq 127 and Eq 128 

𝐿𝐿𝑋𝑋 = arctan

⎝

⎛ rOX,𝑧𝑧
e

��rOX,𝑥𝑥
e �

2
+ �rOX,𝑦𝑦

e �
2
⎠

⎞ 

𝜆𝜆𝑋𝑋 = arctan�rOX,𝑦𝑦
e  , rOX,𝑥𝑥

e � 

ℎ𝑋𝑋 = ��rOX,𝑥𝑥
e �

2
+ �rOX,𝑦𝑦

e �
2

+ �rOX,𝑧𝑧
e �

2
− 𝑅𝑅𝑒𝑒 

Eq 149 

Equally-spaced points along the straight line 𝐫𝐫𝐔𝐔𝐔𝐔𝐞𝐞  will not correspond to equally-spaced points 
along the great circle arc connecting U and S.  

5.3.2 Locations Along the Great Circle Arc Connecting U and S 

It is sometimes desirable to find the coordinates of an arbitrary point along the arc of the great 
circle between U and S. One situation is planning a long-distance flight, where (a) the straight 
line between U and S is almost entirely beneath the earth’s surface, and (b) the aircraft altitude is 
never more than about 0.2% of the earth’s radius.  

Toward that end, let 𝜇𝜇, 0 ≤ 𝜇𝜇 ≤ 1, be the fractional distance of point X from U to S along the 
great circle arc of length 𝜃𝜃 between the subpoints of U and S. The unit vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  can be 
expressed as 

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =
sin[(1 − 𝜇𝜇) 𝜃𝜃]

sin( 𝜃𝜃) 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 +
sin(𝜇𝜇 𝜃𝜃)
sin( 𝜃𝜃) 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  Eq 150 

Vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  lies in the plane defined by 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and satisfies the following necessary and 
sufficient conditions for its claimed attributes 

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⦁𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =
sin[(1 − 𝜇𝜇) 𝜃𝜃]

sin( 𝜃𝜃) +
sin(𝜇𝜇 𝜃𝜃)
sin( 𝜃𝜃) cos( 𝜃𝜃) = cos( 𝜇𝜇 𝜃𝜃) 

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⦁𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =
sin[(1 − 𝜇𝜇) 𝜃𝜃]

sin( 𝜃𝜃) cos( 𝜃𝜃) +
sin(𝜇𝜇 𝜃𝜃)
sin( 𝜃𝜃) = cos[(1 − 𝜇𝜇) 𝜃𝜃] 

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⦁𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =
sin[(1 − 𝜇𝜇) 𝜃𝜃]

sin( 𝜃𝜃) 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⦁𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 +
sin(𝜇𝜇 𝜃𝜃)
sin( 𝜃𝜃) 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⦁𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 = 1 

Eq 151 
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The components of 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  are given by 

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 = �
1OX,𝑥𝑥
e

1OX,𝑦𝑦
e

1OX,𝑧𝑧
e

� =
1

sin( 𝜃𝜃) �
sin[(1 − 𝜇𝜇) 𝜃𝜃] 1OU,𝑥𝑥

e + sin(𝜇𝜇 𝜃𝜃)1OS,𝑥𝑥
e

sin[(1 − 𝜇𝜇) 𝜃𝜃] 1OU,𝑦𝑦
e + sin(𝜇𝜇 𝜃𝜃)1OS,𝑦𝑦

e

sin[(1 − 𝜇𝜇) 𝜃𝜃] 1OU,𝑧𝑧
e + sin(𝜇𝜇 𝜃𝜃)1OS,𝑧𝑧

e
� Eq 152 

Expressions similar to those in Eq 149 can be used to find the coordinates 𝐿𝐿𝑋𝑋 and 𝜆𝜆𝑋𝑋. These 
equations (Eq 152 and Eq 149) provide essentially the same functionality for the vector 
technique that can be achieved with spherical trigonometry using Eq 91 and Eq 94. 

5.3.3 Vertices of a Great Circle 

The vertices (northern- and southern-most latitudes) of a great circle are readily found by vector 
analysis. The cross product of unit vectors 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  (Eq 126) is normal to the plane of the 
great circle containing U and S. In this subsection, it is assumed that U is west of S, so that 
𝟏𝟏𝐎𝐎𝐎𝐎 x 𝟏𝟏𝐎𝐎𝐎𝐎 points toward the northern hemisphere. 

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =

⎣
⎢
⎢
⎡�𝟏𝟏𝐎𝐎𝐎𝐎

𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
𝑥𝑥

�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
𝑦𝑦

�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
𝑧𝑧⎦
⎥
⎥
⎤

= �
1OU,𝑦𝑦
e   1OS,𝑧𝑧

e − 1OU,𝑧𝑧
e   1OS,𝑦𝑦

e

1OU,𝑧𝑧
e   1OS,𝑥𝑥

e − 1OU,𝑥𝑥
e   1OS,𝑧𝑧

e

1OU,𝑥𝑥
e   1OS,𝑦𝑦

e − 1OU,𝑦𝑦
e   1OS,𝑥𝑥

e
� 

= �
cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆)
sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆) − cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑈𝑈)

cos(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)
� 

Eq 153 

When 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  is normalized to unit length, its z-component is equal to the cosine of the 
latitude of the highest (and lowest) point on the great circle that includes the route in question 
(projection of a unit vector onto the earth’s spin axis). Thus, using Eq 142   

cos(𝐿𝐿max) =
�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �

𝑧𝑧

�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
=

cos(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆)  |sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)|
sin(𝜃𝜃𝑈𝑈𝑈𝑈)

 

=
cos(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆)  |sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)|

�[cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 + [cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2
 

Eq 154 

Clearly, 𝐿𝐿min = −𝐿𝐿max. Eq 154 is identical to Eq 116, demonstrating that manipulating the 
components of 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  yields the same result that Clairaut’s equation does. An alternative 
expression for 𝐿𝐿max is  

cot(𝐿𝐿max) =
�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �

𝑧𝑧

��𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �𝑥𝑥
2

+ �𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �𝑦𝑦
2

 Eq 155 

The longitude where the highest/lowest latitudes are achieved can be found from the x- and y-
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components of vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  x 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  (from Eq 153) using the two-argument arc tangent function.  

𝜆𝜆max = arctan�
−�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �

𝑦𝑦

−�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
𝑥𝑥

� 

= arctan�
cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆)
sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆) − cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑈𝑈)� 

Eq 156 

Criteria for when a route will include a vertex are given in Section 4.7. 

Rather than requiring two points, the coordinates of the vertices of a great circle can be 
expressed in terms of the latitude 𝐿𝐿𝑈𝑈 and longitude 𝜆𝜆𝑈𝑈 of a single point and the path azimuth 
𝜓𝜓𝑆𝑆/𝑈𝑈 at that point. Substituting from Eq 102 into Eq 154 and Eq 156 yields 

cos(𝐿𝐿max) = cos(𝐿𝐿𝑈𝑈) �sin(𝜓𝜓𝑆𝑆/𝑈𝑈)� 

tan(𝜆𝜆max) =
sin(𝐿𝐿𝑈𝑈) �sin(𝜆𝜆𝑈𝑈) tan(𝜓𝜓𝑆𝑆/𝑈𝑈) + sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) � + cos2(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈)
sin(𝐿𝐿𝑈𝑈) �cos(𝜆𝜆𝑈𝑈) tan(𝜓𝜓𝑆𝑆/𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈)� − cos2(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈)

 
Eq 157 

The first line of Eq 157 is the same as Eq 115. Since point U is arbitrary, it is effectively 
Clairaut’s equation. When 𝜓𝜓𝑆𝑆/𝑈𝑈 is close to ±½𝜋𝜋, it is advantageous to multiply the numerator 
and denominator of the second line by cos(𝜓𝜓𝑆𝑆/𝑈𝑈), to eliminate use of tan(𝜓𝜓𝑆𝑆/𝑈𝑈). 

5.3.4 Locus of Points on a Great Circle 

From Eq 126, any point X on the earth’s surface has the e-frame coordinates 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  given by 

𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = �
rOX,𝑥𝑥
e

rOX,𝑦𝑦
e

rOX,𝑧𝑧
e

� = 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞   𝑅𝑅𝑒𝑒 = �
1OX,𝑥𝑥
e

1OX,𝑦𝑦
e

1OX,𝑧𝑧
e

�𝑅𝑅𝑒𝑒 = �
cos(𝐿𝐿𝑋𝑋) cos(𝜆𝜆𝑋𝑋)
cos(𝐿𝐿𝑋𝑋) sin(𝜆𝜆𝑋𝑋)

sin(𝐿𝐿𝑋𝑋)
�𝑅𝑅𝑒𝑒 Eq 158 

Here 𝐿𝐿𝑋𝑋 and 𝜆𝜆𝑋𝑋 are the latitude and longitude of X, respectively. In order for X to be on the great 
circle containing U and S, the vector 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  must be orthogonal to the vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  — that is, 
the dot product of these two vectors must be zero. One can then solve for 𝐿𝐿𝑋𝑋 in terms of 𝜆𝜆𝑋𝑋 and 
the coordinates of U and S. The result is 

𝐿𝐿𝑋𝑋 = − arctan�
�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �

𝑥𝑥
cos(𝜆𝜆𝑋𝑋) + �𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �

𝑦𝑦
sin(𝜆𝜆𝑋𝑋)

�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 �
𝑧𝑧

� Eq 159 

Solving for 𝜆𝜆𝑋𝑋 in terms of 𝐿𝐿𝑋𝑋 and the coordinates of U and S is more complicated. While every 
great circle crosses every line of longitude exactly once, a great circle may cross a line of latitude 
zero, one or two times. Section 4.6 addresses this issue using spherical trigonometry. 



DOT Volpe Center   

 5-10 

5.4 The Direct Problem of Geodesy 

The Direct problem of geodesy (addressed using spherical trigonometry in Section 4.3) is 
concerned with two points, U and S, on the earth’s surface. The known quantities are: the 
latitude/longitude of U, (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈); the geocentric angle, θ, between U and S; and the azimuth of S 
relative to U, 𝜓𝜓𝑆𝑆/𝑈𝑈. The quantities to be found are: the latitude/longitude of S, (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆); and the 
azimuth of U relative to S, 𝜓𝜓𝑈𝑈/𝑆𝑆. Two solution methods are presented — a method utilizing 
Direction Cosine Matrices (DCMs) which yields all three unknown quantities and a method 
based on the vector from U to S which only yields the coordinates (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆).  

5.4.1 Full Solution Using Direction Cosine Matrices 

Subsection 5.1.2 derives the DCM Ce
u which rotates the ECEF e-frame to a north-pointing u-

frame that is parallel to a plane tangent to the earth at the user’s location (‘local-level’). Since 
interest is focused on a great circle path from U having azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈, it is useful to rotate 
the u-frame counter clockwise about its vertical axis by ½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈. The resulting u′-frame, 
which is an example of a ‘wander azimuth’ frame, has axes: e′ (rotated from east, so that its 
azimuth angle is 𝜓𝜓𝑆𝑆/𝑈𝑈), n′ (rotated from north by the same amount as the e′ axis), and u (points 
up). Using Eq 129, the DCM Ce

𝐮𝐮′ is given by 

Ce
𝐮𝐮′ = T3(½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈) Ce

u = T3(½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈)T T2(−𝐿𝐿𝑈𝑈) T3(𝜆𝜆𝑈𝑈) Eq 160 

Upon carrying out the indicated multiplications, the elements of Ce
𝐮𝐮′  are given by 

Ce
𝐮𝐮′(1,1) = −sin(𝜆𝜆𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� 

Ce
𝐮𝐮′(1,2) = cos(𝜆𝜆𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� 

Ce
𝐮𝐮′(1,3) = cos(𝐿𝐿𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� 

Ce
𝐮𝐮′(2,1) = sin(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� 

Ce
𝐮𝐮′(2,2) = cos(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� 

Ce
𝐮𝐮′(2,3) = cos(𝐿𝐿𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� 

Ce
𝐮𝐮′(3,1) = cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) 

Ce
𝐮𝐮′(3,2) = cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) 

Ce
𝐮𝐮′(3,3) = sin(𝐿𝐿𝑈𝑈) 

Eq 161 

It follows from Eq 161 that  

𝐿𝐿𝑈𝑈 = arcsin �Ce
𝐮𝐮′(3,3)�       𝜆𝜆𝑈𝑈 = arctan�

Ce
𝐮𝐮′(3,2)

Ce
𝐮𝐮′(3,1)

�        𝜓𝜓𝑆𝑆/𝑈𝑈 = arctan�
Ce
𝐮𝐮′(2,3)

Ce
𝐮𝐮′(1,3)

� Eq 162 

The DCM Ce
𝐬𝐬′ that rotates the e-frame to a plane that is parallel to a plane tangent to the earth at 
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S with its first axis aligned with the direction of rotation is given by  

Ce
𝐬𝐬′ = T2(𝜃𝜃) Ce

𝐮𝐮′ = T2(𝜃𝜃) T3(½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈) T T2(−𝐿𝐿𝑈𝑈) T3(𝜆𝜆𝑈𝑈) Eq 163 

The DCM Ce
𝐬𝐬′ can also be written in a form similar to Eq 160:  

Ce
𝐬𝐬′ = T3(½ 𝜋𝜋 − 𝜓𝜓𝑈𝑈/𝑆𝑆 − 𝜋𝜋) T T2(−𝐿𝐿𝑆𝑆) T3(𝜆𝜆𝑆𝑆) Eq 164 

Equating these two forms for Ce
𝐬𝐬′, carrying out the multiplications indicated in Eq 163 and using 

the equivalent of Eq 162 results in: 

𝐿𝐿𝑆𝑆 = arcsin �Ce
𝐬𝐬′(3,3)� = arcsin �sin(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) + cos(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�� 

𝜆𝜆𝑆𝑆 = arctan�
Ce
𝐬𝐬′(3,2)

Ce
𝐬𝐬′(3,1)

�

= arctan�
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈)cos(𝜃𝜃) + �cos(𝜆𝜆𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�� sin(𝜃𝜃)
cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈)cos(𝜃𝜃) − �sin(𝜆𝜆𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈� + sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�� sin(𝜃𝜃)

� 

𝜓𝜓𝑈𝑈/𝑆𝑆 = arctan�
−Ce

𝐬𝐬′(2,3)
−Ce

𝐬𝐬′(1,3)
� = arctan�

−cos(𝐿𝐿𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈�
sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) − cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) cos�𝜓𝜓𝑆𝑆/𝑈𝑈�

� 

Eq 165 

When using Eq 165 to compute numerical values for 𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆 and 𝜓𝜓𝑈𝑈/𝑆𝑆, the elements of Ce
𝐬𝐬′ are 

taken from Eq 163. A two-argument arc tangent function is used for finding 𝜆𝜆𝑆𝑆 and 𝜓𝜓𝑈𝑈/𝑆𝑆.  

The expressions for 𝐿𝐿𝑆𝑆 and 𝜓𝜓𝑈𝑈/𝑆𝑆 that are right-most on the first and third lines of Eq 165 are 
identical to those derived using spherical trigonometry (Eq 91 and Eq 98, respectively). The 
expression for 𝜆𝜆𝑆𝑆 that is right-most on the second line is different from that derived using sphere-
ical trigonometry (Eq 94); however, the expressions can be shown to be equivalent using 
trigonometric identities.  

5.4.2 Position Solution Using Vector US 

A simpler but less rigourous approach to finding 𝐿𝐿𝑆𝑆 and 𝜆𝜆𝑆𝑆 is to form 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  and utilize its 
components. Given 𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈, 𝜃𝜃 and 𝜓𝜓𝑆𝑆/𝑈𝑈, one can form right triangle OUS with right angle at U, 
sides OU (length 𝑅𝑅𝑒𝑒) and US (length 𝑑𝑑), and hypotenuse OS (length 𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆). Thus 

𝑑𝑑 = 𝑅𝑅𝑒𝑒 tan(𝜃𝜃) 

𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆 =
𝑅𝑅𝑒𝑒

cos(𝜃𝜃)
 

Eq 166 

Then 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  is given by  
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𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 = �
rUS,𝑒𝑒
u

rUS,𝑛𝑛
u

rUS,𝑢𝑢
u

� = �
tan(𝜃𝜃) sin(𝜓𝜓𝑆𝑆/𝑈𝑈)
tan(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)

0
� 𝑅𝑅𝑒𝑒 Eq 167 

Utilizing Eq 126 and Eq 131 yields 

𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 + 𝐫𝐫𝐔𝐔𝐔𝐔𝐞𝐞 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 + Cu
e   𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 = 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 + (Ce

u)𝑇𝑇  𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 = [rOS,𝑥𝑥
e rOS,𝑦𝑦

e rOS,𝑧𝑧
e ]𝑇𝑇 

= �
cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) − sin(𝜆𝜆𝑈𝑈) tan(𝜃𝜃) sin(𝜓𝜓𝑆𝑆/𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) tan(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) + cos(𝜆𝜆𝑈𝑈) tan(𝜃𝜃) sin(𝜓𝜓𝑆𝑆/𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) tan(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)

sin(𝐿𝐿𝑈𝑈) + cos(𝐿𝐿𝑈𝑈) tan(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)
� 𝑅𝑅𝑒𝑒 

Eq 168 

The magnitude of 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  is 𝑅𝑅𝑒𝑒  / cos(𝜃𝜃). Thus, from Eq 128 and Eq 168, 𝐿𝐿𝑆𝑆 and 𝜆𝜆𝑆𝑆 are given by 

𝐿𝐿𝑆𝑆 = arcsin�
rOS,𝑧𝑧
e

𝑅𝑅𝑒𝑒/cos(𝜃𝜃)
� = arcsin�sin(𝐿𝐿𝑈𝑈) cos(𝜃𝜃) + cos(𝐿𝐿𝑈𝑈) sin(𝜃𝜃) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)� 

𝜆𝜆𝑆𝑆 = arctan�rOS,𝑦𝑦
e  , rOS,𝑥𝑥

e �

= arctan�
cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) cos(𝜃𝜃) + �cos(𝜆𝜆𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)� sin(𝜃𝜃)
cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) cos(𝜃𝜃) − �sin(𝜆𝜆𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈) + sin(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈)� sin(𝜃𝜃)

� 

Eq 169 

The geometric rationale for Eq 169 requires that 𝜃𝜃 < ½𝜋𝜋. However, the expressions are in fact 
identical to those in Eq 165 and are valid for 𝜃𝜃 ≤ 𝜋𝜋. Development of an expression for 𝜓𝜓𝑈𝑈/𝑆𝑆 that 
does not involve chaining from the solutions for 𝐿𝐿𝑆𝑆 and 𝜆𝜆𝑆𝑆 (as, e.g., Eq 145 does) does not appear 
to be possible using this approach.  

5.5 Satellite Elevation Angle and Slant-Range 

Sections 5.2 through 5.4 address the Direct and Indirect problems of geodesy, and show that, for 
two points on the surface of a spherical earth, the vector method can be used to perform 
essentially the same calculations as spherical trigonometry. However, Sections 5.2 through 5.4 
do not address the quantities ℎ𝑈𝑈, ℎ𝑆𝑆, 𝑑𝑑 or 𝛼𝛼 — all of which are related to the height of the 
aircraft/satellite above the earth’s surface. The two subsections immediately below show that if 
ℎ𝑈𝑈, ℎ𝑆𝑆 and 𝜃𝜃 are known, then 𝑑𝑑 and 𝛼𝛼 can be found by the vector method. The expressions that 
are derived are identical to those found in Chapter 3 using the coordinate-free method.  

Assuming ℎ𝑈𝑈 to be known, the four other possible equations associated with an aircraft or 
satellite above the earth when the geocentric angle 𝜃𝜃 is known — finding ℎ𝑆𝑆 or 𝑑𝑑 from 𝛼𝛼 and 𝜃𝜃, 
and finding ℎ𝑆𝑆 or 𝛼𝛼 from 𝑑𝑑 and 𝜃𝜃 — are not pursued. For these variable combinations, the 
solutions for the unknown variables involve manipulation of the scalar components of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 . That 
being the case, one may as well utilize the scalar equations in Chapter 3. 
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5.5.1 Solution for Elevation Angle from Altitude and Geocentric Angle 

As shown in Eq 139 the satellite elevation angle can be found from the components of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮 . Using 
Eq 137, Eq 139 can be expanded as 

tan(𝛼𝛼) =
(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) cos(𝜃𝜃) − (𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈)

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) sin(𝜃𝜃) = cot(𝜃𝜃) −
𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈 

(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) sin(𝜃𝜃) Eq 170 

The expressions in Eq 170 is identical to those in Eq 48, demonstrating that manipulating the 
components of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  can yield the same value for 𝛼𝛼 as the scalar methodology used in Chapter 3. 

5.5.2 Solution for Slant-Range from Altitude and Geocentric Angle 

The user-satellite slant-range can be found by substituting both lines of Eq 137 into Eq 140, 
yielding: 

𝑑𝑑 = 2 𝑅𝑅𝑒𝑒  sin �12𝜃𝜃���1 +
ℎ𝑈𝑈
𝑅𝑅𝑒𝑒
� �1 +

ℎ𝑆𝑆
𝑅𝑅𝑒𝑒
� + �

ℎ𝑆𝑆 − ℎ𝑈𝑈
2 𝑅𝑅𝑒𝑒  sin�12𝜃𝜃�

�
2

     ,     𝜃𝜃 ≠ 0 Eq 171 

Eq 171 is identical to the second line of Eq 54. This demonstrates that applying Pythagoras’s 
theorem to the components of 𝐫𝐫𝐔𝐔𝐔𝐔𝐮𝐮  (Eq 140) yields the same value for 𝑑𝑑 as the scalar 
methodology used in Chapter 3. 

5.6 Intersections Involving Two Great and/or Small Circles 

This section addresses the intersection of two circles on a sphere: two great circles (Subsection 
5.6.1), two small circles (Subsection 5.6.2) and a small circle with a great circle (Subsection 
5.6.3). Small circles on the surface of a sphere are simply circles that are not great circles. Since 
there are three locations involved — the centers of the circles and intersection sought — the topic 
of this section contradicts the portion of the chapter title referring to ‘two points’. This section 
draws upon material addressing both the Indirect (Section 5.3) and the Direct (Section 5.4) 
problems of geodesy. 

5.6.1 Intersection of Two Great Circles 

As noted in Subsection 5.3.3, a great circle can be characterized by a unit vector which is normal 
to the plane containing the great circle. When two points, U (𝐿𝐿𝑈𝑈 , 𝜆𝜆𝑈𝑈) and S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆), on great 
circle are known, the unit vector is given by (from Eq 153 and Eq 142) 

𝟏𝟏𝐆𝐆𝐆𝐆𝐞𝐞 =
1

sin(𝜃𝜃𝑈𝑈𝑈𝑈)
�

cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆)
sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆) − cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑈𝑈)

cos(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈)
� Eq 172 

Alternatively, when one point U (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) and the great circle’s azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 at U are 
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known, the normal can be found by assuming that 𝜃𝜃𝑈𝑈𝑈𝑈 = ½𝜋𝜋 and utilizing Eq 102  

𝟏𝟏𝐆𝐆𝐆𝐆𝐞𝐞

= �
cos2(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) �sin(𝜓𝜓𝑆𝑆/𝑈𝑈) cos(𝜆𝜆𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜆𝜆𝑈𝑈)�
− cos2(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈) cos�𝜓𝜓𝑆𝑆/𝑈𝑈� − sin(𝐿𝐿𝑈𝑈) �sin(𝜓𝜓𝑆𝑆/𝑈𝑈) sin(𝜆𝜆𝑈𝑈) + sin(𝐿𝐿𝑈𝑈) cos(𝜓𝜓𝑆𝑆/𝑈𝑈) cos(𝜆𝜆𝑈𝑈)�

cos(𝐿𝐿𝑈𝑈) sin(𝜓𝜓𝑆𝑆/𝑈𝑈)
� Eq 173 

If two great circles are of interest, let the single known point on each have latitude 𝐿𝐿𝑖𝑖, longitude 
𝜆𝜆𝑖𝑖, and azimuth 𝜓𝜓𝑖𝑖, where 𝑖𝑖 = 1,2. Thus, the unit normal vectors are given by 

𝟏𝟏𝑖𝑖𝐞𝐞 = �
cos2(𝐿𝐿𝑖𝑖) sin(𝜆𝜆𝑖𝑖) cos(𝜓𝜓𝑖𝑖) − sin(𝐿𝐿𝑖𝑖) [sin(𝜓𝜓𝑖𝑖) cos(𝜆𝜆𝑖𝑖) − sin(𝐿𝐿𝑖𝑖) cos(𝜓𝜓𝑖𝑖) sin(𝜆𝜆𝑖𝑖)]
− cos2(𝐿𝐿𝑖𝑖) cos(𝜆𝜆𝑖𝑖) cos(𝜓𝜓𝑖𝑖) − sin(𝐿𝐿𝑖𝑖) [sin(𝜓𝜓𝑖𝑖) sin(𝜆𝜆𝑖𝑖) + sin(𝐿𝐿𝑖𝑖) cos(𝜓𝜓𝑖𝑖) cos(𝜆𝜆𝑖𝑖)]

cos(𝐿𝐿𝑖𝑖) sin(𝜓𝜓𝑖𝑖)
� Eq 174 

The cross product 𝟏𝟏1𝐞𝐞 ⨯ 𝟏𝟏2𝐞𝐞 lies in the planes of both great circles. Thus the cross product and its 
negation point toward the intersections of the two great circles at (𝐿𝐿int+,𝜆𝜆int+) and (𝐿𝐿int-,𝜆𝜆int-). 

𝐿𝐿int± = ± arctan

⎝

⎛
�𝟏𝟏1𝐞𝐞 ⨯ 𝟏𝟏2𝐞𝐞�𝑧𝑧

��𝟏𝟏1𝐞𝐞 ⨯ 𝟏𝟏2𝐞𝐞�𝑥𝑥
2

+ �𝟏𝟏1𝐞𝐞 ⨯ 𝟏𝟏2𝐞𝐞�𝑦𝑦
2

⎠

⎞ 

𝜆𝜆int± = arctan�
±  �𝟏𝟏1𝐞𝐞 ⨯ 𝟏𝟏2𝐞𝐞�𝑦𝑦
±  �𝟏𝟏1𝐞𝐞 ⨯ 𝟏𝟏2𝐞𝐞�𝑥𝑥

� 

Eq 175 

In Eq 175, the plus or minus sign must be used consistently. The first line can be evaluated using 
the one-argument arc tangent function, while the two-argument arc tangent function should be 
used for the second line. The intersection of two great circles is addressed using spherical trigo-
nometry in Section 6.3. 

Great circles can be used to represent azimuth measurement of sensors, such as a radar or VOR. 
This representation overstates the actual coverage of physically realizable sensors, which 
generally extends from the sensor antenna in arc of a great circle with a length of at most a few 
degrees. Thus, the model can result in mathematical intersections (Eq 175) that are not 
‘physically real’ which must be rejected. 

5.6.2 Intersection of Two Small Circles  

Let the centers (and known coordinates) of the small circles on the earth’s surface be U (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) 
and S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆). The known geocentric angles (similar to radii) of the circles about U and S are 𝜃𝜃𝑈𝑈𝑈𝑈 
and 𝜃𝜃𝑆𝑆𝑆𝑆, respectively, where A denotes an aircraft with unknown coordinates (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴). (When 
celestial sightings are involved, the error incurred by assuming that aircraft A is on the earth’s 
surface is less than that incurred by assuming that the earth is a sphere.)   
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The first step is to utilize the Indirect problem of geodesy (Section 5.2) to find the geocentric angle 
𝜃𝜃𝑈𝑈𝑈𝑈 between U and S and the azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 of S at U. The mathematical issues of existence 
and uniqueness must then be considered. If either of the following conditions are true, an 
intersection does not exist: 

𝜃𝜃𝑈𝑈𝑈𝑈 + 𝜃𝜃𝑆𝑆𝑆𝑆 < 𝜃𝜃𝑈𝑈𝑈𝑈               |𝜃𝜃𝑈𝑈𝑈𝑈 − 𝜃𝜃𝑆𝑆𝑆𝑆| > 𝜃𝜃𝑈𝑈𝑈𝑈 Eq 176 

When a solution does exist, there may be one intersection (which is located along the great circle 
connecting U and S and for which one expression in Eq 176 would become an equality) or two 
intersections (which are equal distance from the great circle connecting U and S). The general 
case is two intersections. 

Assuming a solution exists, it is useful, as in Subsection 5.4.1, to consider the local level u-frame 
after being rotated counter clockwise about its vertical axis by ½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈, resulting in the wander 
azimuth u′-frame. The DCM Ce

𝐮𝐮′  is given by Eq 160 and Eq 161. Utilizing Eq 134 and Eq 135 (the 
latter in conjunction with Eq 78, Eq 84 and Eq 85), the vectors 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮

′
 and 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮

′
 are  

𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮
′ = T3(½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈)  𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 = �

0
0
1
� 𝑅𝑅𝑒𝑒 

𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮
′ = T3(½ 𝜋𝜋 − 𝜓𝜓𝑆𝑆/𝑈𝑈)  𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮 = �

sin(𝜃𝜃𝑈𝑈𝑈𝑈)
0

cos(𝜃𝜃𝑈𝑈𝑈𝑈)
� 𝑅𝑅𝑒𝑒 

Eq 177 

Let the components of 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮
′
 be given by 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮

′ = �rOA,𝑒𝑒′
u′ rOA,𝑛𝑛′

u′ rOA,𝑢𝑢
u′ �

𝑇𝑇
. Because its length is 

constrained to be 𝑅𝑅𝑒𝑒, only two components of 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮
′
 are independent. Knowledge of the small 

circle geocentric angles yields 

𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮
′  ⦁ 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮

′ = 𝑅𝑅𝑒𝑒 rOA,𝑢𝑢
u′ = 𝑅𝑅𝑒𝑒2 cos(𝜃𝜃𝑈𝑈𝑈𝑈) 

𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮
′  ⦁ 𝐫𝐫𝐎𝐎𝐎𝐎𝐮𝐮

′ = 𝑅𝑅𝑒𝑒 �rOA,𝑒𝑒′
u′ sin(𝜃𝜃𝑈𝑈𝑈𝑈) + rOA,𝑢𝑢

u′ cos(𝜃𝜃𝑈𝑈𝑈𝑈)� = 𝑅𝑅𝑒𝑒2 cos(𝜃𝜃𝑆𝑆𝑆𝑆) 
Eq 178 

Thus, the two intersections are given by 

𝐫𝐫𝐎𝐎𝐎𝐎±
𝐮𝐮′ =

⎣
⎢
⎢
⎡ rOA,𝑒𝑒′

u′

rOA,𝑛𝑛′±
u′

rOA,𝑢𝑢
u′ ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

cos(𝜃𝜃𝑆𝑆𝑆𝑆) − cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜃𝜃𝑈𝑈𝑈𝑈)
sin(𝜃𝜃𝑈𝑈𝑈𝑈)

±�1 − cos2(𝜃𝜃𝑈𝑈𝑈𝑈) − �
 cos(𝜃𝜃𝑆𝑆𝑆𝑆) − cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜃𝜃𝑈𝑈𝑈𝑈)

sin(𝜃𝜃𝑈𝑈𝑈𝑈)
�
2

 cos(𝜃𝜃𝑈𝑈𝑈𝑈) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑅𝑅𝑒𝑒 Eq 179 

The e-frame components of 𝐫𝐫𝐎𝐎𝐎𝐎± are found, using Eq 160 and Eq 161, by  
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 𝐫𝐫𝐎𝐎𝐎𝐎±
𝐞𝐞 = �

rOA,𝑥𝑥±
e

rOA,𝑦𝑦±
e

rOA,𝑧𝑧±
e

� = C𝐮𝐮′
𝐞𝐞  𝐫𝐫𝐎𝐎𝐎𝐎±

𝐮𝐮′ = �C𝐞𝐞
𝐮𝐮′�

𝑇𝑇
𝐫𝐫𝐎𝐎𝐎𝐎±
𝐮𝐮′  Eq 180 

Finally, the two possible latitudes and longitudes of A are found by 

𝐿𝐿𝐴𝐴± = arctan

⎝

⎛ rOA,𝑧𝑧±
e

��rOA,𝑥𝑥±
e �

2
+ �rOA,𝑦𝑦±

e �
2
⎠

⎞ = arcsin�
rOU,𝑧𝑧±
e

𝑅𝑅𝑒𝑒
� 

𝜆𝜆𝐴𝐴± = arctan�rOA,𝑦𝑦±
e  , rOA,𝑥𝑥±

e � 

Eq 181 

In Eq 179-Eq 181, the plus or minus sign must be used consistently. The first line of Eq 181 can 
be evaluated using the one-argument arc tangent function, while the two-argument arc tangent 
function should be used for the second line. 

Remarks: 

 Because the elevation angle of a star, at a known time, defines a small circle on the earth, 
finding the intersection two small circles is a fundamental task of celestial navigation. 
Historically, converting a sextant measurement of a star’s elevation angle to a small circle, 
called sight reduction, was a challenging task — see Chapter 20 of Ref. 1. The intersection 
of small circles was then usually found graphically, resulting in a fix with accuracy of 
approximately 1 NM. Today the computational process is automated; the U.S. Navy’s 
STELLA (System To Estimate Latitude and Longitude Astronomically) program performs 
both sight reduction and intersection determination.  

 Finding a vehicle location from two range type measurements is one the simplest non-
trivial real-world navigation problems, yet it involves many of the issues present in more 
complex problems — e.g., solution existence/uniqueness and accuracy sensitivity to 
vehicle location. The closely related problems of finding the intersection of two DME or 
radar slant-ranges (the topic of Section 6.4) and finding the location of a vehicle on a 
hypothetical two-dimensional plane (Example 8, addressed in Subsections 7.12.1 and 
8.5.1) involve and expand upon these issues.  

 The ambiguity in Eq 179-Eq 181 cannot be resolved from the available measurements. 
However, in applications, additional information is often available — see Subsection 6.1.3, 
particularly item (2). In this situation, the two solutions are symmetric about the station 
baseline/extensions. Unless the vehicle is moving parallel to the baseline, both solutions 
will move with a component either toward or away from the baseline. The vehicle’s actual 
direction of motion, sensed by an on-board compass, can be used to select the correct 
solution.  

5.6.3 Intersection of a Small Circle and a Great Circle 

A great circle can be defined either by two points (e.g., Eq 172) or by one point and the path 
azimuth at that point (e.g., Eq 173). However, neither of these formulations is involved in the 
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solution process described in this subsection. Thus, let the unit vector that is normal to the plane 
of the great circle in the ECEF frame e which points toward the northern hemisphere be 𝟏𝟏𝐆𝐆𝐞𝐞 .  

𝟏𝟏𝐆𝐆𝐞𝐞   = �
1G,𝑥𝑥
e

1G,𝑦𝑦
e

1G,𝑧𝑧
e
� Eq 182 

Let the center (and known coordinates) of the small circle be C (𝐿𝐿𝐶𝐶 , 𝜆𝜆𝐶𝐶). The geocentric angle of 
the small circle about C, 𝜃𝜃𝐶𝐶𝐶𝐶 ≥ 0, is also known. (The case of 𝜃𝜃𝐶𝐶𝐶𝐶 = 0 is addressed in the 
Remarks below.) Here, A denotes an aircraft with the unknown coordinates sought, (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴). The 
unit vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  from the earth’s center O toward C is (Eq 126)  

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞   = �
1OC,𝑥𝑥
e

1OC,𝑦𝑦
e

1OC,𝑧𝑧
e

� = �
cos(𝐿𝐿𝐶𝐶) cos(𝜆𝜆𝐶𝐶)
cos(𝐿𝐿𝐶𝐶) sin(𝜆𝜆𝐶𝐶)

sin(𝐿𝐿𝐶𝐶)
� Eq 183 

A solution (i.e., intersection) to this problem does not exist if 

𝜃𝜃𝐶𝐶𝐶𝐶 = arccos�𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  ⦁ 𝟏𝟏𝐆𝐆𝐞𝐞� < 1
2  𝜋𝜋 − 𝜃𝜃𝐶𝐶𝐶𝐶 Eq 184 

When a solution does exist, there may be one intersection (for which the expression in Eq 184 
becomes an equality) or two intersections. The general case is two intersections. 

Assuming that a solution exists, define the point S by the unit vector  

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 =
1

sin(𝜃𝜃𝐶𝐶𝐶𝐶) �𝟏𝟏𝐆𝐆
𝐞𝐞 ⨯ 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 � = �

1OS,𝑥𝑥
e

1OS,𝑦𝑦
e

1OS,𝑧𝑧
e

� Eq 185 

Vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  is orthogonal to the plane containing 𝟏𝟏𝐆𝐆𝐞𝐞  and 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞  and is in the plane containing the 
great circle. Then define the the point U on the great circle by its unit vector 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞   

𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 = 𝟏𝟏𝐎𝐎𝐎𝐎𝐞𝐞 ⨯ 𝟏𝟏𝐆𝐆𝐞𝐞 = �
1OU,𝑥𝑥
e

1OU,𝑦𝑦
e

1OU,𝑧𝑧
e

� Eq 186 

Points S and U are orthogonal by construction. Point U is the location on the great circle nearest 
to C; its latitude 𝐿𝐿𝑈𝑈 and longitude 𝜆𝜆𝑈𝑈 are given by Eq 127. The path azimuth 𝜓𝜓𝑆𝑆/𝑈𝑈 at U can be 
found from Clairaut’s equation (Eq 154 and Eq 157)  

sin(𝜓𝜓𝑆𝑆/𝑈𝑈) =
cos(𝐿𝐿max)
cos(𝐿𝐿𝑈𝑈) =

1G,𝑧𝑧
e

cos(𝐿𝐿𝑈𝑈) Eq 187 

When 𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈 and 𝜓𝜓𝑆𝑆/𝑈𝑈 are known, the DCM Ce
𝐮𝐮′  for the wander azimuth, local level u′-frame 
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(Eq 160 and Eq 161) is fully specified. In the u′-frame, the known coordinates of C are given by 

𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮
′ =

⎣
⎢
⎢
⎡rOC,𝑒𝑒′
u′

rOC,𝑛𝑛′
u′

rOC,𝑢𝑢
u′ ⎦

⎥
⎥
⎤

= �

0
sin �12  𝜋𝜋 − 𝜃𝜃𝐶𝐶𝐶𝐶�

cos �12  𝜋𝜋 − 𝜃𝜃𝐶𝐶𝐶𝐶�
� = �

0
cos(𝜃𝜃𝐶𝐶𝐶𝐶)
sin(𝜃𝜃𝐶𝐶𝐶𝐶)

� Eq 188 

Let the components of 𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮
′

 be given by  

𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮
′ =

⎣
⎢
⎢
⎡1OA,𝑒𝑒′

u′

1OA,𝑛𝑛′
u′

1OA,𝑢𝑢
u′ ⎦

⎥
⎥
⎤

= �
1OA,𝑒𝑒′
u′

0
1OA,𝑢𝑢
u′

� Eq 189 

Because its length is constrained, only one component of 𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮
′

 can be independently chosen or 
determined. The inner product of 𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮

′
 and 𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮

′
 yields 

𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮
′  ⦁ 𝟏𝟏𝐎𝐎𝐎𝐎𝐮𝐮

′ = 1OA,𝑢𝑢
u′ sin(𝜃𝜃𝐶𝐶𝐶𝐶) = cos(𝜃𝜃𝐶𝐶𝐶𝐶)  Eq 190 

Thus, the two intersections are given by 

𝟏𝟏𝐎𝐎𝐎𝐎±
𝐮𝐮′ =

⎣
⎢
⎢
⎡1OA,𝑒𝑒′±

u′

1OA,𝑛𝑛′
u′

1OA,𝑢𝑢
u′ ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
±�1 − �

 cos(𝜃𝜃𝐶𝐶𝐶𝐶)
sin(𝜃𝜃𝐶𝐶𝐶𝐶)

�
2

0

 
cos(𝜃𝜃𝐶𝐶𝐶𝐶)
sin(𝜃𝜃𝐶𝐶𝐶𝐶) ⎦

⎥
⎥
⎥
⎥
⎤

 Eq 191 

The e-frame components of 𝐫𝐫𝐎𝐎𝐎𝐎± are found, using Eq 160 and Eq 161, by  

 𝟏𝟏𝐎𝐎𝐎𝐎±
𝐞𝐞 = �

1OA,𝑥𝑥±
e

1OA,𝑦𝑦±
e

1OA,𝑧𝑧±
e

� = C𝐮𝐮′
𝐞𝐞  𝟏𝟏𝐎𝐎𝐎𝐎±

𝐮𝐮′ = �C𝐞𝐞
𝐮𝐮′�

𝑇𝑇
𝟏𝟏𝐎𝐎𝐎𝐎±
𝐮𝐮′  Eq 192 

Finally, the two possible latitudes and longitudes of A are found by 

𝐿𝐿𝐴𝐴± = arctan

⎝

⎛ 1OA,𝑧𝑧±
e

��1OA,𝑥𝑥±
e �

2
+ �1OA,𝑦𝑦±

e �
2
⎠

⎞ = arcsin�1OU,𝑧𝑧±
e � 

𝜆𝜆𝐴𝐴± = arctan�1OA,𝑦𝑦±
e  , 1OA,𝑥𝑥±

e � 

Eq 193 

In Eq 191-Eq 193, the plus or minus sign must be used consistently. The first line of Eq 193 can 
be evaluated using the one-argument arc tangent function, while the two-argument arc tangent 
function should be used for the second line. 



DOT Volpe Center   

 5-19 

Remarks: 

 Finding the intersection of a great circle and small circle is similar to the problem 
addressed in Section 6.5 using spherical trigonometry. 

 The limiting case of a small circle is a point. Thus, point U is the location on the great 
circle with unit normal 𝟏𝟏𝐆𝐆𝐞𝐞  that is closest to point C.  

 The solution ambiguity in Eq 191-Eq 193 cannot be resolved from the mathematical model 
employed. However, if the great circle is a representation of a sensor measurement of 
azimuth, it may be possible to simply discard one solution. Moreover, if that is not the case 
and the vehicle is in motion, the two solutions will both move toward or away from U in 
unison. In that case, an on-board compass may be used to determine the correct solution. 
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6. AIRCRAFT POSITION FROM TWO RANGE AND/OR AZIMUTH 
MEASUREMENTS (TRIGONOMETRIC FORMULATIONS) 

6.1 General Considerations 

6.1.1 Problems Addressed 

This chapter combines the formulations of Chapter 3 (involving plane trigonometry applied to a 
vertical-plane) and Chapter 4 (involving spherical trigonometry applied to the earth’s surface). 
Whereas both of those formulations are limited to two problem-specific points, usually labeled U 
and S, this chapter addresses situations involving three problem-specific points embedded in 
three dimensions. Relevant applications include aircraft navigation (specifically, Area Navi-
gation, or RNAV) and aircraft surveillance (including sensor fusion).  

For this methodology, typically, one point corresponds to the aircraft (having an unknown 
latitude/longitude but known altitude), and the other two points correspond to sensor stations 
having known locations and altitudes. Each sensor station provides a scalar measurement that 
describes a geometric Surface-Of-Position (SOP) on which the aircraft lies. The solution for the 
aircraft position is the intersection of three SOPs. When attention is limited to the earth’s surface, 
3D SOPs reduce to 2D Lines-Of-Position (LOPs).* Analytically, the three points form a mathe-
matical spherical triangle which can be solved using spherical trigonometry. 

Before circa 1950 (when synchronization of ground stations, and thus pseudorange measure-
ments, became possible – see Chapter 7), the most common sensor systems measured 

(a) Slant-range 𝑑𝑑𝐴𝐴𝐴𝐴 – line-of-sight distance between a sensor station S and aircraft A 
(b) Spherical-range 𝑠𝑠𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑒𝑒  𝜃𝜃𝐴𝐴𝐴𝐴 – distance along the earth’s surface between a sensor’s and 

the aircraft’s ground subpoints 
(c) Azimuth 𝜓𝜓𝐴𝐴/𝑆𝑆 – angle of the great circle path from the sensor station to the aircraft 
(d) Azimuth 𝜓𝜓𝑆𝑆/𝐴𝐴 – angle of the great circle path from the aircraft to the sensor station  
(e) Altitude ℎ𝐴𝐴 – height of the aircraft above the mean sea level.  

Slant-range measurements provide an SOP in the form of a sphere centered on the station. 
Spherical-range measurements provide an SOP in the form of a cone with apex at the earth’s 
center and axis intersecting a known point on the surface. Azimuth measurements provide an 
SOP in the form of a vertical plane that passes through the sensor, the aircraft and the earth’s 
center (i.e., a great circle). A barometric altimeter provides an SOP in the form of a sphere 
concentric with the earth. 
                                                 
* LOPs were first formulated by Capt. Thomas Hubbard Sumner, a U.S. Navy officer, in 1837, while commanding a 
sailing ship in heavy gales near the Irish coast. Sumner was born in Boston in 1807, and graduated from Harvard 
Univ. Two U.S. Navy survey ships have been named the USS Sumner. Some texts refer to LOPs as ‘Sumner lines’.  



DOT Volpe Center   

 6-2 

The most common civil aviation slant-range and azimuth sensors are 
 Slant-range between aircraft and station 

– Navigation: Distance Measuring Equipment (DME) 
– Surveillance: Secondary Surveillance Radar (SSR) 

 Spherical-range between aircraft and station 
– Navigation: Star fix 

 Azimuth angle from the station to the aircraft 
– Navigation: VHF Omnidirectional Range (VOR) 
– Navigation: Instrument Landing System (ILS) Localizer 
– Surveillance: Secondary Surveillance Radar (SSR) 

 Azimuth angle from the aircraft to the station 
– Navigation: Non-Directional Beacon (NDB) 
– Navigation: Aircraft-based radar 

This chapter addresses calculation of aircraft latitude/longitude from measurements of altitude in 
combination with those for slant-range and/or azimuth. In Sections 6.4 and 6.5, the slant-range 
measurements are converted to spherical-ranges at the start of each calculation; thus the material 
can be utilized for spherical-range measurements as well.  

This chapter does not consider errors in the computed coordinates that result from measurement 
errors. That topic is addressed in Chapter 8. Also, there are several iterative methods for com-
puting latitude and longitude from measurements of slant-range and/or azimuth on an ellipsoidal 
earth (e.g., Refs. 12 and 36). Those calculations can be initialized using solutions found using the 
approaches described in this chapter. 

6.1.2 Geometric Concerns (Solution Existence/Uniqueness) 

The geometric relationship of two sensors and an aircraft is an important aspect of these analyses. 
Situations where the aircraft is directly above a ground station are excluded for several reasons: 
ground station antenna patterns are generally not designed to irradiate directly above the station; 
and the azimuth angle to an aircraft is undefined when an aircraft is above an azimuth determin-
ation station. Moreover, when an aircraft is directly above a ground station, that situation intrin-
sically constitutes a fix. 

Restricting attention to the surface of the earth, when two measurements are available, several 
unfavorable geometries can occur. Figure 26 depicts examples involving aircraft A and stations 
U and S. Panel (a): Due to measurement errors, it is possible that the measurements are incon-
sistent and a solution does not exist. Panel (b): When the SOPs for two sensors overlap, only a 
partial position solution exists. Panel (c): When the two SOPs are tangent, measurement errors 
can cause the computed position error to increase significantly along the direction of the two 
LOPs. Panel (d): Multiple solutions occur when the LOPs intersect at more than one point.  



DOT Volpe Center   

 6-3 

 
(a) LOPs Do Not Intersect (No Solution) 

 
(b) LOPs Overlap (Infinity of Solution) 

 
(c) LOPs Tangent (Double Solution) 

 
(d) LOPS Intersect Twice (Two Solutions) 

Figure 26  Possible Geometric Relationships involving an Aircraft and Two Ground Stations 

6.1.3 Resolution of Multiple Solutions 

Of the complications considered in Subsection 6.1.2, the one with the greatest need for the navi-
gator’s or analyst’s involvement is the existence of a few (usually two) potential solutions. 
Multiple solutions arise in two ways: 
 Ambiguous — Two or more aircraft locations can result in the same set of 

measurements, as in Figure 26(d); the correct solution cannot be determined without 
additional (sometimes called ‘side’) informaton.  

 Extraneous — Additional solutions are introduced by analytic manipulations, but do 
not satisfy the measurement equations, and thus can be eliminated mathematically. 
These occur most often with pseudo range measurements — see Chapter 7. 

While unresolvable mathematically, ambiguous solutions can often be resolved operationally. 
There are three general sources of information to do so:  

(1) Prior position information — Often, based on dead reckoning from either the 
departure location or a previous fix, a vehicle’s crew will be able to determine which 
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of two (or a few) position solutions are corect. 
(2) Direction of vehicle motion — Usually, the track of a vehicle following a constant 

heading will correlate well with one ambiguous solution while it does not correlate 
with others. Examples are specific to the types of the sensors involved, and individual 
sections of this document address these situations. 

(3) Additional ‘position’ sensors — There may be information available from other 
‘position’ sensors, even approximate, which can be used to resolve solution 
ambiguities. Crude azimuth sensors (e.g., on-board radio direction-finding 
equipment) can be valuable in this regard. 

6.1.4 Rationale for Two-Station Area Navigation (RNAV) 

None of the geometric issues illustrated in Figure 26 arises when the slant-range and azimuth 
sensors are collocated. Since radars and combined VOR/DME stations are prevalent in the NAS, 
the question naturally arises: Why not only use a single radar or VOR/DME station to determine 
a vehicle’s latitude and longitude? There are several reasons to utilize navigation fixes from 
geographically separate stations:  
 Accuracy: When an aircraft is more than a few of miles from a radar or VOR/DME 

station, the range measurement is more accurate than the azimuth measurement. 
Moreover, the difference increases with distance from the station. Thus, for accuracy, 
utilizing two stations is generally preferable 

 Contingency/backup: When one of the functions of a VOR/DME station is out of service, 
utilizing a second station may allow a flight to continue when otherwise it could not. 
More broadly, RNAV using VOR/DME stations is likely to become the backup to GPS 
for en route and terminal area navigation. 

 Advanced avionics: Aircraft with advanced navigation systems (navigation radios and 
flight computers) are capable of utilizing measurements from multiple stations, whereas 
older and/or less sophisticated avionics cannot. 

Standards for aircraft RNAV systems based on DME/DME measurements, but permitting VOR 
measurements, are presented in Ref. 37. Items (1) and (2) pertain to SSR surveillance as well. 
The FAA is now incorporating ‘sensor fusion’ into its Automation (surveillance processing) 
systems to take advantage of these benefits. 

6.1.5 Chapter Overview 

Following this introductory section, Section 6.2 analyzes the problem of a great circle and a 
point that is not necessarily on the great circle. The next three sections address situations 
involving two stations providing slant-range and/or azimuth measurements which are used (with 
aircraft altimeter information) to determine the aircraft location: Section 6.3, azimuth/ azimuth; 
Section 6.4, range/range; and Section 6.5, range/azimuth. Lastly, Section 6.6 addresses using a 
range measurement to crosscheck the altitude of an aircraft flying an approach procedure. 
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The solutions in Sections 6.3 - 6.5 follow a common pattern: (a) When a slant-range measure-
ment 𝑑𝑑 is involved, Eq 44 is used to obtain the corresponding geocentric angle 𝜃𝜃. This reduces 
the problem to one of spherical trigonometry. (b) The parameters for the baseline joining the 
sensor stations are found as solutions to the Indirect problem of geodesy (Section 4.2). (c) The 
possibility that the problem is ill-posed is investigated (e.g., Figure 26(a)). (d) The case (Sub-
section 4.1.7) of the mathematical spherical triangle comprised of the two stations and the 
aircraft is identified, and the corresponding solution is found. (d) Parameters for the mathe-
matical triangle are used to determine the aircraft latitude/longitude coordinates. 

6.2 Relationship between a Point and a Great Circle Path 

6.2.1 Problem Statement 

Often there is a need to find the relationship between a 
discrete point on the earth’s surface and a great circle 
path. A possible scenario is shown in Figure 27: A vessel 
V intends to transit a great circle path from location U 
[coordinates (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈)] to location S [coordinates 
(𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆)], beginning with departure azimuth 𝜓𝜓𝑆𝑆/𝑈𝑈. While 
in en route, the navigator determines that the actual vessel 
location is V (𝐿𝐿𝑉𝑉, 𝜆𝜆𝑉𝑉), which may not be on the intended 
path. The navigator wants to find relevant quantities such 
as how far off-course the vessel is in both distance and 
azimuth angle.  

For such a scenario, the coordinates of U, V and S are all 
known. Thus, for triangle UVS, the side lengths and side 
azimuth angles can all be found as solutions to the Indirect problem of geodesy (Section 4.2). 
Given those calculations, in terms of the classic ‘solving a triangle’ taxonomy, this is an SSS 
(side-side-side) situation. However, it does not have infeasible formulations or ambiguous 
solutions, as occur in Section 6.4 for a ‘pure’ SSS situation. 

In addition to the sides of UVS, the quantities of interest can include the coordinates of the 
nearest point X (𝐿𝐿𝑋𝑋 , 𝜆𝜆𝑋𝑋) on the intended path, the distance 𝜃𝜃𝑉𝑉𝑉𝑉 from the vessel to the nearest 
point on the intended path, the projection of the distance traveled onto the intended path 𝜃𝜃𝑈𝑈𝑈𝑈 and 
the off-path angle 𝛽𝛽.  

6.2.2 Problem Solution 

Solution to this problem is a five-step process. The first step is to apply the Indirect problem of 

 
Figure 27  Vessel V and Intended 

Great Circle Path US 
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geodesy (Section 4.2) to the great circle path UV, finding the azimuth angle 𝜓𝜓𝑉𝑉/𝑈𝑈 and the 
distance 𝜃𝜃𝑈𝑈𝑈𝑈. The fact that the vessel’s actual track over the earth may not have been the great 
circle path UV is not relevant – only the end points are. 

Because (a) the great circle through U and S encircles the earth and the vehicle may have 
traveled ‘in the wrong direction’, and (b) azimuth (bearing) angles can vary over (–π, π], the 
angle 𝛽𝛽 between US and UV is computed in the range [0, π] using 

𝛽𝛽 = min � �𝜓𝜓𝑆𝑆/𝑈𝑈 −𝜓𝜓𝑉𝑉/𝑈𝑈�,  �𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝑉𝑉/𝑈𝑈 + 2𝜋𝜋�,  �𝜓𝜓𝑆𝑆/𝑈𝑈 −𝜓𝜓𝑉𝑉/𝑈𝑈 − 2𝜋𝜋� � Eq 194 

When 𝛽𝛽 = 0, the vessel is on the intended path. 

The third step addresses the mathematical spherical triangle UVX, where the angle at X is a 
right-angle. The law of sines (Eq 73) yields the off-course distance 𝜃𝜃𝑉𝑉𝑉𝑉 in the range [0, π/2] 

𝜃𝜃𝑉𝑉𝑉𝑉 = Arcsin[sin(𝜃𝜃𝑈𝑈𝑈𝑈)  sin(𝛽𝛽)] Eq 195 

While Eq 195 has two mathematical solutions, the smaller of the two positive angles will be 
correct in all but the most extreme circumstances.  

Again considering triangle UVX, the projection of the distance traveled onto the intended path 
𝜃𝜃𝑈𝑈𝑈𝑈 is found from the law of cosines for sides (Eq 71) and Eq 15 

𝜃𝜃𝑈𝑈𝑈𝑈 = arccos �
cos(𝜃𝜃𝑈𝑈𝑈𝑈)
cos(𝜃𝜃𝑉𝑉𝑉𝑉)

� = 2 arcsin��
sin�12(𝜃𝜃𝑈𝑈𝑈𝑈 + 𝜃𝜃𝑉𝑉𝑉𝑉)� sin�12(𝜃𝜃𝑈𝑈𝑈𝑈 − 𝜃𝜃𝑉𝑉𝑉𝑉)�

cos (𝜃𝜃𝑉𝑉𝑉𝑉)
� Eq 196 

Finally, the coordinates (𝐿𝐿𝑋𝑋 , 𝜆𝜆𝑋𝑋) are found as a solution to the Direct problem of geodesy 
(Section 4.3) based on knowledge of (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈), 𝜃𝜃𝑈𝑈𝑈𝑈 and 𝜓𝜓𝑆𝑆/𝑈𝑈. 

6.3 Solution for Two Azimuth Measurements 

In this section, the assumption is that the latitude/longitude coordinates of stations U (𝐿𝐿𝑈𝑈 , 𝜆𝜆𝑈𝑈) and 
S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) are known, as are their azimuth (or bearing) angles, 𝜓𝜓𝐴𝐴/𝑈𝑈 and 𝜓𝜓𝐴𝐴/𝑆𝑆, to a third (aircraft) 
location A. The solution for the coordinates of A and related parameters follows the pattern 
described in Subsection 6.1.5. The approach is based on the mathematical spherical triangle 
USA. In terms of the classic ‘solving a triangle’ taxonomy, this is an ASA (angle-side-angle) 
situation. 

6.3.1 Step 1:  Find the Parameters of the Path Connecting the Stations 

This step is a straightforward application of the Indirect problem of geodesy. Section 4.2 is used 
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to find the following parameters of the great circle arc between the stations at U and S: 

 Parameters related to the geocentric angle 𝜃𝜃𝑈𝑈𝑈𝑈 — specifically its cosine (from Eq 78) and 
sine (from Eq 88) functions  

 The azimuth angles 𝜓𝜓𝑆𝑆/𝑈𝑈 and 𝜓𝜓𝑈𝑈/𝑆𝑆 (from Eq 86 and Eq 87, respectively). 

6.3.2 Step 2:  Determine If the Problem Is Well-Posed 

The problem must be physically and mathematically well posed. In terms of a spherical earth, the 
two radials define two great circles which intersect at two antipodal points. The interior angles of 
triangle USA at U and S, both in the interval (0, π), are given by the following equations.  

𝛽𝛽𝑈𝑈 = min � �𝜓𝜓𝑆𝑆/𝑈𝑈 −𝜓𝜓𝐴𝐴/𝑈𝑈�,  �𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝜓𝜓𝐴𝐴/𝑈𝑈 + 2𝜋𝜋�,  �𝜓𝜓𝑆𝑆/𝑈𝑈 −𝜓𝜓𝐴𝐴/𝑈𝑈 − 2𝜋𝜋� � 
𝛽𝛽𝑆𝑆 = min � �𝜓𝜓𝑈𝑈/𝑆𝑆 −𝜓𝜓𝐴𝐴/𝑆𝑆�,  �𝜓𝜓𝑈𝑈/𝑆𝑆 − 𝜓𝜓𝐴𝐴/𝑆𝑆 + 2𝜋𝜋�,  �𝜓𝜓𝑈𝑈/𝑆𝑆 −𝜓𝜓𝐴𝐴/𝑆𝑆 − 2𝜋𝜋� � 

Eq 197 

For the two radials to intersect, both of the following must be true: 
 Solution Existence: The radials must point to the same side of the station baseline 

US. The analyst must determine which one of the following conditions is true, or 
there is no solution:  

𝜓𝜓𝐴𝐴/𝑈𝑈 = 𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝛽𝛽𝑈𝑈 𝜓𝜓𝐴𝐴/𝑆𝑆 = 𝜓𝜓𝑈𝑈/𝑆𝑆 − 𝛽𝛽𝑆𝑆 When A south of US baseline* 
𝜓𝜓𝐴𝐴/𝑈𝑈 = 𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝛽𝛽𝑈𝑈 𝜓𝜓𝐴𝐴/𝑆𝑆 = 𝜓𝜓𝑈𝑈/𝑆𝑆 + 𝛽𝛽𝑆𝑆 When A north of US baseline* 
*Assuming U is west of S 

 Solution Existence: It must be the case that 0 < 𝛽𝛽𝑈𝑈 + 𝛽𝛽𝑆𝑆 <  𝜋𝜋. Otherwise, the two 
intersections will either be equidistant (both at a geocentric angle of π/2 from the 
midpoint of the station baseline) or the closer intersection will be on the opposite side 
of the station baseline of that intended.  

A cannot be found uniquely if it is on the station baseline US or its extensions, as the radials 
then do not have a unique intersection. If both 𝛽𝛽𝑈𝑈 = 0 and 𝛽𝛽𝑆𝑆 = 0, then A is on the baseline 
between the stations; if 𝛽𝛽𝑈𝑈 = 0 and 𝛽𝛽𝑆𝑆 = 𝜋𝜋 then A is on the baseline extension closer to S; if 
𝛽𝛽𝑈𝑈 = 𝜋𝜋 and  𝛽𝛽𝑆𝑆 = 0, then A is on the baseline extension closer to U.  

6.3.3 Step 3:  Find the Aircraft Location Coordinates 

The unknown geocentric angles 𝜃𝜃𝑈𝑈𝑈𝑈 and 𝜃𝜃𝑆𝑆𝑆𝑆 can be found from the four-part cotangent formula 
(Eq 75) 

cot(𝜃𝜃𝑈𝑈𝑈𝑈) =
cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝛽𝛽𝑈𝑈) + sin(𝛽𝛽𝑈𝑈) cot(𝛽𝛽𝑆𝑆)

 sin(𝜃𝜃𝑈𝑈𝑈𝑈)
 

cot(𝜃𝜃𝑆𝑆𝑆𝑆) =
cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝛽𝛽𝑆𝑆) + sin(𝛽𝛽𝑆𝑆) cot(𝛽𝛽𝑈𝑈)

 sin(𝜃𝜃𝑈𝑈𝑈𝑈)
 

Eq 198 

In computing 𝜃𝜃𝑈𝑈𝑈𝑈 and 𝜃𝜃𝑆𝑆𝑆𝑆 from Eq 198 using the arc cotangent function, the angles can be 
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unambiguously found in (0, π). Only one of the two angles is needed to find 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴. The 
distances to the stations 𝜃𝜃𝑈𝑈𝑈𝑈 and 𝜃𝜃𝑆𝑆𝑆𝑆 can provide information about the strength and visibility of 
the stations’ signals at the aircraft, as well as the distance-to-fly in some situations. 

With 𝜃𝜃𝑈𝑈𝑈𝑈 or 𝜃𝜃𝑆𝑆𝑆𝑆 known, the latitude/longitude of A can be found from either the spherical 
triangle PUA or from triangle PSA. This is an application of the Direct problem of geodesy 
(Section 4.3). The latitude can be found from either of these equations 

sin(𝐿𝐿𝐴𝐴) = sin(𝐿𝐿𝑈𝑈) cos(𝜃𝜃𝑈𝑈𝑈𝑈) + cos(𝐿𝐿𝑈𝑈) sin(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜓𝜓𝐴𝐴/𝑈𝑈) 
sin(𝐿𝐿𝐴𝐴) = sin(𝐿𝐿𝑆𝑆) cos(𝜃𝜃𝑆𝑆𝑆𝑆) + cos(𝐿𝐿𝑆𝑆) sin(𝜃𝜃𝑆𝑆𝑆𝑆) cos(𝜓𝜓𝐴𝐴/𝑆𝑆) 

Eq 199 

And the longitude can be found from either of these equations 

tan(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑈𝑈) =
sin(𝜓𝜓𝐴𝐴/𝑈𝑈) sin(𝜃𝜃𝑈𝑈𝑈𝑈)

cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃𝑈𝑈𝑈𝑈) − sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜓𝜓𝐴𝐴/𝑈𝑈)
 

tan(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆) =
sin(𝜓𝜓𝐴𝐴/𝑆𝑆) sin(𝜃𝜃𝑆𝑆𝑆𝑆)

cos(𝐿𝐿𝑆𝑆) cos(𝜃𝜃𝑆𝑆𝑆𝑆) − sin(𝐿𝐿𝑆𝑆) sin(𝜃𝜃𝑆𝑆𝑆𝑆) cos(𝜓𝜓𝐴𝐴/𝑆𝑆)
 

Eq 200 

By employing the two-argument arc tangent function, Eq 200 will yield values of 𝜆𝜆𝐴𝐴– 𝜆𝜆𝑈𝑈 and 
𝜆𝜆𝐴𝐴– 𝜆𝜆𝑆𝑆 in the range [-π, π]. 

6.3.4 Extensions, Alternatives and Remarks 

Analysis Extensions — Additional quantities can be computed which are of interest in some 
applications. The angle of intersection of the two radials at A is given by the law of cosines for 
angles (Eq 72) 

cos(𝛽𝛽𝐴𝐴) = − cos(𝛽𝛽𝑈𝑈) cos(𝛽𝛽𝑆𝑆) + sin(𝛽𝛽𝑈𝑈) sin(𝛽𝛽𝑆𝑆) cos(𝜃𝜃𝑈𝑈𝑈𝑈) Eq 201 

When using the arc cosine function in Eq 201, 𝛽𝛽𝐴𝐴 from can be unambiguously found in [0, π]. 
The crossing angle of the radials 𝛽𝛽𝐴𝐴 provides information about the accuracy of the solutions for 
𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴. Some sources suggest that a fix should only be used when 30° ≤ 𝛽𝛽𝐴𝐴 ≤ 150°. This 
would exclude locations near the baseline and its extensions and at large distances from both 
stations. 

Also, it may be of interest to know the azimuths of the paths to U and S from A.  

tan�𝜓𝜓𝑈𝑈/𝐴𝐴� =
−sin(𝜓𝜓𝐴𝐴/𝑈𝑈) cos(𝐿𝐿𝑈𝑈)

sin(𝐿𝐿𝑈𝑈) sin(𝜃𝜃𝑈𝑈𝑈𝑈) − cos(𝐿𝐿𝑈𝑈) cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos�𝜓𝜓𝐴𝐴/𝑈𝑈�
 

tan�𝜓𝜓𝑆𝑆/𝐴𝐴� =
−sin(𝜓𝜓𝐴𝐴/𝑆𝑆) cos(𝐿𝐿𝑆𝑆)

sin(𝐿𝐿𝑆𝑆) sin(𝜃𝜃𝑆𝑆𝑆𝑆) − cos(𝐿𝐿𝑆𝑆) cos(𝜃𝜃𝑆𝑆𝑆𝑆) cos�𝜓𝜓𝐴𝐴/𝑆𝑆�
 

Eq 202 

By employing the two-argument arc tangent function, Eq 202 will yield values of 𝜓𝜓𝑈𝑈/𝐴𝐴 and 𝜓𝜓𝑆𝑆/𝐴𝐴 
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in the range [-π, π]. The azimuth angles 𝜓𝜓𝑈𝑈/𝐴𝐴 and 𝜓𝜓𝑆𝑆/𝐴𝐴 may be useful for steering and/or cross-
checking the aircraft’s direction finding equipment. 

Analysis Alternatives — Other equations can be used in lieu of Eq 198. One option is to use 
Napier’s Analogies (Eq 76). A disadvantage is that both 𝜃𝜃𝑈𝑈𝑈𝑈 and 𝜃𝜃𝑆𝑆𝑆𝑆 must be found.  

tan �12(𝜃𝜃𝑆𝑆𝑆𝑆 + 𝜃𝜃𝑈𝑈𝑈𝑈)� =
cos�12(𝛽𝛽𝑈𝑈 − 𝛽𝛽𝑆𝑆)�
cos�12(𝛽𝛽𝑈𝑈 + 𝛽𝛽𝑆𝑆)�

 tan �12𝜃𝜃𝑈𝑈𝑈𝑈� 

tan �12(𝜃𝜃𝑆𝑆𝑆𝑆 − 𝜃𝜃𝑈𝑈𝑈𝑈)� =
sin�12(𝛽𝛽𝑈𝑈 − 𝛽𝛽𝑆𝑆)�
sin�12(𝛽𝛽𝑈𝑈 + 𝛽𝛽𝑆𝑆)�

 tan �12𝜃𝜃𝑈𝑈𝑈𝑈� 

Eq 203 

Another option is to use (a) Eq 201 to find 𝛽𝛽𝐴𝐴, then (b) Eq 72 and Eq 73 respectively to find the 
cosine and sine of 𝜃𝜃𝑈𝑈𝑈𝑈 and/or 𝜃𝜃𝑆𝑆𝑆𝑆. The latter are the quantities needed in Eq 199 and Eq 200. 

Remarks  
 Solving the two-bearing (e.g., VOR-VOR cross-fix) problem can be done using only 

spherical trigonometry, and does not require aircraft altitude.  
 A complete solution involves a total of 15 navigation variables (latitudes, longitudes, 

azimuth angles and geocentric angles). Of these, 6 are known at the start of the 
calculation.  

 Mathematically, the sensor cross-fix problem (e.g., VORs or radars) addressed in this 
section is identical to finding the intersection of two great circles which is addressed 
in Subsection 5.6.1. 

A problem closely-related to the subject of this section is determining an aircraft’s position from 
the coordinates of two stations U and S and measurements of the angles 𝜓𝜓𝑈𝑈/𝐴𝐴 and 𝜓𝜓𝑆𝑆/𝐴𝐴 from the 
aircraft to those stations. In aviation or marine applications, the stations would often be non-
directional beacons or commercial broadcast transmitters. The information available for this 
related problem is insufficient for the direct use of spherical trigonometry. For triangle USA, 
only the side 𝜃𝜃𝑈𝑈𝑈𝑈 and the opposite angle 𝛽𝛽𝐴𝐴 are known. A viable solution approach is described 
in Chapter 8, Subsection 8.5.8.   

6.4 Solution for Two Slant-Range Measurements 

Here, the assumption is that the latitude/longitude/altitudes of stations U (𝐿𝐿𝑈𝑈 , 𝜆𝜆𝑈𝑈,ℎ𝑈𝑈) and 
S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆,ℎ𝑆𝑆) are known, as are the slant-ranges, 𝑑𝑑𝑈𝑈𝑈𝑈 and 𝑑𝑑𝑆𝑆𝑆𝑆, to the aircraft location A, about 
which only its altitude ℎ𝐴𝐴 is known. The solution approach is based on the mathematical 
spherical triangle USA. Following a preliminary step (Subsection 6.4.1), the solution for the 
latitude and longitude of A and related parameters is a four-step process, like that in Section 6.3. 
In terms of the classic ‘solving a triangle’ taxonomy, this is an SSS (side-side-side) situation. 
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6.4.1 Step 0:  Convert Slant-Ranges to Spherical-Ranges/Geocentric Angles 

Accurate calculation of geocentric angles 𝜃𝜃𝑆𝑆𝑆𝑆 and 𝜃𝜃𝑈𝑈𝑈𝑈 takes account of the altitude/elevation of 
the aircraft and ground station above sea level. This is done using Eq 44, applied separately to 
each aircraft-station pair. Once the angles 𝜃𝜃𝑆𝑆𝑆𝑆 and 𝜃𝜃𝑈𝑈𝑈𝑈 are found, the problem reduces to one of 
pure spherical trigonometry (and can also by solved using vector analysis, as in Section 5.5). 

6.4.2 Step 1:  Solve the Navigation Spherical Triangle for the Two Stations 

This is an application of the Indirect problem of geodesy. The approach in Section 4.2 is 
employed to find the geocentric angle 𝜃𝜃𝑈𝑈𝑈𝑈 between the stations U and S (Eq 81) and the azimuth 
angles 𝜓𝜓𝑆𝑆/𝑈𝑈 and 𝜓𝜓𝑈𝑈/𝑆𝑆 (Eq 86 and Eq 87) of the path (baseline) joining the stations.  

6.4.3 Step 2:  Determine if the Problem is Well-Posed 

The problem must be mathematically well posed for a solution to exist. Ranges (geocentric 
angles) from two stations define small circles on the surface which can intersect at zero, one or 
two points. If either of the following conditions is true, then the problem is ill posed and does not 
have a valid solution. 
 If  𝜃𝜃𝑈𝑈𝑈𝑈 + 𝜃𝜃𝑆𝑆𝑆𝑆 < 𝜃𝜃𝑈𝑈𝑈𝑈, then the circle radii are too small (relative to the distance 

between their centers) to intersect. 
 If  |𝜃𝜃𝑈𝑈𝑈𝑈 − 𝜃𝜃𝑆𝑆𝑆𝑆| > 𝜃𝜃𝑈𝑈𝑈𝑈 , then one circle encloses the other and they do not intersect. 

If either  𝜃𝜃𝑈𝑈𝑈𝑈 + 𝜃𝜃𝑆𝑆𝑆𝑆 = 𝜃𝜃𝑈𝑈𝑈𝑈 or  |𝜃𝜃𝑈𝑈𝑈𝑈 − 𝜃𝜃𝑆𝑆𝑆𝑆| = 𝜃𝜃𝑈𝑈𝑈𝑈, then the circles are tangent and there is only 
one solution, which lies on the baseline connecting U and S, or its extension as a great circle. 
Otherwise, there are two solutions, located symmetrically relative to the baseline US. Additional 
information must be used to choose between the two solutions (see Subsection 6.4.6).  

There is no partial solution case for this sensor combination. However, the single-solution case 
involves high sensitivity to measurement errors for the direction orthogonal to the baseline. 

6.4.4 Step 3:  Solve the Mathematical Spherical Triangle USA 

The third step is to solve the mathematical spherical triangle (Subsection 4.1.2) USA. This 
situation falls under Case (1) in the taxonomy of Subsection 4.1.7 — all three sides are known. 
Denote the (positive) interior angles of USA by 𝛽𝛽𝑈𝑈, 𝛽𝛽𝑆𝑆 and 𝛽𝛽𝐴𝐴. They can be found by applying 
the law of cosines (Eq 71) three times: 

cos(𝛽𝛽𝑈𝑈) =
cos(𝜃𝜃𝑆𝑆𝑆𝑆) − cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜃𝜃𝑈𝑈𝑈𝑈)

sin(𝜃𝜃𝑈𝑈𝑈𝑈) sin(𝜃𝜃𝑈𝑈𝑈𝑈)
 Eq 204 
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cos(𝛽𝛽𝑆𝑆) =
cos(𝜃𝜃𝑈𝑈𝑈𝑈) − cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜃𝜃𝑆𝑆𝑆𝑆)

sin(𝜃𝜃𝑈𝑈𝑈𝑈) sin(𝜃𝜃𝑆𝑆𝑆𝑆)
 

cos(𝛽𝛽𝐴𝐴) =
cos(𝜃𝜃𝑈𝑈𝑈𝑈) − cos(𝜃𝜃𝑈𝑈𝑈𝑈) cos(𝜃𝜃𝑆𝑆𝑆𝑆)

sin(𝜃𝜃𝑈𝑈𝑈𝑈) sin(𝜃𝜃𝑆𝑆𝑆𝑆)
 

In computing 𝛽𝛽𝑈𝑈, 𝛽𝛽𝑆𝑆 and 𝛽𝛽𝐴𝐴 from Eq 204, by using the arc cosine function, the angles can be 
unambiguously found in (0, π). Also, 𝛽𝛽𝑈𝑈, 𝛽𝛽𝑆𝑆 and 𝛽𝛽𝐴𝐴 are found without chaining from one 
solution to another.  

6.4.5 Step 4:  Find the Coordinates/Path Azimuths for Aircraft A 

With 𝛽𝛽𝑈𝑈 and 𝛽𝛽𝑆𝑆 known, azimuth angles 𝜓𝜓𝐴𝐴/𝑈𝑈 and 𝜓𝜓𝐴𝐴/𝑆𝑆 can be determined to within an 
ambiguity. The ambiguity arises because it is not known whether to add or subtract 𝛽𝛽𝑈𝑈 from 
𝜓𝜓𝑆𝑆/𝑈𝑈 (or 𝛽𝛽𝑆𝑆 from 𝜓𝜓𝑈𝑈/𝑆𝑆, respectively) to form 𝜓𝜓𝐴𝐴/𝑈𝑈 (or 𝜓𝜓𝐴𝐴/𝑆𝑆). One and only one of the following 
alternatives is correct:  

𝜓𝜓𝐴𝐴/𝑈𝑈 = 𝜓𝜓𝑆𝑆/𝑈𝑈 + 𝛽𝛽𝑈𝑈 𝜓𝜓𝐴𝐴/𝑆𝑆 = 𝜓𝜓𝑈𝑈/𝑆𝑆 − 𝛽𝛽𝑆𝑆 When A south of US baseline* 
𝜓𝜓𝐴𝐴/𝑈𝑈 = 𝜓𝜓𝑆𝑆/𝑈𝑈 − 𝛽𝛽𝑈𝑈 𝜓𝜓𝐴𝐴/𝑆𝑆 = 𝜓𝜓𝑈𝑈/𝑆𝑆 + 𝛽𝛽𝑆𝑆 When A north of US baseline* 
*Assuming U is west of S 

The ambiguity may be resolvable from the azimuth angles 𝜓𝜓𝐴𝐴/𝑈𝑈 and 𝜓𝜓𝐴𝐴/𝑆𝑆 (because the navigator 
often knows, approximately, 𝜓𝜓𝑈𝑈/𝐴𝐴 and/or 𝜓𝜓𝑆𝑆/𝐴𝐴). Alternatively, two solutions can be found for 
the coordinates of A and the azimuths of the paths from A, and the ambiguity resolved 
subsequently. In either case, the calculations set forth in Subsection 6.3.3 are performed last — 
specifically, Eq 199 for the aircraft’ latitude 𝐿𝐿𝐴𝐴, Eq 200 for the aircraft’s longitude 𝜆𝜆𝐴𝐴, and Eq 
202 for the azimuth angles 𝜓𝜓𝑈𝑈/𝐴𝐴 and 𝜓𝜓𝑆𝑆/𝐴𝐴 of the stations relative to the aircraft.  

6.4.6 Remarks 

This section could also be entitled ‘Position Solution for Two Spherical-Range (or Geocentric 
Angle) Measurements’, since the first step in the solution is to convert the convert the slant-
ranges to geocentric angles. After the stations and aircraft altitudes have been removed, the 
aircraft latitude and longitude can also be found using vectors and matrices (see Section 5.5). 

Concerning resolution of the two-solution ambiguity: 
 Resolving the ambiguity only requires knowing which side of the station baseline 

(including its extensions) the vehicle is on. Often, based on dead reckoning from 
either the departure location or a previous fix, the vehicle’s crew will be able to make 
such a determination. 

 Motion of a vehicle along a line of azimuth (heading) may be used to resolve the 
ambiguity. Because the ambiguous solutions are symmetric about the baseline, the 
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motion of the correct solution will correlate with heading while motion of the 
incorrect solution will not. 

 If either station provides azimuth (in addition to range) information, or navigation 
information from a third station is available, that may be used to resolve the 
ambiguity.  

To elaborate and provide context: 
 The angle from the aircraft to the stations, 𝛽𝛽𝐴𝐴, provides information about the 

accuracy of the solutions for 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴. Some have recommended that the fix only be 
accepted when 30° ≤ 𝛽𝛽𝐴𝐴 ≤ 150°. This would exclude locations near the baseline 
between stations (including its extensions) and at large distances from both stations. 

 The solution presented above involves a total of 21 navigation variables (latitudes, 
longitudes, altitudes, azimuth angles, geocentric angles and slant-ranges). Of these, 9 
are known at the start of the calculation.  

 The solution involves calculating parameters that may not be needed in all situations. 

6.5 Solution for a Slant-Range and an Azimuth Measurement 

Here, the a priori known quantities are: the coordinates of DME station D (𝐿𝐿𝐷𝐷 , 𝜆𝜆𝐷𝐷 ,ℎ𝐷𝐷) and VOR 
station V (𝐿𝐿𝑉𝑉, 𝜆𝜆𝑉𝑉). The measured quantities are: the slant-range 𝑑𝑑𝐷𝐷𝐷𝐷 between the aircraft A and 
station D; the azimuth angle 𝜓𝜓𝐴𝐴/𝑉𝑉 of A from V; and the aircraft altitude ℎ𝐴𝐴. The quantities sought 
are the coordinates of A  (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) and the parameters for paths AD and AV. The solution 
approach is based on the mathematical spherical triangle DVA.  In terms of the classic ‘solving a 
triangle’ taxonomy, this is an SSA (side-side-angle) situation. 

6.5.1 Step 0:  Convert Slant-Range to a Geocentric Angle 

Convert the slant-range 𝑑𝑑𝐷𝐷𝐷𝐷 to the geocentric angle 𝜃𝜃𝐷𝐷𝐷𝐷 using Eq 44, in the same manner as 
discussed in Subsection 6.4.1. 

6.5.2 Step 1:  Solve the Navigation Spherical Triangle PDV 

Apply the Indirect problem of geodesy (Section 4.2) to find the geocentric angle 𝜃𝜃𝐷𝐷𝐷𝐷 between 
stations D and V (Eq 81) and the azimuth angles 𝜓𝜓𝐷𝐷/𝑉𝑉 and 𝜓𝜓𝑉𝑉/𝐷𝐷 (Eq 86 and Eq 87) for the 
baseline joining the stations.  

6.5.3 Step 2:  Determine if the Problem is Well-Posed 

In determining if the problem is well-posed, the first consideration is the magnitude of the 
measured geocentric angle between the aircraft A and station D, 𝜃𝜃𝐷𝐷𝐷𝐷, relative to the known 
geocentric angle between the stations D and V, 𝜃𝜃𝐷𝐷𝐷𝐷. There are three cases: 
 Interior: If 𝜃𝜃𝐷𝐷𝐷𝐷 < 𝜃𝜃𝐷𝐷𝐷𝐷, then V is within the perimeter of the circle of possible aircraft 

locations centered on D; there is one and only one intersection/solution  
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 Perimeter: If 𝜃𝜃𝐷𝐷𝐷𝐷 = 𝜃𝜃𝐷𝐷𝐷𝐷, then V is on the perimeter of the circle centered on D; there can 
be zero or one solution 

 Exterior: If 𝜃𝜃𝐷𝐷𝐷𝐷 < 𝜃𝜃𝐷𝐷𝐷𝐷, then V is outside the perimeter of the circle centered on D; there 
can be zero, one or two solutions. 

To further explore the scenario geometry, define the angle at V, 𝛽𝛽𝑉𝑉, between the great circle arcs 
to the aircraft A and the DME station D, in the range 0 ≤ 𝛽𝛽𝑉𝑉 ≤ π, by 

𝛽𝛽𝑉𝑉 = min � �𝜓𝜓𝐴𝐴/𝑉𝑉 −𝜓𝜓𝐷𝐷/𝑉𝑉�,  �𝜓𝜓𝐴𝐴/𝑉𝑉 − 𝜓𝜓𝐷𝐷/𝑉𝑉 + 2𝜋𝜋�,  �𝜓𝜓𝐴𝐴/𝑉𝑉 −𝜓𝜓𝐷𝐷/𝑉𝑉 − 2𝜋𝜋� � Eq 205 

For the Perimeter case (𝜃𝜃𝐷𝐷𝐷𝐷 = 𝜃𝜃𝐷𝐷𝐷𝐷), there is a valid solution only if 0 ≤ 𝛽𝛽𝑉𝑉 ≤
1
2
𝜋𝜋. Otherwise, 

the problem is ill-posed and no solution exists.  

For the Exterior case (𝜃𝜃𝐷𝐷𝐷𝐷 < 𝜃𝜃𝐷𝐷𝐷𝐷), define the critical value for 𝛽𝛽𝑉𝑉, 0 ≤ 𝛽𝛽𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1
2
𝜋𝜋, by 

𝛽𝛽𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = arcsin �
sin (𝜃𝜃𝐷𝐷𝐷𝐷)
sin (𝜃𝜃𝐷𝐷𝐷𝐷)

� Eq 206 

Eq 206 is the law of sines applied to triangle DVA when 𝛽𝛽𝐴𝐴 is a right angle. Three situations can 
occur: (a) when 𝛽𝛽𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝛽𝛽𝑉𝑉, the problem is ill-posed and there is no solution; (b) when 𝛽𝛽𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝛽𝛽𝑉𝑉, there is a single solution; and (c) when 𝛽𝛽𝑉𝑉 < 𝛽𝛽𝑉𝑉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 there are two possible solutions.  

There is no partial solution case for this sensor combination. However, the single-solution case 
involves high sensitivity to measurement errors for the direction along the radial from V. 

6.5.4 Step 3:  Solve the Mathematical Spherical Triangle DVA 

When at least one solution exists, the third step is to solve the mathematical spherical triangle 
(Subsection 4.1.2) DVA. This problem falls under Case (3) in the taxonomy of Subsection 4.1.7 
— two sides, 𝜃𝜃𝐷𝐷𝐷𝐷 and 𝜃𝜃𝐷𝐷𝐷𝐷, and an adjacent (not included) angle 𝛽𝛽𝑉𝑉 are known.  

First, the interior angle at A, 𝛽𝛽𝐴𝐴, is found using the law of sines 

𝛽𝛽𝐴𝐴 = arcsin �
sin (𝛽𝛽𝑉𝑉)sin (𝜃𝜃𝐷𝐷𝐷𝐷)

sin (𝜃𝜃𝐷𝐷𝐷𝐷)
� Eq 207 

Consistent with Subsection 6.5.3, for a well-posed problem the quantity within the large 
parentheses in Eq 207 will have a value in [0, 1]. Thus two angles will be found in [0, π] except 
when the right-hand side is unity, in which situation 𝛽𝛽𝐴𝐴 = π/2 and 𝛽𝛽𝑉𝑉 = βV,crit. For the Interior 
case, the value for 𝛽𝛽𝐴𝐴 in [0, π/2) is correct, and the value in (π/2, π] is extraneous (a mathematical 
artifact which is discarded). For the Exterior case, either value for 𝛽𝛽𝐴𝐴 may be correct (the 
situation is ambiguous); these values are labeled 𝛽𝛽𝐴𝐴,1 and 𝛽𝛽𝐴𝐴,2, and both are retained. The value 
of 𝛽𝛽𝐴𝐴 is indicative of the solution accuracy (Subsection 6.5.6). 
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The angles 𝛽𝛽𝐷𝐷,1 and 𝛽𝛽𝐷𝐷,2 corresponding to angles 𝛽𝛽𝐴𝐴,1 and 𝛽𝛽𝐴𝐴,2 are found using either of the 
following expressions from Napier’s Analogies (Eq 76)  
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The discussion in Subsection 4.1.6 concerning sums and differences of sides and angles having 
the ‘same affection’ is relevant here. As a consequence, both expressions on the right-hand side 
of Eq 208 are positive. Thus, in computing 𝛽𝛽𝐷𝐷,𝑖𝑖 (i = 1, 2) from either line using the arc tangent 
function, each solution can be unambiguously found in (0, π). The second line is preferred, as it 
cannot be indeterminate. There is a small possibility that first line can, by the two sums of angles 
equaling π/2, resulting in the trigonometric functions of the sums both equaling zero. 

The distance 𝜃𝜃𝑉𝑉𝑉𝑉,𝑖𝑖 can be found from either of the following expressions. As is the case for Eq 
208, both expressions on the right-hand side of Eq 209 are positive. Thus, in computing 𝜃𝜃𝑉𝑉𝑉𝑉,𝑖𝑖 
(i = 1, 2) from either line using the arc tangent function, each solution can be unambiguously 
found in (0, π). The first line is usually preferred, as it cannot be indeterminate. There is a 
possibility that second line can, by the two differences equaling 0, resulting in the trigonometric 
functions equaling zero. 
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6.5.5 Step 4:  Find the Coordinates/Path Azimuths for X 

One and only one of the following conditions is true:  

 𝜓𝜓𝐴𝐴/𝐷𝐷 = 𝜓𝜓𝑉𝑉/𝐷𝐷 + 𝛽𝛽𝐷𝐷 and 𝜓𝜓𝐴𝐴/𝑉𝑉 = 𝜓𝜓𝐷𝐷/𝑉𝑉 − 𝛽𝛽𝑉𝑉  
 𝜓𝜓𝐴𝐴/𝐷𝐷 = 𝜓𝜓𝑉𝑉/𝐷𝐷 − 𝛽𝛽𝐷𝐷 and 𝜓𝜓𝐴𝐴/𝑉𝑉 = 𝜓𝜓𝐷𝐷/𝑉𝑉 + 𝛽𝛽𝑉𝑉.  

Since both 𝜓𝜓𝐴𝐴/𝑉𝑉 and 𝜓𝜓𝐷𝐷/𝑉𝑉 are now known, the correct line can be selected, yielding 𝜓𝜓𝐴𝐴/𝐷𝐷. Then 
the calculations set forth in Subsection 6.3.3 involving spherical triangles PDA and PVA can be 
performed — specifically, Eq 199 for the aircraft’ latitude 𝐿𝐿𝐴𝐴, Eq 200 for the aircraft’s longitude 
𝜆𝜆𝐴𝐴, and Eq 202 for the azimuth angles 𝜓𝜓𝐷𝐷/𝐴𝐴 and 𝜓𝜓𝑉𝑉/𝐴𝐴 of the stations relative to the aircraft.  
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6.5.6 Remarks 

Concerning resolution of the two-solution ambiguity: 
 The ambiguity can often be resolved from knowledge of the station locations and the 

approximate route from the departure point. Using dead reckoning, the vehicle 
operator may know the approximate distance to the VOR station.  

 If the DME station provides azimuth (in addition to range) information, that may be 
used to resolve the ambiguity.  

To elaborate and provide context: 
 The angle from the aircraft to the stations, 𝛽𝛽𝐴𝐴, provides information about the 

accuracy of the solutions for 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴. Some have recommended that the fix only be 
accepted when 0° ≤ 𝛽𝛽𝐴𝐴 ≤ 60° or 120° ≤ 𝛽𝛽𝐴𝐴 ≤ 180°. This would exclude locations 
where the lines-of-sight to the stations are close to being orthogonal. 

 The solution presented above involves a total of 18 navigation variables (latitudes, 
longitudes, altitudes, azimuth angles, geocentric angles and slant-ranges). Of these, 8 
are known at the start of the calculation.  

 The solution involves calculating parameters that may not be needed in all situations. 
 The aircraft-DME station geocentric angle can be approximated — e.g., by 𝑑𝑑𝐷𝐷𝐷𝐷 / 𝑅𝑅𝑒𝑒 

— but Eq 44 provides a more accurate solution. 
 The solution method described in this section uses Napier’s Analogies. An alternative 

solution method can be based on the equations in Section 6.2.  

6.6 Check of Continuous Descent Approach Altitude 

6.6.1 Application Context 

FAA Advisory Circular AC 120-108 (Ref. 38) recommends and provides guidance for 
employing the Continuous Descent Final Approach (CDFA) technique, as an alternative to the 
traditional step down technique, for conducting a Non-Precision Approach (NPA) procedure:*  
 “The goal of implementing CDFA is to incorporate the safety benefits derived from 

flying a continuous descent in a stabilized manner as a standard practice on an NPA. 
 “CDFA starts from an altitude/height at or above the Final Approach Fix (FAF) and 

proceeds to an altitude/height approximately 50 feet (15 meters) above the landing 
runway threshold or to a point where the flare maneuver should begin for the type of 
aircraft being flown.” 

Simultaneous with publication of AC 120-108, the FAA began including CDFA Vertical 
Descent Angles (VDAs) on approach plates for NPAs. Figure 28, depicting part of the approach 
plate for the LOC IAP to runway 35 at Norwood Memorial Airport (KOWD), is an example.†  

                                                 
* CDFAs were not prohibited prior to publication of AC 120-108. However, the FAA did not recommend them nor 
provide information concerning their use. Some air carriers required utilization of CDFAs and supplied their flight 
crews with supplementary information on company-provided approach plates. 
† Effective dates: May 1, 2014 – May 29, 2014 
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Figure 28  Portion of LOC IAP to KOWD Runway 35 

When executing a CDFA in accordance with the LOC IAP to runway 35 at KOWD, upon 
passing the FAF (as determined either by a marker beacon receiver or a DME interrogator) at or 
above 1,400 ft MSL, the aircraft would descend to 580 ft MSL by following a CDFA with a 
VDA of 2.87 deg. Upon reaching 580 ft MSL, the aircraft should not descend further unless/until 
the fix DIKEY is identified utilizing a DME interrogator. If/when that occurs, the aircraft would 
be permitted to descend to 500 ft MSL — but no lower. If the airport environment is identified at 
that point, a visual landing could be performed; if not, a missed approach is required. 

6.6.2 Altitude vs. DME Information for the Pilot 

Employing the CDFA technique does not require additional equipment on the aircraft or on the 
ground — i.e., other than that required for the step down technique. Specifically, the avionics 
required for VNAV guidance specified in Advisory Circulars AC 90-105 (Ref. 39) and AC 20-
138C (Ref. 40) are not required. However, if available, use of VNAV is recommended.  

If VNAV avionics are not available, the pilot calculates a planned descent rate utilizing a table in 
AC 120-108, based on the charted VDA and planned ground speed. When executing a CDFA 
without VNAV, instrumentation errors in measuring airspeed and descent rate, variability in the 
headwind, the lack of a guidance display and other factors, will cause the aircraft’s altitude flown 
to be less well controlled than it is for a VNAV operation. The contributions of some of error 
mechanisms accumulate, causing the difference between the altitude flown and the altitude 
desired to increase with time. 

The safety aspect of an aircraft being at the incorrect altitude while performing a CDFA NPA is 
addressed by requiring the aircraft to remain above the Minimum Descent Altitude (MDA) along 
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the entire approach track. However, situational awareness is improved if the pilot has a readily 
available method for comparing the aircraft’s measured altitude with the planned altitude on an 
almost continuous basis, particularly when VNAV is not used (Ref. 41). A technique adopted by 
some airlines has been to include a table of DME distance versus planned barometric altitude for 
each CDFA approach plate for an airport with a DME ground station. Generating such a table is 
the subject of this section. This analysis can also be used to determine the parameters of an 
approach fix defined by aircraft altitude or distance to a DME ground station. 

Equations used to generate a table of DME distance versus planned barometric altitude must 
reflect the geometry of the DME ground station location relative to the approach ground track. 
Two types of DME stations are discussed: 
 ‘ILS DME’ — The DME ground station antenna is located close to the centerline of a 

runway equipped with an ILS localizer* (regardless of whether an ILS glide slope 
subsystem is present). These DME stations are generally low-powered and are only 
approved for use as an aid for approaches to the associated runway. On approach 
plates and other FAA documentation, ILS DMEs are designed with an ‘I-’ prefix — 
e.g., I-OWD in Figure 28.  

 ‘Airport DME’ — The DME ground station is generally on the airport but is not 
associated with a runway.† These DMEs generally have signal strength sufficient to 
serve aircraft approaching all runway ends as well as in the surrounding airspace 
within a radius of at least 50 NM.  

6.6.3 ‘ILS DME’ Scenario 

This scenario involves a straight-in CDFA using the baro-altimeter system at descent angle 𝛼𝛼′ to 
a runway with a DME ground station close to the runway centerline. Three locations, all on the 
same great circle, are involved. From the pilot’s perspective, they are, in typical order of 
increasing distance: the aircraft, A (more precisely, its DME interrogator antenna); the runway 
threshold, R (more precisely, the threshold crossing location); and the DME ground station, D 
(more precisely, its antenna). In this analysis: ℎ denotes altitude above MSL, 𝜃𝜃 denotes a 
geocentric angle and 𝑑𝑑 denotes a slant-range.  

The analysis is straightforward if the aircraft altitude ℎ𝐴𝐴 taken as the independent variable. From 
Section 9.2 (Eq 493) the geocentric angle 𝜃𝜃𝑅𝑅𝑅𝑅 between the aircraft and the threshold (at altitude 
ℎ𝑅𝑅) is  

                                                 
* For some runways, the ‘ILS’ DME ground station antenna is collocated (or nearly collocated) with a localizer 
antenna; it may serve one or both runway ends. In other situations, the DME ground station is between the ends of 
runway, with the antenna as close to the centerline as possible. 
† The “Airport” DME ground station antenna should be either in front of or behind the aircraft throughout the 
descent portion of the approach procedure — i.e., until the Minimum Descent Altitude is reached. 
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𝜃𝜃𝑅𝑅𝑅𝑅 =
log �𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴

𝑅𝑅𝑒𝑒 + ℎ𝑅𝑅
�

tan (𝛼𝛼′)
 Eq 210 

The geocentric angle between the runway threshold and the DME 𝜃𝜃𝑅𝑅𝑅𝑅 is known from the runway 
geometry. Reportedly, for some U.S. ILS DME installations, 𝜃𝜃𝑅𝑅𝑅𝑅 should be set to zero, because 
the fixed DME ground station delay (which is transparent to the pilot) is adjusted so that the 
aircraft DME reads zero at the runway threshold. This is not the case for the procedure shown in 
Figure 28, nor for others examined at random. 

Thus the geocentric angle between the aircraft and the DME ground station 𝜃𝜃𝐷𝐷𝐷𝐷 is  

𝜃𝜃𝐷𝐷𝐷𝐷 = 𝜃𝜃𝑅𝑅𝑅𝑅 ± 𝜃𝜃𝑅𝑅𝑅𝑅 Eq 211 

The ‘+’ sign applies if the DME is past the threshold and the ‘–’ sign applies if the DME antenna 
is before the threshold.  

Lastly, the slant-range between the aircraft and the DME ground station 𝑑𝑑𝐷𝐷𝐷𝐷 is found from 
Subsection 3.5.1 (Eq 54).  

𝑑𝑑𝐷𝐷𝐷𝐷 = 2 𝑅𝑅𝑒𝑒 sin �12𝜃𝜃𝐷𝐷𝐷𝐷���1 +
ℎ𝐴𝐴
𝑅𝑅𝑒𝑒
� �1 +

ℎ𝐷𝐷
𝑅𝑅𝑒𝑒
� + �

ℎ𝐴𝐴 − ℎ𝐷𝐷
2 𝑅𝑅𝑒𝑒  sin�12𝜃𝜃𝐷𝐷𝐷𝐷�

�
2

     ,     𝜃𝜃 ≠ 0 Eq 212 

Remarks 
 The solution for this scenario does not involve latitude or longitude coordinates — 

only altitudes and distances between the aircraft and destination runway. 
 When generating a table for crosschecking aircraft altimeter readings against desired 

altitudes corresponding to DME readings, usually one would prefer to specify the 
slant-range 𝑑𝑑𝐷𝐷𝐷𝐷 as a ‘round number’ (e.g., 3.0 NM) and determine the associated 
desired altitude ℎ𝐴𝐴. This is the inverse of the simpler solution approach described in 
this subsection. However, it can readily be achieved by ‘wrapping an iteration 
method’ around the equations of this subsection (Subsection 2.1.8). 
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6.6.4 ‘Airport DME’ Scenario 

The ‘Airport DME’ scenario is essentially a combination of: (1) the vertical plane situation 
addressed for ‘ILS DME’ scenario of (Subsection 6.6.3), and 
(2) the spherical earth’s surface situation addressed in Section 
6.5. Here, the locations of the aircraft, runway threshold and 
DME are not modeled as lying on the same great circle. Such 
geometries generally occur because the ‘Airport DME’ is not 
located close to the destination runway centerline  

The footprint on the earth’s surface for this scenario is shown in 
Figure 29. The locations of the aircraft A, runway threshold R 
and DME ground station D, are shown. It is assumed that the 
coordinates of the threshold R (𝐿𝐿𝑅𝑅 ,𝜆𝜆𝑅𝑅 ,ℎ𝑅𝑅) and of the DME 
station D  (𝐿𝐿𝐷𝐷 ,𝜆𝜆𝐷𝐷 ,ℎ𝐷𝐷) are known, as are the azimuth angle 
𝜓𝜓𝐴𝐴/𝑅𝑅 of the approach course. In terms of the classic ‘solving a 
triangle’ taxonomy, this is an SSA (side-side-angle) situation. 

For this problem, the best choice for the independent variable is 
the geocentric angle between the aircraft and the DME antenna, 
𝜃𝜃𝐷𝐷𝐷𝐷. When generating a table for operation use, one would 
generally prefer to perform altitude checks at defined DME 
slant-range readings, 𝑑𝑑𝐷𝐷𝐷𝐷. Or, conversely, one could perform DME checks at defined altitude 
readings, ℎ𝐴𝐴. Tables for either option can be generated by iterating on Steps A-2 to A-6 in the 
following procedure.  

Initialization (executed once)  

Step I-1: Apply the Indirect problem of geodesy to the path RD to find the geocentric angle 𝜃𝜃𝑅𝑅𝑅𝑅 
and azimuth angle 𝜓𝜓𝐷𝐷/𝑅𝑅. 

Step I-2: Compute the interior angle 𝛽𝛽𝑅𝑅 between RD and RA (assuming the aircraft is on course) 
in the range [0, π] using Eq 213.  

𝛽𝛽𝑅𝑅 = min � �𝜓𝜓𝐴𝐴/𝑅𝑅 −𝜓𝜓𝐷𝐷/𝑅𝑅�,  �𝜓𝜓𝐴𝐴/𝑅𝑅 − 𝜓𝜓𝐷𝐷/𝑅𝑅 + 2𝜋𝜋�,  �𝜓𝜓𝐴𝐴/𝑅𝑅 − 𝜓𝜓𝐷𝐷/𝑅𝑅 − 2𝜋𝜋� � Eq 213 

Find Slant-Range 𝑑𝑑𝐷𝐷𝐷𝐷 and Altitude ℎ𝐴𝐴 from Spherical Range 𝜃𝜃𝐷𝐷𝐷𝐷 (executed at least once) 

Step A-1: Select an initial value for 𝜃𝜃𝐷𝐷𝐷𝐷. This choice is not critical, as iterations are generally 
involved. A possible first choice is: 

1,specified
≈= k

R
dk

e

DA
DAθ  Eq 214 

 

Figure 29  Airport DME 
CDA Scenario 
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Step A-2: For triangle RDA, compute the interior angle 𝛽𝛽𝐴𝐴 between AR and AD (assuming the 
aircraft is on course) using the law of sines.  

𝛽𝛽𝐴𝐴 = arcsin �
sin(𝛽𝛽𝑅𝑅) sin(𝜃𝜃𝑅𝑅𝑅𝑅)

sin(𝜃𝜃𝐷𝐷𝐷𝐷)
� Eq 215 

When 𝜃𝜃𝑅𝑅𝑅𝑅 < 𝜃𝜃𝐷𝐷𝐷𝐷, which is generally true when the DME is on the airport, then if the earth were 
flat, the only valid solution would be the acute angle which satisfies Eq 215. Since the approach 
region is small relative to the earth’s surface, the acute angle will generally be correct as well. 
Angle 𝛽𝛽𝐴𝐴 influences the accuracy of the crosscheck on aircraft altitude. In Subsection 6.5.6, it’s 
noted some have recommended that a DME-VOR fix only be accepted when the equivalent 
angle satisfies 𝛽𝛽 ≤ 60°. 

Step A-3: For spherical triangle RDA, the geocentric angle 𝜃𝜃𝑅𝑅𝑅𝑅 in the interval [0, π) is found 
from Napier’s Analogies using either of the following expressions. The choice can be based 
entirely on numerical considerations.  

tan �12𝜃𝜃𝑅𝑅𝑅𝑅� =
cos�12(𝛽𝛽𝑅𝑅 + 𝛽𝛽𝐴𝐴)�
cos�12(𝛽𝛽𝑅𝑅 − 𝛽𝛽𝐴𝐴)�

 tan �12(𝜃𝜃𝐷𝐷𝐷𝐷 + 𝜃𝜃𝑅𝑅𝑅𝑅)� 

tan �12𝜃𝜃𝑅𝑅𝑅𝑅� =
sin�12(𝛽𝛽𝑅𝑅 + 𝛽𝛽𝐴𝐴)�
sin�12(𝛽𝛽𝑅𝑅 − 𝛽𝛽𝐴𝐴)�

 tan �12(𝜃𝜃𝐷𝐷𝐷𝐷 − 𝜃𝜃𝑅𝑅𝑅𝑅)� 
Eq 216 

Step A-5: For an aircraft flying a CDFA using the baro-altimeter, with descent angle 𝛼𝛼′, the 
planned altitude ℎ𝐴𝐴 for the location involved is  

ℎ𝐴𝐴 = (𝑅𝑅𝑒𝑒 + ℎ𝑅𝑅) exp[𝜃𝜃𝑅𝑅𝑅𝑅 tan(𝛼𝛼′)] − 𝑅𝑅𝑒𝑒 Eq 217 

Step A-6: Eq 212 (repeated) is employed to find the aircraft-DME ground station slant-range 𝑑𝑑𝐷𝐷𝐷𝐷 
for the location and planned altitude. 

𝑑𝑑𝐷𝐷𝐷𝐷 = 2 𝑅𝑅𝑒𝑒 sin �12𝜃𝜃𝐷𝐷𝐷𝐷���1 +
ℎ𝐴𝐴
𝑅𝑅𝑒𝑒
� �1 +

ℎ𝐷𝐷
𝑅𝑅𝑒𝑒
� + �

ℎ𝐴𝐴 − ℎ𝐷𝐷
2 𝑅𝑅𝑒𝑒  sin�12𝜃𝜃𝐷𝐷𝐷𝐷�

�
2

     ,     𝜃𝜃 ≠ 0 Eq 218 

Iteration for Defined DME Slant-Range or Altitude 

Given the computed values for 𝑑𝑑𝐷𝐷𝐷𝐷 and ℎ𝐴𝐴, the value for 𝜃𝜃𝐷𝐷𝐷𝐷 can be adjusted and Steps A-2 to 
A-6 repeated until a specified value for 𝑑𝑑𝐷𝐷𝐷𝐷 or for ℎ𝐴𝐴 is achieved (see Subsection 2.1.8). If an 
assumed aircraft location is to be designated as a fix, then the latitude and longitude coordinates 
of the fix (𝐿𝐿𝐴𝐴,  𝜆𝜆𝐴𝐴) are found as solutions to the Direct problem of geodesy (Section 4.3). 
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6.6.5 Remarks 

For the Airport DME problem, in the majority of situations: (a) the aircraft-DME station distance 
 𝑑𝑑𝐷𝐷𝐷𝐷 is many times the aircraft altitude ℎ𝐴𝐴; and (b) high computational accuracy is not needed, 
since measurement errors are present and the values presented to the pilot are rounded. In these 
situations, the aircraft-DME station geocentric angle  𝜃𝜃𝐷𝐷𝐷𝐷, computed using Eq 214 with k = 1, 
often results in sufficiently accurate values of the aircraft’s altitude ℎ𝐴𝐴 and coordinates (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) 
and the computed slant-range 𝑑𝑑𝐷𝐷𝐷𝐷 (Eq 218) is not be needed.  

The location of the DME station in relation to the threshold should be approximately known to 
ensure that the correct solution to Eq 215 is used. The value of 𝛽𝛽𝑅𝑅 is key — if 𝛽𝛽𝑅𝑅 > 1

2𝜋𝜋 then the 
DME station is further than the runway threshold and the aircraft will not fly past the DME 
during the approach. However, if 𝛽𝛽𝑅𝑅 < 1

2𝜋𝜋, Eq 215 may have two solutions when the aircraft 
nears the airport. These correspond to the DME being ‘before’ or ‘behind’ the aircraft. Usually, 
the aircraft will be abeam of the DME after reaching the Minimum Descent Altitude (MDA). 

Although the case for doing so is not as strong as it is for an NPA, the technique in this section 
can also be used to crosscheck aircraft altitude during an ILS or LPV approach with glide path 
angle 𝛼𝛼. Detecting capture of a false glide slope signal is perhaps the most compelling such 
reason (Ref. 42). To do so, in place of Eq 217, the following (from Eq 66) would be used. 

ℎ𝐴𝐴 = ℎ𝑅𝑅 + 2
sin (𝛼𝛼 + 1

2𝜃𝜃𝑅𝑅𝑅𝑅) sin (12𝜃𝜃𝑅𝑅𝑅𝑅)
cos (𝛼𝛼 + 𝜃𝜃𝑅𝑅𝑅𝑅)

(𝑅𝑅𝑒𝑒 + ℎ𝑅𝑅) Eq 219 
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7. AIRCRAFT POSITION FROM PSEUDO RANGE MEASUREMENTS 

7.1 Overview of Pseudo Ranges 

7.1.1 Background 

Pseudo ranges are measurements of the distance between an aircraft and a set of ‘ground’* sta-
tions, with the provision that all measurements are offset (biased) by the same unknown amount. 
This situation generally occurs when: (a) there’s a one-way transmission of energy, either from 
the aircraft to the stations (surveillance) or from the stations to the aircraft (navigation); and 
(b) the stations have synchronized clocks that measure the time(s) of transmission (navigation) or 
reception (surveillance), but the aircraft does not.† The pseudo range concept has been utilized 
for both slant-range and spherical-range propagation paths. 

As any concept, pseudo range systems have advantages and disadvantages (Table 10). The most 
important advantage is that user equipage is significantly simpler/lower-cost than it would be for 
a system utilizing true ranges. Pseudo range systems became viable during the twentieth century, 
with development of technologies (e.g., atomic clocks) that can synchronize widely separated 
ground stations. It is currently the concept most often chosen for new systems. 

Table 10  Pseudo Range Systems: Primary Advantages and Disadvantages 

Advantages Disadvantages 
User Cost – User needs only a transmitter 
(surveillance) or a receiver (navigation) 

Station Locations – Stations must essentially 
surround the service area 

Accuracy – Avoids the ‘turn-around’ error of two-
way ranging systems 

Station Count – Requires one more station than a 
system based on true ranges 

Antenna Size – Large antennas for measuring azi-
muth angles are not needed 

Station Equipment Cost – Stations must have a 
synchronization method (often an atomic clock) 

In terms of implementation and utilization, the two system types are as different as they are alike. 
Specifically, the effects of measurement geometry (station configurations and favorable aircraft 
locations) on true and pseudo range systems are quite different — see Section 8.5.  

Systems that employ pseudo slant-ranges include aircraft Wide Area Multilateration (surveil-
lance) and GPS (navigation). Low-frequency radionavigation systems provide pseudo spherical-
range measurements by utilizing ground-wave propagation. Examples are/were: Decca, Loran-C 

                                                 
* In this terminology, navigation and surveillance satellites are ‘ground’ stations, as they are external to the aircraft 
of interest and their locations are assumed to be known.  
† For navigation systems, all stations must transmit effectively simultaneously. Multiple methods have been 
employed to avoid mutual interference among such transmissions: use of the same frequency with known, short 
delays between station transmissions (Loran); use of different frequencies (Omega, Decca); and transmission at the 
same time and on the same frequency modulated by different pseudo random codes (GPS, Galileo). 
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and Omega. All U.S. pseudo spherical-range navigation systems have been decommissioned, but 
systems are in operation elsewhere in the world (Ref. 43). 

7.1.2 Hyperbolic Lines-of-Position (LOPs) and Fix Geometry 

One pseudo range station has no value. Measurements for a pair of pseudo range stations can be 
subtracted to obtain the difference of the true ranges from the stations to the aircraft (equivalent 
to a hyperboloid of revolution on which the aircraft is located). In a two-dimensional context, 
hyperbolic LOPs are shown in Figure 30(a). 

   
 (a) Two-Station LOPs (b) Three Station Fix Geometry 

Figure 30  Hyperbolic System Two-Dimensional Geometry 

Pseudo range LOPs (hyperbolas) are different from LOPs for a true range-measuring sensor 
(concentric circles about the station) or those for an angle-measuring sensor (straight lines 
‘radiating’ from the station). However, hyperbolic LOPs are closer in appearance to those for an 
angle-measuring sensor. LOPs for one angle station and a pair of pseudorange stations both: 
(a) emanate from the area when the station(s) are located and ‘radiate’ outward; and (b) diverge 
with distance from the station(s). A pseudo range station pair differs from a single-angle station 
in that its LOPs are curved, reducing its effective coverage area. Two pseudo range sensor pairs 
can be combined to obtain a position fix — e.g., Figure 30(b). For horizontal position determin-
ation, three stations are needed; one station being a member of two pairs. For accuracy, the LOP 
crossing angle should be between about 30 deg and 150 deg. 

7.1.3 Role of the Common Range Bias 

Prior to the advent of satellite systems, there was little need to determine the common bias in a 
set of pseudo range measurements. Early systems treated the bias as a nuisance parameter and 
formed pseudo range differences. These were often termed range-difference systems. Algorithms 
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published by Fang (Section 7.7, Ref. 44) for Cartesian coordinates, and by Razin (Section 7.10, 
Ref. 45) for a spherical earth, follow this practice. A general analysis of pseudo slant-range 
measurement processing can be found in Ref. 46. 

With the advent of GPS, the range offset provided useful information, as GPS satellite trans-
mission times are related to Coordinated Universal Time (UTC). Bancroft’s algorithm (Ref. 47) 
and some variations on it solve for the aircraft position and common offset simultaneously. 
Section 8.4 contains a proof of the equivalence of the position solutions obtained with and 
without finding the common range offset. 

7.1.4 Algorithm Taxonomy 

When an aircraft and station altitudes are known, converting between slant- and spherical-ranges 
is straightforward in either direction — e.g., Eq 44 and Eq 54 and Subsection 3.2.2. Thus, except 
for details, only one algorithm is needed to compute an aircraft’s latitude/longitude from either 
slant or spherical true range measurements. However, pseudo slant-ranges and pseudo spherical-
ranges cannot be readily converted; separate algorithms are required.  

More generally, separate algorithms are required for (a) different pseudo range measurement 
types (slant versus spherical); (b) different analysis frameworks (Cartesian versus spherical 
coordinates); (c) whether or not the common range bias is computed; and (d) whether or not 
altitude is included as a measurement. Table 11 contains a summary of available algorithms. 
Slant-range measurements are more naturally addressed using Cartesian coordinates, while 
spherical-range measurements are more naturally addressed using spherical coordinates. 
However, either framework can be used for either measurement type. 

Table 11  Taxonomy for Range-Type Algorithms and Example Applications 

Measurements 
Dimensions 

True 
Slant-Ranges 

Pseudo 
Slant-Ranges 

Pseudo 
Spherical-Ranges 

Two 
(Plane or Sphere) 

Section 7.3 
Subsection 7.12.1 

Section 7.7 
Subsection 7.12.2 Section 7.10-7.11  

DME/DME approximation Airport multilateration Loran-C, Omega 

Three 
(Physical Reality) 

Section 7.3-7.4 
Section 6.4* 

Sections 7.2, 7.5-7.6; 
Sections 7.8-7.9 N/A 

DME/DME/Altimeter GPS, WAM 
*The algorithm for true spherical-ranges is embedded in this description. 

In addition to the algorithms of Fang, Razin and Bancroft — each of which applies to a 
homogeneous set of pseudo range measurements — this chapter contains extensions to 
combinations of pseudo and true slant-range measurements, to measurement of altitude and to 
multiple clock synchronization groups. Generally, a position determination algorithm for a set of 
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pseudo range measurements is readily simplified to true range measurements. The term ‘Ban-
craft’ is used herein for any algorithm involving (a) a Cartesian framework; (b) use of vectors; 
and (c) first finding an intermediate quantity such as a norm of the aircraft location vector, then 
its components. In contrast, ‘traditional’ solution methods utilize scalars and solve for the 
position components directly, usually in a specific sequence. 

The algorithms presented in this chapter share several features with those presented in Chapter 6: 
(a) the earth is assumed to be a perfect sphere (except when the simpler plane/Flatland* assump-
tion is used); (b) the number of measurements is the same as the number of unknown variables; 
and (c) the effects of possible measurement errors on the resulting position solutions are not 
considered. Chapter 8 relaxes all of these restrictions.  

To simplify the exposition, the descriptions in this chapter assume a surveillance context. Thus, 
𝑡𝑡𝐴𝐴 denotes the unknown time of transmission by an aircraft and 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1,2,3,4, denote the 
measured times of receiption of that transmission at four stations. 

7.2 Bancroft Solution for Four Pseudo Slant-Ranges 

7.2.1 Introduction 

Context — While this document emphasizes navigation/surveillance with respect to a spherical 
earth, situations involving a Cartesian/rectangular coordinate framework are of interest (e.g., 
Chapter 5) for several reasons: (1) slant-range and pseudo slant-range measurements are more 
compatible with the rectangular framework than the spherical; (2) many analysts find the 
Cartesian framework more intuitive, so it can be used to gain insights into situations where a 
spherical framework may be more convenient for obtaining useful results; and (3) a Cartesian 
framework may be more convenient when the earth’s ellipticity must be taken into account. 

This section addresses position-finding from four pseudo slant-range (homogeneous) measure-
ments. Bancroft’s algorithm is extended situations involving only true slant-range measurements 
(including aircraft altitude), or a combination of pseudo and true slant-range measurements in 
Sections 7.3 to 7.5, respectively. Bancroft’s algorithm can also be employed in situations 
involving multiple clock synchronization groups — e.g., see Section 7.6. 

Spatial Coordinate Frame — The first step is the selection of an analysis origin. The analysis 
origin must be is different from the location of any station, and must satisfy other conditions 
discussed in Subsection 7.2.4. Bancroft’s method can be viewed as a clever application of the 
cosine law of plane trigonometry. It involves a set of triangles each having vertices at the 
                                                 
* Flatland: A Romance of Many Dimensions is an 1884 satirical novella by the English schoolmaster Edwin Abbott 
Abbott. Here, ‘Flatland’ characterizes situations where both the aircraft and ground stations are restricted to a plane. 
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analysis origin (known), the station location (known) and the aircraft location (unknown). Thus 
the lengths of two sides of each triangle are known. The length of the side connecting the 
analysis origin and the aircraft is unknown, but that side is common to all triangles. Its length is 
found first. The aircraft coordinates then follow readily. 

‘Time’ Coordinate — The offset common to all of a system’s pseudo range measurements is 
inherently temporal, and arises because the aircraft transmissions are not synchronized with the 
ground station clocks. However, it sometimes convenient to treat the transmission time as a 
range offset (or bias). The two characterizations are related by the speed of propagation. 

7.2.2 Problem Formulation 

For many problems, the Earth-Centered, Earth-Fixed (ECEF, Subsection 5.1.1) e-frame is a good 
choice. For a spherical earth, in ECEF coordinates, the physical stations Si are located at  

𝐫𝐫𝑖𝑖𝐞𝐞 = �
𝑥𝑥𝑖𝑖𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒
� = �

cos(𝐿𝐿𝑖𝑖) cos(𝜆𝜆𝑖𝑖)
cos(𝐿𝐿𝑖𝑖) sin(𝜆𝜆𝑖𝑖)

sin(𝐿𝐿𝑖𝑖)
� (𝑅𝑅𝑒𝑒 + ℎ𝑖𝑖)          𝑖𝑖 = 1,2,3,4 Eq 220 

Here, 𝐿𝐿𝑖𝑖, 𝜆𝜆𝑖𝑖 and ℎ𝑖𝑖 denote the latitude, longitude and altitude (respectively) of station Si. 

The (unknown) coordinates of the aircraft A are 

𝐫𝐫𝐴𝐴𝐞𝐞 = [𝑥𝑥𝐴𝐴𝑒𝑒 𝑦𝑦𝐴𝐴𝑒𝑒 𝑧𝑧𝐴𝐴𝑒𝑒]𝑇𝑇 Eq 221 

For convenience, since quadratic quantities will be involved, use of the superscript e on  𝐫𝐫𝐴𝐴𝐞𝐞 and 
𝐫𝐫𝑖𝑖𝐞𝐞 and their components is discontinued until the end of this section.  

The aircraft-station pseudo range measurements satisfy equations of the form, for 𝑖𝑖 = 1,2,3,4 

(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑖𝑖)2 = (𝑐𝑐𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑐𝑐𝐴𝐴)2 

[(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 − (𝑐𝑐𝑐𝑐𝐴𝐴)2] + [(𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝑖𝑖)2 − (𝑐𝑐𝑐𝑐𝑖𝑖)2]
= 2[𝑥𝑥𝑖𝑖  𝑥𝑥𝐴𝐴 + 𝑦𝑦𝑖𝑖  𝑦𝑦𝐴𝐴 + 𝑧𝑧𝑖𝑖  𝑧𝑧𝐴𝐴 − 𝑐𝑐2 𝑡𝑡𝑖𝑖  𝑡𝑡𝐴𝐴] 

Eq 222 

In vector-matrix notation, the equations of Eq 222 can be combined as 

2 𝐁𝐁 𝐬𝐬𝐴𝐴 = 𝜆𝜆 𝟏𝟏 + 𝐛𝐛 Eq 223 

𝐬𝐬𝐴𝐴 = �
𝐫𝐫𝐴𝐴
𝑐𝑐𝑡𝑡𝐴𝐴� = [𝑥𝑥𝐴𝐴 𝑦𝑦𝐴𝐴 𝑧𝑧𝐴𝐴 𝑐𝑐𝑡𝑡𝐴𝐴]𝑇𝑇 

𝜆𝜆 = 〈𝐬𝐬𝐴𝐴, 𝐬𝐬𝐴𝐴〉 = (𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 − (𝑐𝑐𝑐𝑐𝐴𝐴)2 

𝐁𝐁 = �

𝑥𝑥1 𝑦𝑦1 𝑧𝑧1 −𝑐𝑐𝑐𝑐1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2 −𝑐𝑐𝑐𝑐2
𝑥𝑥3 𝑦𝑦3 𝑧𝑧3 −𝑐𝑐𝑐𝑐3
𝑥𝑥4 𝑦𝑦4 𝑧𝑧4 −𝑐𝑐𝑐𝑐4

�           𝐛𝐛 =

⎣
⎢
⎢
⎢
⎡(𝑥𝑥1)2 + (𝑦𝑦1)2 + (𝑧𝑧1)2 − (𝑐𝑐𝑐𝑐1)2

(𝑥𝑥2)2 + (𝑦𝑦2)2 + (𝑧𝑧2)2 − (𝑐𝑐𝑐𝑐2)2

(𝑥𝑥3)2 + (𝑦𝑦3)2 + (𝑧𝑧3)2 − (𝑐𝑐𝑐𝑐3)2

(𝑥𝑥4)2 + (𝑦𝑦4)2 + (𝑧𝑧4)2 − (𝑐𝑐𝑐𝑐4)2⎦
⎥
⎥
⎥
⎤

          𝟏𝟏 = �

1
1
1
1

� 
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Eq 223 relates 𝐬𝐬𝐴𝐴 to its Lorentzian norm 𝜆𝜆. 

7.2.3 Problem Solution 

Matrix 𝐁𝐁 is nonsingular when (and only when) its rows are linearly independent. Assuming that 
to be true, the formal solution for 𝐬𝐬𝐴𝐴 is 

𝐬𝐬𝐴𝐴 = 1
2  𝜆𝜆 𝐁𝐁

−1  𝟏𝟏 + 1
2  𝐁𝐁

−1 𝐛𝐛 Eq 224 

Eq 224 can be written as 

𝐬𝐬𝐴𝐴 = 𝜆𝜆 𝐮𝐮 + 𝐯𝐯 Eq 225 

𝐮𝐮 = 1
2   𝐁𝐁

−1  𝟏𝟏 = [𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 𝑢𝑢𝑡𝑡]𝑇𝑇 

𝐯𝐯 = 1
2   𝐁𝐁

−1  𝐛𝐛 = [𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧 𝑣𝑣𝑡𝑡]𝑇𝑇 
 

The Lorentzian norm 𝜆𝜆 of 𝐬𝐬𝐴𝐴 in Eq 225 can be found by (a) left-multiplying both sides of the 
equation by the diagonal matrix with diagonal elements (1,1,1,-1), then (b) left-multiplying both 
sides by the transpose of Eq 225. Upon collecting like terms, the result is 

𝛼𝛼 𝜆𝜆2 + 𝛽𝛽 𝜆𝜆 + 𝛾𝛾 = 0 Eq 226 

𝛼𝛼 = 〈𝐮𝐮,𝐮𝐮〉 = 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2 − 𝑢𝑢𝑡𝑡2 

𝛽𝛽 = 2〈𝐮𝐮, 𝐯𝐯〉 − 1 = 2 𝑢𝑢𝑥𝑥𝑣𝑣𝑥𝑥 + 2 𝑢𝑢𝑦𝑦𝑣𝑣𝑦𝑦 + 2 𝑢𝑢𝑧𝑧𝑣𝑣𝑧𝑧 − 2 𝑢𝑢𝑡𝑡𝑣𝑣𝑡𝑡 − 1 

𝛾𝛾 = 〈𝐯𝐯, 𝐯𝐯〉 = 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2 − 𝑣𝑣𝑡𝑡2 

 

Usually, Eq 226 has two distinct real roots 

𝜆𝜆+ =
1

2 𝛼𝛼
�−𝛽𝛽 + �𝛽𝛽2 − 4𝛼𝛼𝛼𝛼� 

𝜆𝜆− =
1

2 𝛼𝛼
�−𝛽𝛽 − �𝛽𝛽2 − 4𝛼𝛼𝛼𝛼� 

Eq 227 

Thus there are two possible solutions for the aircraft state 𝐬𝐬𝐴𝐴 

𝐬𝐬𝐴𝐴± = �

𝑥𝑥𝐴𝐴±
𝑦𝑦𝐴𝐴±
𝑧𝑧𝐴𝐴±
𝑐𝑐𝑐𝑐𝐴𝐴±

� = �
𝐫𝐫𝐴𝐴±
𝑐𝑐𝑐𝑐𝐴𝐴±

� = 𝜆𝜆±  𝐮𝐮 + 𝐯𝐯 = �−
𝛽𝛽

2 𝛼𝛼
𝐮𝐮 + 𝐯𝐯� ± �

�𝛽𝛽2 − 4𝛼𝛼𝛼𝛼
2 𝛼𝛼

𝐮𝐮� Eq 228 

One of the two solutions is correct; the other may be either ambiguous or extraneous. Depending 
upon the aircraft location, both can occur for pseudo range systems. Although unusual, situations 
can arise where there are not two distinct real roots to Eq 226 — see the following subsection.   

The penultimate step is determining the two possible sets of aircraft latitude/longitude/altitude 
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coordinates. Reintroducing the superscript e to denote the coordinate frame, for a spherical earth, 
those quantities can be found from  

𝐿𝐿𝐴𝐴± = arctan

⎝

⎛ 𝑧𝑧𝐴𝐴±
𝑒𝑒

��𝑥𝑥𝐴𝐴±
𝑒𝑒 �

2
+ �𝑦𝑦𝐴𝐴±

𝑒𝑒 �
2
⎠

⎞ 

𝜆𝜆𝐴𝐴± = arctan�𝑦𝑦𝐴𝐴±
𝑒𝑒  , 𝑥𝑥𝐴𝐴±

𝑒𝑒 � 

ℎ𝐴𝐴± = ��𝑥𝑥𝐴𝐴±
𝑒𝑒 �

2
+ �𝑦𝑦𝐴𝐴±

𝑒𝑒 �
2

+ �𝑧𝑧𝐴𝐴±
𝑒𝑒 �

2
− 𝑅𝑅𝑒𝑒 

Eq 229 

In Eq 228 and Eq 229, a single sign, ‘+’ or ‘–’, must be used consistently.  

The final step is selecting between the two candidate solutions. (The topic of selecting between 
multiple solutions is addressed in general terms in Subsection 6.1.3.) Mathematically, an 
extraneous solution arises from the squaring of the time differences in Eq 222, as squaring 
destroys the sign of the time differences 𝑡𝑡𝑖𝑖– 𝑡𝑡𝐴𝐴. When there is an extraneous solution, the solution 
for the aircraft time of transmission 𝑡𝑡𝐴𝐴 can be used to detect it — the correct value for 𝑡𝑡𝐴𝐴 must be 
less than min(𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4) and the extraneous value will be greater than max(𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4).  

However, when an ambiguous solution occurs, the value for 𝑡𝑡𝐴𝐴 will also be less than 
min(𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4). Generally, ambiguous solutions only occur when the aircraft is near an an 
extension of a baseline connecting two stations or between two extended baselines. (These areas 
are generally not within the service area where the system’s use is intended.) When the aircraft is 
at a location where the system intended to be used, only detectable extraneous solutions occur 
(Ref. 48). Section 7.7 illustrates such situations in a two-dimensional context. 

7.2.4 Remarks 

Coordinate Frames — After a solution is found, the Cartesian coordinate frame employed for 
Bancroft’s algorithm can be related to either a spherical or ellipsoidal earth model. Compatibility 
with an ellipsoidal earth is an advantage when the sensor-aircraft ranges are several hundred 
miles or more. However, if an ellipsoidal earth model is used, Eq 229 must be replaced by a 
slightly more complex set of expressions — see Section 9.3. 

Invertibility of Matrix B — Invertibility of the 4 x 4 matrix 𝐁𝐁 (Eq 223) is a requirement of 
Bancroft’s Method. From the Matrix Inversion Lemma, it follows that the upper left-hand 3 x 3 
submatrix must be invertible and that the (4,4) term cannot be zero. These mathematical 
requirements impose physical requirements — e.g.: (a) The spatial origin cannot lie along a 
baseline connecting any pair of stations (or its extensions past the stations); (b) Stations Si 
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(i=1,2,3) cannot lie in a straight line; (c) The aircraft cannot be on the extension of a straight line 
segment that passes through any three stations; (d) The time origin cannot coincide with the 
arrival of the signal at station S4. Aircraft-station geometry are explored further in Section 7.9. 

Matrix 𝐁𝐁 depends on measured times-of-arrival of signals at the pseudo slant-range stations. If a 
sequence of measurements are collected over time, matrix 𝐁𝐁, its inverse 𝐁𝐁−1, and vectors 𝐮𝐮 and 
𝐯𝐯 must be recomputed for each measurement set. 

Number and Types of Solutions — When pseudoranges are involved, each SOP is a hyper-
boloid having two branches Solution possibilities for the quadratic equation of Eq 226 then are 
(bearing in mind that not all problems have all solution types):  

(a) No real roots: Mathematically, 𝛽𝛽2 < 4𝛼𝛼𝛼𝛼; geometrically, the SOPs do not intersect at a 
common point; this situation is often the result of measurement errors. It may be detect-
able from the measurements, as it is necessary that �𝑐𝑐𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑗𝑗� ≤ �𝐫𝐫𝑖𝑖 − 𝐫𝐫𝑗𝑗� for every 
station pair, Si and Sj  

(b) One real single root: Mathematically, 𝛼𝛼 = 0 (the quadratic equation is degenerately 
linear); geometrically, the SOPs only intersect at one common point; practically, this is a 
rare situation 

(c) A real double root: Mathematically, 𝛽𝛽2 = 4𝛼𝛼𝛼𝛼; geometrically, two or more of the SOPs 
are tangent and the other SOP passes through the point of tangency; practically, this is a 
rare situation 

(d) Two real roots: Mathematically, 𝛽𝛽2 > 4𝛼𝛼𝛼𝛼; physically, the three SOPs intersect at two 
distinct points; practically, this is the most common situation; one solution is correct and 
the other is either ambiguous or extraneous.  

Relationship to Traditional Solutions — Bancroft’s algorithm is readily programmed, but is 
not conducive to developing analytic expressions for the aircraft’s position as a function of the 
measurements. Thus, when available, traditional solutions to problems involving real and pseudo 
slant-ranges (e.g., three of the four problem cases shown in Table 11) — which are equivalent to 
Bancroft’s in terms of solution capability — remain valuable.  

Other Comments 
 Bancroft noted that his algorithm “performs better than an iterative solution in regions 

of poor GDoP”. The Gauss-Newton iterative, linearized least-squares solution method 
is addressed in Chapter 8. 

 Bancroft’s solution has been extended to situations involving more measurements 
than unknown variables (Ref. 49). Those equations are not employed herein, as the 
linearized least squares method addressed in Chapter 8 is preferred (Ref. 50). 

 Alternative solutions to the four-pseudo slant-range problem were published after 
Bancroft’s paper (e.g., Ref. 51). One, based traditional scalar algebra, is presented in 
Section 7.9. These alternatives are not as easily generalizable as Bancroft’s method. 
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7.3 Bancroft Solution for Three True Slant-Ranges 

7.3.1 Problem Formulation 

Bancroft’s algorithm (Section 7.2) was derived as the solution for four pseudo slant-range 
measurements. Its simplification to three homogeneus true slant-range measurements is the topic 
of this section. Extensions to multiple measurement types are discussed in Sections 7.4 - 7.6.  

Here, the slant-range measurements between the aircraft A and ground station 𝑖𝑖 = 1,2,3 are 

(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑖𝑖)2 = (𝑑𝑑𝑖𝑖𝑖𝑖)2 
[(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2] + [(𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝑖𝑖)2 − (𝑑𝑑𝑖𝑖𝑖𝑖)2] = 2[𝑥𝑥𝑖𝑖 𝑥𝑥𝐴𝐴 + 𝑦𝑦𝑖𝑖 𝑦𝑦𝐴𝐴 + 𝑧𝑧𝑖𝑖 𝑧𝑧𝐴𝐴] 

Eq 230 

A consequence of omitting the time component is that the Lorentzian norm is replaced by the 
Euclidean norm  

𝜆𝜆 = 〈𝐫𝐫𝐴𝐴, 𝐫𝐫𝐴𝐴〉 = (𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 Eq 231 

Also, matrix B and vectors b and 1 become 

𝐁𝐁 = �
𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2
𝑥𝑥3 𝑦𝑦3 𝑧𝑧3

�           𝐛𝐛 = �
(𝑥𝑥1)2 + (𝑦𝑦1)2 + (𝑧𝑧1)2 − (𝑑𝑑1𝐴𝐴)2

(𝑥𝑥2)2 + (𝑦𝑦2)2 + (𝑧𝑧2)2 − (𝑑𝑑2𝐴𝐴)2

(𝑥𝑥3)2 + (𝑦𝑦3)2 + (𝑧𝑧3)2 − (𝑑𝑑3𝐴𝐴)2
�           𝟏𝟏 = �

1
1
1
� Eq 232 

With these definitions, Eq 223 becomes (with sA is replaced by rA) 

2 𝐁𝐁 𝐫𝐫𝐴𝐴 = 𝜆𝜆 𝟏𝟏 + 𝐛𝐛 Eq 233 

7.3.2 Problem Solution 

The solution proceeds as in Subsection 7.2.3, Eq 225 - Eq 228, using three-element vectors in 
place of four-element vectors (i.e., without involving transmission time).  

𝐫𝐫𝐴𝐴 = 𝜆𝜆 𝐮𝐮 + 𝐯𝐯 Eq 234 

𝐮𝐮 = 1
2   𝐁𝐁

−1  𝟏𝟏 = [𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧]𝑇𝑇  

𝐯𝐯 = 1
2   𝐁𝐁

−1  𝐛𝐛 = [𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧]𝑇𝑇  

The Euclidian norm 𝜆𝜆 of 𝐫𝐫𝐴𝐴 satisfies 

𝛼𝛼 𝜆𝜆2 + 𝛽𝛽 𝜆𝜆 + 𝛾𝛾 = 0 Eq 235 

𝛼𝛼 = 〈𝐮𝐮,𝐮𝐮〉 = 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2 

𝛽𝛽 = 2〈𝐮𝐮, 𝐯𝐯〉 − 1 = 2 𝑢𝑢𝑥𝑥𝑣𝑣𝑥𝑥 + 2 𝑢𝑢𝑦𝑦𝑣𝑣𝑦𝑦 + 2 𝑢𝑢𝑧𝑧𝑣𝑣𝑧𝑧 − 1 

𝛾𝛾 = 〈𝐯𝐯, 𝐯𝐯〉 = 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2 
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Usually, Eq 235 has two distinct real roots 

𝜆𝜆± =
1

2 𝛼𝛼
�−𝛽𝛽 ± �𝛽𝛽2 − 4𝛼𝛼𝛼𝛼� Eq 236 

Thus there are two possible solutions for the aircraft location 𝐫𝐫𝐴𝐴 

𝐫𝐫𝐴𝐴± = �
𝑥𝑥𝐴𝐴±
𝑦𝑦𝐴𝐴±
𝑧𝑧𝐴𝐴±

� = 𝜆𝜆±  𝐮𝐮+ 𝐯𝐯 = �−
𝛽𝛽

2 𝛼𝛼
𝐮𝐮 + 𝐯𝐯� ± �

�𝛽𝛽2 − 4𝛼𝛼𝛼𝛼
2 𝛼𝛼

𝐮𝐮� Eq 237 

After reintroducing the superscript e to denote the coordinate frame, the aircraft 
latitude/longitude/ altitude are found from Eq 229. 

7.3.3 Ambiguity Resolution / Sensor Plane of Symmetry 

Assuming that the goal is to compute the aircraft’s latitude, longitude and altitude (e.g., using Eq 
229 or similar), processing of the slant-range measurements can be performed in any coordinate 
frame that subsequently can be related to the ECEF e-frame — typically by a translation and/or 
rotation. Thus, an analysis a-frame is considered which has its first two axes parallel to the plane 
defined by the three sensor locations. In this a-frame, the third coordinate of the sensors is the 
same, say 𝑧𝑧𝑆𝑆. Thus, in the a-frame, matrix 𝐁𝐁 and vector 𝐮𝐮 are 

𝐁𝐁𝐚𝐚 = �
𝑥𝑥1 𝑦𝑦1 𝑧𝑧𝑆𝑆
𝑥𝑥2 𝑦𝑦2 𝑧𝑧𝑆𝑆
𝑥𝑥3 𝑦𝑦3 𝑧𝑧𝑆𝑆

�                𝐮𝐮𝐚𝐚 = 1
2   (𝐁𝐁

𝐚𝐚)−1  𝟏𝟏 =
1

2 𝑧𝑧𝑆𝑆
�
0
0
1
� Eq 238 

It is shown in Eq 228 that, in the coordinate frame used for analysis, the two solutions are the 
sum of a common vector plus equal and opposite vectors that are proportional to 𝐮𝐮 (Table 12). 
Also, Eq 238 demonstrates that, for three slant-range measurements, the correct and ambiguous 
solutions are both perpendicular to the sensor plane (regardless of the frame used for analysis/ 
processing). It is clear physically that the two solutions must in fact be equi-distant from the 
sensor plane. Thus, for aircraft tracking using range sensors located on/near the ground, the 
ambiguous solution will be below the ground.  

Table 12  Physical Significance of Vectors in Solution for Slant-Range Measurements 

Vector Description 

−
𝛽𝛽

2 𝛼𝛼
𝐮𝐮 + 𝐯𝐯 

Extends from the analysis origin to the location on the sensor 
plane that is closest to the aircraft 

±
�𝛽𝛽2 − 4𝛼𝛼𝛼𝛼

2 𝛼𝛼
𝐮𝐮 

Extends perpendicular from the sensor plane to either the aircraft 
or the ambiguous solution for the aircraft position 
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7.3.4 Remarks 
 When only slant-range measurements are involved, matrix B (Eq 232) is independent of 

the measurements. It is possible to compute its inverse, as well as vector 𝐮𝐮 and scalar 𝛼𝛼 
once and store them for future use.  

 A two-dimensional (‘Flatland’) application of a range-measuring system is presented in 
Example 8, in Subsections 7.12.1 and 8.5.1. The latter demonstrates the accuracy 
degradation when aircraft are near the baseline connecting the stations, or its extensions. 
Similarly, for a three-dimensional situation, accuracy of the distance from the sensor 
plane with be degraded for aircraft locations near the plane. 

 For surveillance, three true range measurements can be accomplished using one transmit-
receive station and two receive only stations, provided that the times of all transmissions 
and receiptions are measured using synchronized clocks.  

7.4 Bancroft Solution for Two True Slant-Ranges and Altitude 

Bancroft’s algorithm can also be applied to situations involving two slant-range measurements 
and a measurement of aircraft altitude, because (for a spherical-earth model) an altitude measure-
ment can be converted to a slant-range from the center of the earth.  

When altitude is used as a measurement, one extra step is involved in the solution. For the 
Bancroft 𝐁𝐁 matrix (e.g., Eq 232) to be inverted, the analysis origin must not be in the plane 
formed by the three stations — or, as here, the two physical stations and center of the earth. One 
possible analysis origin, in ECEF coordinates, is of the form  

𝐫𝐫𝑜𝑜𝐞𝐞 = �
𝑥𝑥𝑜𝑜𝑒𝑒
𝑦𝑦𝑜𝑜𝑒𝑒
𝑧𝑧𝑜𝑜𝑒𝑒
� = �

cos(𝐿𝐿𝑜𝑜) cos(𝜆𝜆𝑜𝑜)
cos(𝐿𝐿𝑜𝑜) sin(𝜆𝜆𝑜𝑜)

sin(𝐿𝐿𝑜𝑜)
� 𝑘𝑘𝑅𝑅𝑒𝑒 Eq 239 

Here 𝐿𝐿𝑜𝑜 and 𝜆𝜆𝑜𝑜 are the latitude and longitude of an arbitrary point not on the baseline connecting 
the stations and 𝑘𝑘 is a number slightly less than 1.  

In ECEF coordinates, the physical stations locations are given by Eq 220, with i=1,2. The 
associated measurements equations are given by Eq 230, with i=1,2. The aircraft altitude ℎ𝐴𝐴 
measurement equation is 

(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 = (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 Eq 240 

The altitude measurement ‘station’ is the earth’s center, with ECEF coordinates given by: 

𝐫𝐫3𝐞𝐞 = [0 0 0]𝑇𝑇 Eq 241 

Bancroft’s algorithm is applied using offset station coordinates 
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𝚫𝚫𝐫𝐫𝑖𝑖𝐞𝐞 = 𝐫𝐫𝑖𝑖𝐞𝐞 − 𝐫𝐫𝑜𝑜𝐞𝐞 = �
𝑥𝑥𝑖𝑖𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒
� − �

𝑥𝑥𝑜𝑜𝑒𝑒
𝑦𝑦𝑜𝑜𝑒𝑒
𝑧𝑧𝑜𝑜𝑒𝑒
� = �

𝑥𝑥𝑖𝑖𝑒𝑒 − 𝑥𝑥𝑜𝑜𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒 − 𝑦𝑦𝑜𝑜𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒 − 𝑧𝑧𝑜𝑜𝑒𝑒
� = �

Δ𝑥𝑥𝑖𝑖𝑒𝑒

Δ𝑦𝑦𝑖𝑖𝑒𝑒

Δ𝑧𝑧𝑖𝑖𝑒𝑒
� Eq 242 

Matrix 𝐁𝐁 and vector 𝐛𝐛 are 

𝐁𝐁 = �
Δ𝑥𝑥1 Δ𝑦𝑦1 Δ𝑧𝑧1
Δ𝑥𝑥2 𝑦𝑦Δ2 Δ𝑧𝑧2
Δ𝑥𝑥3 Δ𝑦𝑦3 Δ𝑧𝑧3

�           𝐛𝐛 = �
(Δ𝑥𝑥1)2 + (Δ𝑦𝑦1)2 + (Δ𝑧𝑧1)2 − (𝑑𝑑1𝐴𝐴)2

(Δ𝑥𝑥2)2 + (Δ𝑦𝑦2)2 + (Δ𝑧𝑧2)2 − (𝑑𝑑2𝐴𝐴)2

(Δ𝑥𝑥3)2 + (Δ𝑦𝑦3)2 + (Δ𝑧𝑧3)2 − (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2
� Eq 243 

For these definitions of 𝐁𝐁 and 𝐛𝐛, the aircraft’s location is found relative to the analysis origin 

Δ𝐫𝐫𝐴𝐴𝐞𝐞 = [Δ𝑥𝑥𝐴𝐴𝑒𝑒 Δ𝑦𝑦𝐴𝐴𝑒𝑒 Δ𝑧𝑧𝐴𝐴𝑒𝑒]𝑇𝑇 Eq 244 

from Eq 231 - Eq 237. The solution for Δ𝐫𝐫𝐴𝐴𝐞𝐞 is then converted to ECEF coordinates using Eq 242, 
which is used to find the aircraft latitude and longitude using Eq 229.  

Remarks 
 The degradation in the accuracy of position estimates for aircraft near the baseline 

connecting the stations (and its extensions), which is cited in the previous section and 
described more fully in Subsection 8.5.1, is applicable here as well.  

 For surveillance, two true range measurements can be accomplished using one 
transmit-receive station and one receive only station, provided that the times of all 
transmissions and receiptions are measured using synchronized clocks.  

 The solution method described in this section is an alternative to that in Section 6.4. 

7.5 Bancroft Solution for Pseudo Slant-Ranges and Altitude 

7.5.1 Introduction 

In terms of the subject system’s functionality, this section best relates to Section 7.2. The two 
sections address the determination of an aircraft’s location based at least in part on pseudo slant-
ranges measured at a set of stations. While Section 7.2 assumes that only pseudo slant-range 
measurements are available, this section assumes that altitude is also available, and that a true 
slant-range may be as well. As often occurs when more than one measurement type is utilized, 
the resulting expressions are more complex than are expressions for a homogeneous set of 
measurements.  

7.5.2 Problem Formulation: Three Pseudo Slant-Ranges and Altitude 

The three physical ground stations have known coordinates latitude 𝐿𝐿𝑖𝑖, longitude 𝜆𝜆𝑖𝑖, and altitude 
ℎ𝑖𝑖, 𝑖𝑖 = 1,2,3. In ECEF coordinates, their locations are 
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𝐫𝐫𝑖𝑖𝐞𝐞 = �
𝑥𝑥𝑖𝑖𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒
� = �

cos(𝐿𝐿𝑖𝑖) cos(𝜆𝜆𝑖𝑖)
cos(𝐿𝐿𝑖𝑖) sin(𝜆𝜆𝑖𝑖)

sin(𝐿𝐿𝑖𝑖)
� (𝑅𝑅𝑒𝑒 + ℎ𝑖𝑖)          𝑖𝑖 = 1,2,3 Eq 245 

As previously (Eq 221), the unknown ECEF coordinates of the aircraft are 

𝐫𝐫𝐴𝐴𝐞𝐞 = [𝑥𝑥𝐴𝐴𝑒𝑒 𝑦𝑦𝐴𝐴𝑒𝑒 𝑧𝑧𝐴𝐴𝑒𝑒]𝑇𝑇 Eq 246 

For convenience, since quadratic quantities will be involved, use of the superscript e on 𝐫𝐫𝐴𝐴𝐞𝐞 and 
𝐫𝐫𝑖𝑖𝐞𝐞 and their components is discontinued until the end of this section.  

The aircraft-station pseudo slant-range measurements satisfy equations of the form  

(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑖𝑖)2 = (𝑐𝑐𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑐𝑐𝐴𝐴)2     ,     𝑖𝑖 = 1,2,3 
[(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 − (𝑐𝑐𝑐𝑐𝐴𝐴)2] + [(𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝑖𝑖)2 − (𝑐𝑐𝑐𝑐𝑖𝑖)2]

= 2[𝑥𝑥𝑖𝑖  𝑥𝑥𝐴𝐴 + 𝑦𝑦𝑖𝑖 𝑦𝑦𝐴𝐴 + 𝑧𝑧𝑖𝑖 𝑧𝑧𝐴𝐴 − 𝑐𝑐2 𝑡𝑡𝑖𝑖  𝑡𝑡𝐴𝐴]     ,     𝑖𝑖 = 1,2,3 
Eq 247 

The aircraft altitude ℎ𝐴𝐴 measurement equation is 

(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 = (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 Eq 248 

To formulate the vector-matrix equation to be solved, Eq 248 is substituted into Eq 247 as a 
constraint. The result can be written 

2 𝐁𝐁 𝐫𝐫𝐴𝐴 = 𝐛𝐛 + (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2𝟏𝟏  + 2𝑐𝑐2𝐭𝐭  𝑡𝑡𝐴𝐴 − 𝑐𝑐2𝟏𝟏 (𝑡𝑡𝐴𝐴)2 Eq 249 

𝐁𝐁 = �
𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2
𝑥𝑥3 𝑦𝑦3 𝑧𝑧3

�         𝐛𝐛 = �
(𝑥𝑥1)2 + (𝑦𝑦1)2 + (𝑧𝑧1)2 − (𝑐𝑐𝑐𝑐1)2

(𝑥𝑥2)2 + (𝑦𝑦2)2 + (𝑧𝑧2)2 − (𝑐𝑐𝑐𝑐2)2

(𝑥𝑥3)2 + (𝑦𝑦3)2 + (𝑧𝑧3)2 − (𝑐𝑐𝑐𝑐3)2
�         𝟏𝟏 = �

1
1
1
�         𝐭𝐭 = �

𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
�  

7.5.3 Problem Solution: Three Pseudo Slant-Ranges and Altitude 

Inverting matrix B and solving Eq 249 for 𝐫𝐫𝑨𝑨 yields 

𝐫𝐫𝐴𝐴 = 𝐮𝐮 + 𝐯𝐯  𝑡𝑡𝐴𝐴 + 𝐰𝐰  (𝑡𝑡𝐴𝐴)2 Eq 250 

𝐮𝐮 = 𝟏𝟏
𝟐𝟐  𝐁𝐁

−1  (𝐛𝐛 + (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2𝟏𝟏)            𝐯𝐯 = 𝑐𝑐2𝐁𝐁−1𝐭𝐭            𝐰𝐰 = −𝟏𝟏
𝟐𝟐𝑐𝑐

2𝐁𝐁−1𝟏𝟏  

Taking the Euclidian norm of 𝐫𝐫𝐴𝐴 in Eq 250 and using Eq 248 yields a quartic equation in 𝑡𝑡𝐴𝐴 

𝑎𝑎4(𝑡𝑡𝐴𝐴)4 + 𝑎𝑎3(𝑡𝑡𝐴𝐴)3 + 𝑎𝑎2(𝑡𝑡𝐴𝐴)2 + 𝑎𝑎1𝑡𝑡𝐴𝐴 + 𝑎𝑎0 = 0 Eq 251 

𝑎𝑎4 = 𝐰𝐰𝑇𝑇𝐰𝐰 𝑎𝑎3 = 2𝐯𝐯𝑇𝑇𝐰𝐰 𝑎𝑎2 = 2𝐮𝐮𝑇𝑇𝐰𝐰 + 𝐯𝐯𝑇𝑇𝐯𝐯  
𝑎𝑎1 = 2𝐮𝐮𝑇𝑇𝐯𝐯 𝑎𝑎0 = 𝐮𝐮𝑇𝑇𝐮𝐮 − (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 —  

When 𝑡𝑡𝐴𝐴 is found as a root of Eq 251 (see Subsection 7.5.6 below), 𝐫𝐫𝐴𝐴𝐞𝐞 follows from Eq 250. 
Then the aircraft latitude 𝐿𝐿𝐴𝐴 and longitude 𝜆𝜆𝐴𝐴 are given by Eq 229. 
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7.5.4 Problem Formulation: Two Pseudo and One True Slant-Range Plus Altitude 

Here again, the three physical ground stations have known latitude 𝐿𝐿𝑖𝑖, longitude 𝜆𝜆𝑖𝑖, and altitude 
ℎ𝑖𝑖, where i = 1, 2 or 3. In ECEF coordinates, their locations are given by Eq 245. The unknown 
ECEF coordinates of the aircraft are given by Eq 246. For convenience, use of the superscript e 
on 𝐫𝐫𝐴𝐴𝑒𝑒 and 𝐫𝐫𝑖𝑖𝑒𝑒 and their components is discontinued.  

The aircraft-station pseudo slant-range measurements satisfy equations of the form 

[(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 − (𝑐𝑐𝑐𝑐𝐴𝐴)2] + [(𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝑖𝑖)2 − (𝑐𝑐𝑐𝑐𝑖𝑖)2]
= 2[𝑥𝑥𝑖𝑖  𝑥𝑥𝐴𝐴 + 𝑦𝑦𝑖𝑖 𝑦𝑦𝐴𝐴 + 𝑧𝑧𝑖𝑖 𝑧𝑧𝐴𝐴 − 𝑐𝑐2 𝑡𝑡𝑖𝑖  𝑡𝑡𝐴𝐴]     ,     𝑖𝑖 = 1,2 

Eq 252 

The true slant-range measurement between the aircraft A and ground station 3 is 

[(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2] + [(𝑥𝑥3)2 + (𝑦𝑦3)2 + (𝑧𝑧3)2 − (𝑑𝑑3𝐴𝐴)2]
= 2[𝑥𝑥3 𝑥𝑥𝐴𝐴 + 𝑦𝑦3 𝑦𝑦𝐴𝐴 + 𝑧𝑧3 𝑧𝑧𝐴𝐴] 

Eq 253 

The aircraft altitude ℎ𝐴𝐴 measurement equation is 

(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 = (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 Eq 254 

In vector-matrix notation, Eq 252 - Eq 254 can be written as 

2 𝐁𝐁 𝐫𝐫𝐴𝐴 = 𝐛𝐛′ + (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2𝟏𝟏3  + 2𝑐𝑐2𝐭𝐭′  𝑡𝑡𝐴𝐴 − 𝑐𝑐2𝟏𝟏2 (𝑡𝑡𝐴𝐴)2 Eq 255 

𝐛𝐛′ = �
(𝑥𝑥1)2 + (𝑦𝑦1)2 + (𝑧𝑧1)2 − (𝑐𝑐𝑐𝑐1)2

(𝑥𝑥2)2 + (𝑦𝑦2)2 + (𝑧𝑧2)2 − (𝑐𝑐𝑐𝑐2)2

(𝑥𝑥3)2 + (𝑦𝑦3)2 + (𝑧𝑧3)2 − (𝑑𝑑3𝐴𝐴)2
�         𝟏𝟏3 = �

1
1
1
�         𝟏𝟏2 = �

1
1
0
�         𝐭𝐭′ = �

𝑡𝑡1
𝑡𝑡2
0
�  

Matrix 𝐁𝐁 is given in Eq 249. 

7.5.5 Problem Solution: Two Pseudo and One True Slant-Range Plus Altitude 

Inverting matrix B and solving for 𝐫𝐫𝐴𝐴 yields 

𝐫𝐫𝐴𝐴 = 𝐮𝐮′ + 𝐯𝐯′  𝑡𝑡𝐴𝐴 + 𝐰𝐰′  (𝑡𝑡𝐴𝐴)2 Eq 256 

𝐮𝐮′ = 𝟏𝟏
𝟐𝟐  𝐁𝐁

−1  (𝐛𝐛′ + (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2𝟏𝟏3)            𝐯𝐯′ = 𝑐𝑐2𝐁𝐁−1𝐭𝐭′            𝐰𝐰′ = −𝟏𝟏
𝟐𝟐𝑐𝑐

2𝐁𝐁−1𝟏𝟏2  

Taking the Euclidian norm of 𝐫𝐫𝑨𝑨 in Eq 256 and using Eq 254 yields a quartic equation in 𝑡𝑡𝐴𝐴 

𝑎𝑎4′ (𝑡𝑡𝐴𝐴)4 + 𝑎𝑎3′ (𝑡𝑡𝐴𝐴)3 + 𝑎𝑎2′ (𝑡𝑡𝐴𝐴)2 + 𝑎𝑎1′ 𝑡𝑡𝐴𝐴 + 𝑎𝑎0′ = 0 Eq 257 
𝑎𝑎4′ = (𝐰𝐰′)𝑇𝑇𝐰𝐰′ 𝑎𝑎3′ = 2 (𝐯𝐯′)𝑇𝑇𝐰𝐰′ 𝑎𝑎2′ = 2(𝐮𝐮′)𝑇𝑇𝐰𝐰′ + (𝐯𝐯′)𝑇𝑇𝐯𝐯′  
𝑎𝑎1′ = 2(𝐮𝐮′)𝑇𝑇𝐯𝐯′ 𝑎𝑎0′ = (𝐮𝐮′)𝑇𝑇𝐮𝐮′ − (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 —  

When 𝑡𝑡𝐴𝐴 is found as a root of Eq 257, 𝐫𝐫𝐴𝐴𝑒𝑒 follows from Eq 256. Then the aircraft latitude 𝐿𝐿𝐴𝐴 and 
longitude 𝜆𝜆𝐴𝐴 are given by Eq 229. 
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7.5.6 Remarks 
 Algebraic methods for finding the roots of a quartic polynomial equation such as Eq 251 

and Eq 257 has been known for approximately 500 years. Thus the two algorithms 
presented herein can be classified as non-iterative. The Matlab routine ‘roots’ implements 
one such method; in limited testing, it performed reliably (e.g., see Example 12, 
Subsection 7.12.5). During those tests, for aircraft locations in the service area, the 
correct root of Eq 251 was obvious from physical considerations.  

 Three pseudo slant-ranges and an altitude measurement (Subsections 7.5.2 - 7.5.3) is 
conceptually the measurement set for Wide Area Multilateration aircraft surveillance.  

 For surveillance, one true range and two pseudo range measurements (all slant-ranges) 
can be accomplished using a radar range subsystem and two receive-only ‘multilat-
eration’ stations having clocks which are synchronized with each other but not with the 
radar. Not requiring that the radar and multilateration stations be synchronized simplifies 
their integration. 

 Fang’s algorithm (Section 7.7) considers three pseudo slant-range stations in a Cartesian 
plane. The simplicity of that situation provides insights into the three-station pseudo 
range problem which are less apparent in a spherical context. However, the behavior of 
the solutions are qualitatively similar. 

7.6 Bancroft Solution for Two Pairs of Pseudo Slant-Ranges and Altitude 

7.6.1 Introduction 

In terms of the functionality of the system involved, this section is most closely related to Sec-
tion 7.5. Each addresses the determination of an aircraft’s location based on of time-difference-
of-arrival measurements of slant-range signals for a set of ground stations, plus knowledge of the 
aircraft’s altitude. However, whereas the preceding section assumes three ground stations with 
synchronized clocks, this section assumes two pairs of ground stations with the clocks for each 
pair being separately synchronized. This section is also related to Section 7.11, which addresses 
the determination of an aircraft’s location based on time-difference-of-arrival measurements of 
spherical-range signals for two pairs of separately synchronized ground stations. 

Unsynchronized slant-range differences can arise if one were to combine measurements from 
two separate navigation systems — e.g., GPS and Galileo. In the context of multilateration, it 
could arise as the result of a failure in the ground station synchronization network or inten-
tionally, as an aspect of the system design. Loran-C ‘cross-chaining’ involves similar 
assumptions concerning station time synchronization. 

7.6.2 Problem Formulation 

One ground station pair is labeled R and S; the other is labeled U and V. The ground stations 
have the known locations latitude 𝐿𝐿𝑖𝑖, longitude 𝜆𝜆𝑖𝑖, and altitude ℎ𝑖𝑖, where i = R, S, U or V. In 
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ECEF coordinates, their locations are 

𝐫𝐫𝑖𝑖𝐞𝐞 = �
𝑥𝑥𝑖𝑖𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒
� = �

cos(𝐿𝐿𝑖𝑖) cos(𝜆𝜆𝑖𝑖)
cos(𝐿𝐿𝑖𝑖) sin(𝜆𝜆𝑖𝑖)

sin(𝐿𝐿𝑖𝑖)
� (𝑅𝑅𝑒𝑒 + ℎ𝑖𝑖)          𝑖𝑖 = 𝑅𝑅, 𝑆𝑆,𝑈𝑈,𝑉𝑉 Eq 258 

The altitude measurement ‘station’, labeled H, is the earth’s center, with ECEF coordinates  

𝐫𝐫 𝐻𝐻e = [0 0 0]𝑇𝑇 Eq 259 

The unknown ECEF coordinates of the aircraft labeled A, are 

𝐫𝐫 𝐴𝐴e = [𝑥𝑥𝐴𝐴𝑒𝑒 𝑦𝑦𝐴𝐴𝑒𝑒 𝑧𝑧𝐴𝐴𝑒𝑒]𝑇𝑇 Eq 260 

Since altitude will be utilized as a measurement — rather than as a constraint, as in Sections 7.4 
and 7.5 — an analysis origin offset from the earth’s center must be used. One possible origin, in 
ECEF coordinates, is of the form  

𝐫𝐫𝑜𝑜𝐞𝐞 = �
𝑥𝑥𝑜𝑜𝑒𝑒
𝑦𝑦𝑜𝑜𝑒𝑒
𝑧𝑧𝑜𝑜𝑒𝑒
� = �

cos(𝐿𝐿𝑜𝑜) cos(𝜆𝜆𝑜𝑜)
cos(𝐿𝐿𝑜𝑜) sin(𝜆𝜆𝑜𝑜)

sin(𝐿𝐿𝑜𝑜)
� 𝑘𝑘𝑅𝑅𝑒𝑒 Eq 261 

Here 𝐿𝐿𝑜𝑜 and 𝜆𝜆𝑜𝑜 are the latitude and longitude of an arbitrary point not on either of the great circle 
arcs connecting the pairs of stations and k is a number slightly less than 1 — e.g., 0.97. 
Bancroft’s algorithm is then applied using offset station coordinates 

Δ𝐫𝐫𝑖𝑖𝐞𝐞 = 𝐫𝐫𝑖𝑖𝐞𝐞 − 𝐫𝐫𝑜𝑜𝐞𝐞 = �
𝑥𝑥𝑖𝑖𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒
� − �

𝑥𝑥𝑜𝑜𝑒𝑒
𝑦𝑦𝑜𝑜𝑒𝑒
𝑧𝑧𝑜𝑜𝑒𝑒
� = �

𝑥𝑥𝑖𝑖𝑒𝑒 − 𝑥𝑥𝑜𝑜𝑒𝑒

𝑦𝑦𝑖𝑖𝑒𝑒 − 𝑦𝑦𝑜𝑜𝑒𝑒

𝑧𝑧𝑖𝑖𝑒𝑒 − 𝑧𝑧𝑜𝑜𝑒𝑒
� = �

Δ𝑥𝑥𝑖𝑖𝑒𝑒

Δ𝑦𝑦𝑖𝑖𝑒𝑒

Δ𝑧𝑧𝑖𝑖𝑒𝑒
�           𝑖𝑖 = 𝑅𝑅, 𝑆𝑆,𝑈𝑈,𝑉𝑉,𝐻𝐻 Eq 262 

Clearly, Δ𝐫𝐫𝐻𝐻𝐞𝐞 = −𝐫𝐫𝑜𝑜𝐞𝐞 . The aircraft’s location is first found relative to the analysis origin (Eq 244) 

Δ𝐫𝐫𝐴𝐴𝐞𝐞 = 𝐫𝐫𝐴𝐴𝐞𝐞 − 𝐫𝐫𝑂𝑂𝐞𝐞 = [Δ𝑥𝑥𝐴𝐴𝑒𝑒 Δ𝑦𝑦𝐴𝐴𝑒𝑒 Δ𝑧𝑧𝐴𝐴𝑒𝑒]𝑇𝑇 Eq 263 

For convenience, since quadratic quantities will be involved, use of the superscript e on vectors 
and their components is discontinued until the end of this section.  

For stations R and S, the aircraft-station pseudo slant-range measurements satisfy  

�(Δ𝑥𝑥𝐴𝐴)2 + (Δ𝑦𝑦𝐴𝐴)2 + (Δ𝑧𝑧𝐴𝐴)2 − �𝑐𝑐𝑐𝑐𝐴𝐴(𝑅𝑅𝑅𝑅)�
2
� + [(Δ𝑥𝑥𝑖𝑖)2 + (Δ𝑦𝑦𝑖𝑖)2 + (Δ𝑧𝑧𝑖𝑖)2 − (𝑐𝑐𝑐𝑐𝑖𝑖)2]

= 2�Δ𝑥𝑥𝑖𝑖 Δ𝑥𝑥𝐴𝐴 + Δ𝑦𝑦𝑖𝑖 Δ𝑦𝑦𝐴𝐴 + Δ𝑧𝑧𝑖𝑖 Δ𝑧𝑧𝐴𝐴 − 𝑐𝑐2 𝑡𝑡𝑖𝑖  𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�     ,     𝑖𝑖 = 𝑅𝑅, 𝑆𝑆 
Eq 264 

Similarly, for stations U and V, the aircraft-station pseudo slant-range measurements satisfy  

�(Δ𝑥𝑥𝐴𝐴)2 + (Δ𝑦𝑦𝐴𝐴)2 + (Δ𝑧𝑧𝐴𝐴)2 − �𝑐𝑐𝑐𝑐𝐴𝐴(𝑈𝑈𝑈𝑈)�
2
� + [(Δ𝑥𝑥𝑖𝑖)2 + (Δ𝑦𝑦𝑖𝑖)2 + (Δ𝑧𝑧𝑖𝑖)2 − (𝑐𝑐𝑐𝑐𝑖𝑖)2]

= 2�Δ𝑥𝑥𝑖𝑖 Δ𝑥𝑥𝐴𝐴 + Δ𝑦𝑦𝑖𝑖 Δ𝑦𝑦𝐴𝐴 + Δ𝑧𝑧𝑖𝑖 Δ𝑧𝑧𝐴𝐴 − 𝑐𝑐2 𝑡𝑡𝑖𝑖  𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�     ,     𝑖𝑖 = 𝑈𝑈,𝑉𝑉 
Eq 265 

Here 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) denotes the unknown time of transmission by the aircraft based on the clock for 
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stations R and S. Similarly 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) denotes the unknown time of transmission by the aircraft 
based on the clock for stations U and V. Also, 𝑡𝑡𝑖𝑖 the measured time of reception by ground 
station i based on its clock group. 

The aircraft altitude ℎ𝐴𝐴 measurement equation is 

(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 = (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 
(Δ𝑥𝑥𝐴𝐴 − Δ𝑥𝑥𝐻𝐻)2 + (Δ𝑦𝑦𝐴𝐴 − Δ𝑦𝑦𝐻𝐻)2 + (Δ𝑧𝑧𝐴𝐴 − Δ𝑧𝑧𝐻𝐻)2 = (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2 

[(Δ𝑥𝑥𝐴𝐴)2 + (Δ𝑦𝑦𝐴𝐴)2 + (Δ𝑧𝑧𝐴𝐴)2] + [(Δ𝑥𝑥𝐻𝐻)2 + (Δ𝑦𝑦𝐻𝐻)2 + (Δ𝑧𝑧𝐻𝐻)2 − (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2]
= 2[Δ𝑥𝑥𝐻𝐻 Δ𝑥𝑥𝐴𝐴 + Δ𝑦𝑦𝐻𝐻 Δ𝑦𝑦𝐴𝐴 + Δ𝑧𝑧𝐻𝐻 Δ𝑧𝑧𝐴𝐴] 

Eq 266 

7.6.3 Problem Solution 

The solution approach is to: (1) consider station pair R and S, in conjunction with ‘station’ H, 
and find a relationship between the aircraft time of transmission 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) and the squared distance 
between the analysis origin and the aircraft 𝜆𝜆; (2) similarly, consider station pair U and V in 
conjunction with H, and find a relationship between 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) and 𝜆𝜆; and (3) consider both pairs of 
stations and find an additional relationship for 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅), 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) and 𝜆𝜆. All other results then follow.  

Analysis of Stations R and S — First selecting stations R and S and the altitude measurement 
for analysis, Eq 264 and Eq 266 can be written as 

2 𝐁𝐁𝑅𝑅𝑅𝑅 Δ𝐫𝐫𝐴𝐴 = 𝐛𝐛𝑅𝑅𝑅𝑅 + 𝜆𝜆𝟏𝟏3  + 2𝑐𝑐2𝐭𝐭𝑅𝑅𝑅𝑅  𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) − 𝑐𝑐2𝟏𝟏2 �𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
2
 Eq 267 

𝐁𝐁𝑅𝑅𝑅𝑅 = �
Δ𝑥𝑥𝑅𝑅 Δ𝑦𝑦𝑅𝑅 Δ𝑧𝑧𝑅𝑅
Δ𝑥𝑥𝑆𝑆 Δ𝑦𝑦𝑆𝑆 Δ𝑧𝑧𝑆𝑆
Δ𝑥𝑥𝐻𝐻 Δ𝑦𝑦𝐻𝐻 Δ𝑧𝑧𝐻𝐻

�  

𝐛𝐛𝑅𝑅𝑅𝑅 = �
(Δ𝑥𝑥𝑅𝑅)2 + (Δ𝑦𝑦𝑅𝑅)2 + (Δ𝑧𝑧𝑅𝑅)2 − (𝑐𝑐𝑐𝑐𝑅𝑅)2

(Δ𝑥𝑥𝑆𝑆)2 + (Δ𝑦𝑦𝑆𝑆)2 + (Δ𝑧𝑧𝑆𝑆)2 − (𝑐𝑐𝑐𝑐𝑆𝑆)2

(Δ𝑥𝑥𝐻𝐻)2 + (Δ𝑦𝑦𝐻𝐻)2 + (Δ𝑧𝑧𝐻𝐻)2 − (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2
�  

𝜆𝜆 = (Δ𝑥𝑥𝐴𝐴)2 + (Δ𝑦𝑦𝐴𝐴)2 + (Δ𝑧𝑧𝐴𝐴)2  
  𝟏𝟏3 = [1 1 1]𝑇𝑇            𝟏𝟏2 = [1 1 0]𝑇𝑇            𝐭𝐭𝑅𝑅𝑅𝑅 = [𝑡𝑡𝑅𝑅 𝑡𝑡𝑆𝑆 0]𝑇𝑇   

Inverting matrix 𝐁𝐁𝑅𝑅𝑅𝑅 yields 

Δ𝐫𝐫𝐴𝐴 = 𝐜𝐜𝑅𝑅𝑅𝑅 + 𝐝𝐝𝑅𝑅𝑅𝑅 𝜆𝜆  + 𝐞𝐞𝑅𝑅𝑅𝑅  𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) + 𝐟𝐟𝑅𝑅𝑅𝑅 �𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
2
 Eq 268 

𝐜𝐜𝑅𝑅𝑅𝑅 = 1
2 𝐁𝐁𝑅𝑅𝑅𝑅

−1 𝐛𝐛𝑅𝑅𝑅𝑅 𝐝𝐝𝑅𝑅𝑅𝑅 = 1
2 𝐁𝐁𝑅𝑅𝑅𝑅

−1 𝟏𝟏3  

𝐞𝐞𝑅𝑅𝑅𝑅 = 𝑐𝑐2𝐁𝐁𝑅𝑅𝑅𝑅−1 𝐭𝐭𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 = −1
2 𝑐𝑐

2𝐁𝐁𝑅𝑅𝑅𝑅−1 𝟏𝟏2  

Taking the Euclidian norm of Δ𝐫𝐫𝑨𝑨 in Eq 268 and collecting terms yields  
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𝑎𝑎𝑅𝑅𝑅𝑅,40�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
4

+ 𝑎𝑎𝑅𝑅𝑅𝑅,30�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
3

+ 𝑎𝑎𝑅𝑅𝑅𝑅,20�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
2

+ 𝑎𝑎𝑅𝑅𝑅𝑅,10 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) + 𝑎𝑎𝑅𝑅𝑅𝑅,00

+ 𝑎𝑎𝑅𝑅𝑅𝑅,02 𝜆𝜆2 + 𝑎𝑎𝑅𝑅𝑅𝑅,01 𝜆𝜆 + 𝑎𝑎𝑅𝑅𝑅𝑅,21�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
2
 𝜆𝜆 + 𝑎𝑎𝑅𝑅𝑅𝑅,11 𝑡𝑡𝐴𝐴(𝑅𝑅𝑆𝑆)  𝜆𝜆 = 0 

Eq 269 

𝑎𝑎𝑅𝑅𝑅𝑅,40 = 𝐟𝐟𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑅𝑅𝑅𝑅 𝑎𝑎𝑅𝑅𝑅𝑅,30 = 2 𝐞𝐞𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑅𝑅𝑅𝑅 𝑎𝑎𝑅𝑅𝑅𝑅,20 = 2 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑅𝑅𝑅𝑅 + 𝐞𝐞𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑅𝑅𝑅𝑅  
𝑎𝑎𝑅𝑅𝑅𝑅,10 = 2 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑅𝑅𝑅𝑅 𝑎𝑎𝑅𝑅𝑅𝑅,00 = 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐜𝐜𝑅𝑅𝑅𝑅 𝑎𝑎𝑅𝑅𝑅𝑅,02 = 𝐝𝐝𝑅𝑅𝑅𝑅𝑇𝑇   𝐝𝐝𝑅𝑅𝑅𝑅  

𝑎𝑎𝑅𝑅𝑅𝑅,01 = 2 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐝𝐝𝑅𝑅𝑅𝑅 − 1 𝑎𝑎𝑅𝑅𝑅𝑅,21 = 2 𝐝𝐝𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑅𝑅𝑅𝑅 𝑎𝑎𝑅𝑅𝑅𝑅,11 = 2 𝐝𝐝𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑅𝑅𝑅𝑅  

The above steps transform a situation (Eq 267) involving four unknown variables and three 
scalar equations into one involving: (a) one scalar polynomial equation (Eq 269) relating two 
unknown variables (𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) and 𝜆𝜆), and (b) a vector equation (Eq 268) for finding the unknown 
aircraft coordinates from 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) and 𝜆𝜆. 

Analysis of Stations U and V — Analysis for stations U and V is identical (except for notation 
designating stations) to that for stations R and S. Thus Eq 265 and Eq 266 can be written as 

2 𝐁𝐁𝑈𝑈𝑈𝑈 Δ𝐫𝐫𝐴𝐴 = 𝐛𝐛𝑈𝑈𝑈𝑈 + 𝜆𝜆𝟏𝟏3  + 2𝑐𝑐2𝐭𝐭𝑈𝑈𝑈𝑈  𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) − 𝑐𝑐2𝟏𝟏2 �𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
2
 Eq 270 

𝐁𝐁𝑈𝑈𝑈𝑈 = �
Δ𝑥𝑥𝑈𝑈 Δ𝑦𝑦𝑈𝑈 Δ𝑧𝑧𝑈𝑈
Δ𝑥𝑥𝑉𝑉 Δ𝑦𝑦𝑉𝑉 Δ𝑧𝑧𝑉𝑉
Δ𝑥𝑥𝐻𝐻 Δ𝑦𝑦𝐻𝐻 Δ𝑧𝑧𝐻𝐻

�  

𝐛𝐛𝑈𝑈𝑈𝑈 = �
(Δ𝑥𝑥𝑈𝑈)2 + (Δ𝑦𝑦𝑈𝑈)2 + (Δ𝑧𝑧𝑈𝑈)2 − (𝑐𝑐𝑐𝑐𝑈𝑈)2

(Δ𝑥𝑥𝑉𝑉)2 + (Δ𝑦𝑦𝑉𝑉)2 + (Δ𝑧𝑧𝑉𝑉)2 − (𝑐𝑐𝑐𝑐𝑉𝑉)2

(Δ𝑥𝑥𝐻𝐻)2 + (Δ𝑦𝑦𝐻𝐻)2 + (Δ𝑧𝑧𝐻𝐻)2 − (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)2
�  

𝜆𝜆 = (Δ𝑥𝑥𝐴𝐴)2 + (Δ𝑦𝑦𝐴𝐴)2 + (Δ𝑧𝑧𝐴𝐴)2  
  𝟏𝟏3 = [1 1 1]𝑇𝑇            𝟏𝟏2 = [1 1 0]𝑇𝑇            𝐭𝐭𝑈𝑈𝑈𝑈 = [𝑡𝑡𝑈𝑈 𝑡𝑡𝑉𝑉 0]𝑇𝑇   

Inverting matrix 𝐁𝐁𝑈𝑈𝑈𝑈 yields 

Δ𝐫𝐫𝐴𝐴 = 𝐜𝐜𝑈𝑈𝑈𝑈 + 𝐝𝐝𝑈𝑈𝑈𝑈 𝜆𝜆  + 𝐞𝐞𝑈𝑈𝑈𝑈  𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) + 𝐟𝐟𝑈𝑈𝑈𝑈 �𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
2
 Eq 271 

𝐜𝐜𝑈𝑈𝑈𝑈 = 1
2 𝐁𝐁𝑈𝑈𝑈𝑈

−1 𝐛𝐛𝑈𝑈𝑈𝑈 𝐝𝐝𝑈𝑈𝑈𝑈 = 1
2 𝐁𝐁𝑈𝑈𝑈𝑈

−1 𝟏𝟏3  

𝐞𝐞𝑈𝑈𝑈𝑈 = 𝑐𝑐2𝐁𝐁𝑈𝑈𝑈𝑈−1 𝐭𝐭𝑈𝑈𝑈𝑈 𝐟𝐟𝑈𝑈𝑈𝑈 = −1
2 𝑐𝑐

2𝐁𝐁𝑈𝑈𝑈𝑈−1  𝟏𝟏2  

Taking the Euclidian norm of Δ𝐫𝐫𝑨𝑨 in Eq 271 and collecting terms yields  

𝑎𝑎𝑈𝑈𝑈𝑈,40�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
4

+ 𝑎𝑎𝑈𝑈𝑈𝑈,30�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
3

+ 𝑎𝑎𝑈𝑈𝑈𝑈,20�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
2

+ 𝑎𝑎𝑈𝑈𝑈𝑈,10 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) + 𝑎𝑎𝑈𝑈𝑈𝑈,00

+ 𝑎𝑎𝑈𝑈𝑈𝑈,02 𝜆𝜆2 + 𝑎𝑎𝑈𝑈𝑈𝑈,01 𝜆𝜆 + 𝑎𝑎𝑈𝑈𝑈𝑈,21�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
2
 𝜆𝜆 + 𝑎𝑎𝑅𝑅𝑅𝑅,11 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)  𝜆𝜆 = 0 

Eq 272 

𝑎𝑎𝑈𝑈𝑈𝑈,40 = 𝐟𝐟𝑈𝑈𝑈𝑈𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑈𝑈,30 = 2 𝐞𝐞𝑈𝑈𝑈𝑈𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑈𝑈,20 = 2 𝐜𝐜𝑈𝑈𝑈𝑈𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈 + 𝐞𝐞𝑈𝑈𝑈𝑈𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈  
𝑎𝑎𝑈𝑈𝑈𝑈,10 = 2 𝐜𝐜𝑈𝑈𝑈𝑈𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑈𝑈,00 = 𝐜𝐜𝑈𝑈𝑈𝑈𝑇𝑇   𝐜𝐜𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑈𝑈,02 = 𝐝𝐝𝑈𝑈𝑈𝑈𝑇𝑇   𝐝𝐝𝑈𝑈𝑈𝑈  

𝑎𝑎𝑈𝑈𝑈𝑈,01 = 2 𝐜𝐜𝑈𝑈𝑈𝑈𝑇𝑇   𝐝𝐝𝑈𝑈𝑈𝑈 − 1 𝑎𝑎𝑈𝑈𝑈𝑈,21 = 2 𝐝𝐝𝑈𝑈𝑈𝑈𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑈𝑈,11 = 2 𝐝𝐝𝑈𝑈𝑈𝑈𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈  

The result is a scalar polynomial equation relating the unknown variables 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) and 𝜆𝜆. 
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Combined Analysis of Both Station Pairs — Both Eq 269 and Eq 272 are relationships 
between an aircraft time-of-transmission, 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) or 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈), and the square of the distance between 
the analysis origin and the aircraft 𝜆𝜆. Thus a third relationship between these three quantities is 
needed. To that end, observe that the right-hand sides of Eq 268 and Eq 271 must be equal. 
Consequently, the norm of Δ𝐫𝐫𝐴𝐴, 𝜆𝜆, is also given by the inner product of the two right-hand sides, 
which results in the following equation 

𝑎𝑎220�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
2
�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�

2
+ 𝑎𝑎210�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�

2
�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)� + 𝑎𝑎120�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)��𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�

2

+ 𝑎𝑎110�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)��𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)� + 𝑎𝑎200�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
2

+ 𝑎𝑎020�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�
2

+ 𝑎𝑎100�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�
+ 𝑎𝑎010�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)� + 𝑎𝑎201�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)�

2
 𝜆𝜆 + 𝑎𝑎021�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)�

2
 𝜆𝜆 + 𝑎𝑎101�𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅)� 𝜆𝜆

+ 𝑎𝑎011�𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈)� 𝜆𝜆 + 𝑎𝑎002 𝜆𝜆2 + 𝑎𝑎001 𝜆𝜆 + 𝑎𝑎000 = 0 

Eq 273 

𝑎𝑎220 = 𝐟𝐟𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈 𝑎𝑎210 =   𝐟𝐟𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈 𝑎𝑎120 = 𝐞𝐞𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈  

𝑎𝑎110 = 𝐞𝐞𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈 𝑎𝑎200 = 𝐟𝐟𝑅𝑅𝑅𝑅𝑇𝑇   𝐜𝐜𝑈𝑈𝑈𝑈 𝑎𝑎020 = 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈  

𝑎𝑎100 = 𝐞𝐞𝑅𝑅𝑅𝑅𝑇𝑇   𝐜𝐜𝑈𝑈𝑈𝑈 𝑎𝑎010 = 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈 𝑎𝑎201 =   𝐟𝐟𝑅𝑅𝑅𝑅𝑇𝑇   𝐝𝐝𝑈𝑈𝑈𝑈  

𝑎𝑎021 = 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐟𝐟𝑈𝑈𝑈𝑈 𝑎𝑎101 = 𝐞𝐞𝑅𝑅𝑅𝑅𝑇𝑇   𝐝𝐝𝑈𝑈𝑈𝑈 𝑎𝑎011 = 𝐝𝐝𝑅𝑅𝑅𝑅𝑇𝑇   𝐞𝐞𝑈𝑈𝑈𝑈  

𝑎𝑎002 = 𝐝𝐝𝑅𝑅𝑅𝑅𝑇𝑇   𝐝𝐝𝑈𝑈𝑈𝑈 𝑎𝑎001 = 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐝𝐝𝑈𝑈𝑈𝑈 + 𝐝𝐝𝑅𝑅𝑅𝑅𝑇𝑇   𝐜𝐜𝑈𝑈𝑈𝑈 − 1 𝑎𝑎000 = 𝐜𝐜𝑅𝑅𝑅𝑅𝑇𝑇   𝐜𝐜𝑈𝑈𝑈𝑈  

Solution from Three Analyses — The unknown variables 𝜆𝜆, 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) and 𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) are the solutions 
of the simultaneous equations Eq 269, Eq 272 and Eq 273. Then 𝑡𝑡𝐴𝐴(𝑅𝑅𝑅𝑅) and 𝜆𝜆 are substituted into 
Eq 268 or (𝑡𝑡𝐴𝐴(𝑈𝑈𝑈𝑈) and 𝜆𝜆 are substituted into Eq 271) to find Δ𝐫𝐫𝑨𝑨. Next, 𝐫𝐫𝐴𝐴𝐞𝐞 is found from 𝐫𝐫𝐴𝐴𝐞𝐞 =
Δ𝐫𝐫𝐴𝐴 + 𝐫𝐫𝑜𝑜𝐞𝐞. Finally, the aircraft latitude and longitude are found from Eq 229. 

7.6.4 Remarks 
 Simultaneous solution of equations Eq 269, Eq 272 and Eq 273 requires use of a 

numerical root-finding technique such Newton-Raphson. Since recourse must be made to 
a numerical method, the Gauss-Newton method addressed in Chapter 8 is a viable 
alternative to this approach.  

 The problem addressed here illustrates the significantly greater degree of complexity 
involved where there are two clock synchronization groups. Section 7.11, which involves 
pseudo spherical-ranges, demonstrates the same behavior.  
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7.7 Traditional Solution for Three Pseudo Slant-Ranges in Flatland 

7.7.1 Introduction 

Flatland, two-dimensional plane, is a useful construct for developing an understanding of a three-
dimensional situation. Moreover, Flatland can approximate three-dimensional situations 
involving limited geographical areas and vertical extent — e.g., the surface of an airport. 
Scenarios involving Flatland can be analyzed as special cases of the Bancroft/vector-norm 
method addressed earlier in this chapter. However, approaches involving direct solution for 
aircraft coordinates were developed prior Bancroft’s work and remain useful. Solutions for 
traditional approaches are the same as those found using 
Bancroft’s algorithm, but generally provide better insights 
and may require fewer manipulations.  

A relatively simple scenario involving two true range 
measurements in Flatland is addressed as Example 8 
(Subsection 7.12.1). This section considers three pseudo 
slant-range measurements in Flatland, which requires more 
complex analysis.  

Assume that an aircraft in Flatland is within the coverage 
region of a surveillance system that has three stations — M, U and V — with known coordinates 
(see figure). For this analysis, station M is at the origin and station U is on an axis. Station V is 
not necessarily on an axis. The Flatland plane is defined by the station locations.  

The three stations have synchronized clocks (which are not synchronized with an aircraft clock), 
and each station measures the time-of-arrival of the same aircraft transmission at its location — 
𝑡𝑡𝑀𝑀, 𝑡𝑡𝑈𝑈 and 𝑡𝑡𝑉𝑉, respectively. The primary unknown variables are the aircraft coordinates ξ𝐴𝐴 and 
ζ𝐴𝐴. The time of the aircraft’s transmission 𝑡𝑡𝐴𝐴 can also be found, but is often not needed.  

The solution that follows utilizes the approach described in Ref. 44. The first step is to eliminate 
the common offset in 𝑡𝑡𝑀𝑀, 𝑡𝑡𝑈𝑈 and 𝑡𝑡𝑉𝑉 by forming the slant-range differences Δ𝑑𝑑𝑀𝑀𝑀𝑀 and Δ𝑑𝑑𝑀𝑀𝑀𝑀, 
taking M as the common station and 𝑐𝑐 as the propagation speed of electromagnetic waves 

Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 𝑐𝑐 (𝑡𝑡𝑀𝑀 − 𝑡𝑡𝑈𝑈) Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 𝑐𝑐 (𝑡𝑡𝑀𝑀 − 𝑡𝑡𝑉𝑉) Eq 274 

The measured range differences are equated to the modeled geometric range differences, treating 
ξ𝐴𝐴 and ζ𝐴𝐴 as unknown variables 

Δ𝑑𝑑𝑀𝑀𝑀𝑀 = �ξ𝐴𝐴
2 + ζ𝐴𝐴

2 − ��ξ𝐴𝐴 − 𝑈𝑈�
2

+ ζ𝐴𝐴
2  

Δ𝑑𝑑𝑀𝑀𝑀𝑀 = �ξ𝐴𝐴
2 + ζ𝐴𝐴

2 − ��ξ𝐴𝐴 − 𝑉𝑉ξ�
2

+ �ζ𝐴𝐴 −  𝑉𝑉ζ�
2

 

Eq 275 
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In Eq 275: (a) each equation describes a hyperbola with the stations involved as foci, and (b) the 
left-hand side of each of equation can be either positive or negative. The solution is the 
intersection of specific branches of each hyperbola. Implicit in this formulation is that 

 |Δ𝑑𝑑𝑀𝑀𝑀𝑀| ≤ 𝑈𝑈 |Δ𝑑𝑑𝑀𝑀𝑀𝑀| ≤ 𝑉𝑉 Eq 276 

After re-arranging, then squaring, each equation in Eq 275, the result is 

𝑈𝑈2 − 2 𝑈𝑈 ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 = −2  Δ𝑑𝑑𝑀𝑀𝑀𝑀�ξ𝐴𝐴
2 + ζ𝐴𝐴

2  

𝑉𝑉2 − 2 𝑉𝑉ξ   ξ𝐴𝐴 − 2 𝑉𝑉ζ    ζ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 = −2  Δ𝑑𝑑𝑀𝑀𝑀𝑀�ξ𝐴𝐴
2 + ζ𝐴𝐴

2  
Eq 277 

In Eq 277, 𝑉𝑉2 = 𝑉𝑉ξ2 + 𝑉𝑉ζ2. This pair of equations form the basis of the solution. 

7.7.2 Solution General Case 

This solution follows Ref. 44 by Fang. Dividing one line of Eq 277 by the other yields 

ζ𝐴𝐴 = 𝐶𝐶1  ξ𝐴𝐴 + 𝐶𝐶0 Eq 278 

𝐶𝐶1 =
𝑈𝑈  Δ𝑑𝑑𝑀𝑀𝑀𝑀
 𝑉𝑉ζ   Δ𝑑𝑑𝑀𝑀𝑀𝑀

−
𝑉𝑉ξ
 𝑉𝑉ζ

              𝑉𝑉ζ ≠ 0               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐶𝐶0 =
1

2 𝑉𝑉ζ
  �𝑉𝑉2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀 Δ𝑑𝑑𝑀𝑀𝑀𝑀 ��

𝑈𝑈
Δ𝑑𝑑𝑀𝑀𝑀𝑀

�
2

− 1��          𝑉𝑉ζ ≠ 0          Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

Condition 𝑉𝑉ζ ≠ 0 requires that the three stations not form a straight line; its violation is addressed 
in Subsection 7.7.5. Condition ∆𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 requires that the aircraft not be on the perpendicular 
bisector of the baseline MU; its violation is addressed in Subsection 7.7.3.  

Using Eq 278 to substitute for ζA in the first equation in Eq 277, then squaring and collecting like 
terms, yields:   

𝐸𝐸2 ξ𝐴𝐴
2 + 𝐸𝐸1 ξ𝐴𝐴 + 𝐸𝐸0 = 0               𝑉𝑉ζ ≠ 0               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  Eq 279 

𝐸𝐸2 = 𝐶𝐶12 − ��
𝑈𝑈

Δ𝑑𝑑𝑀𝑀𝑀𝑀
�
2

− 1�                Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐸𝐸1 = 2 𝐶𝐶1 𝐶𝐶0 + 𝑈𝑈 ��
𝑈𝑈

Δ𝑑𝑑𝑀𝑀𝑀𝑀
�
2

− 1�                Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐸𝐸0 = 𝐶𝐶02 −
Δ𝑑𝑑𝑀𝑀𝑀𝑀2

4
��

𝑈𝑈
Δ𝑑𝑑𝑀𝑀𝑀𝑀

�
2

− 1�
2

               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

Thus, the general solution of the ‘three station pseudo slant-range system in Flatland’ problem 
can be summarized as: 
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 Solve the quadratic equation that is first line of Eq 279 to obtain (generally) two 
candidate values for ξ𝐴𝐴  

 Substitute the two candidate values for ξ𝐴𝐴 into the first line of Eq 278 to find the 
corresponding values for ζ𝐴𝐴  

 Attempt to determine which candidate solution pair (ξ𝐴𝐴, ζ𝐴𝐴) is correct by substituting 
each into Eq 275. 

If needed, the aircraft time of transmission 𝑡𝑡𝐴𝐴 can be found from  

𝑡𝑡𝐴𝐴 = 𝑡𝑡𝑀𝑀 −
1
𝑐𝑐
�ξ𝐴𝐴

2 + ζ𝐴𝐴
2  Eq 280 

The solution process (particularly dividing one line of Eq 277 by the other) can generate a 
second candidate solution that corresponds to pseudo slant-range differences of −Δ𝑑𝑑𝑀𝑀𝑀𝑀 and 
−Δ𝑑𝑑𝑀𝑀𝑀𝑀. (i.e., the negation of both measured slant-range differences). When this occurs, an 
extraneous solution is created, and can be detected by substituting both candidate solutions into 
the original equations to be solved (Eq 275). However, in other situations, two sets of aircraft 
locations can result in the same values for Δ𝑑𝑑𝑀𝑀𝑀𝑀 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 — i.e., an ambiguous solution exists.  

7.7.3 Solution Special Cases 

Special case situations are addressed in this subsection. These are necessary for a complete 
analysis of the problem. 

Aircraft Equidistant from Stations M and U — The general solution of Eq 278 and Eq 279 
fails when Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0. When this occurs, Eq 277 reduces to  

ξ𝐴𝐴 = 1
2𝑈𝑈               𝐻𝐻2 ζ𝐴𝐴

2 + 𝐻𝐻1  ζ𝐴𝐴 + 𝐻𝐻0 = 0 Eq 281 

𝐻𝐻2 = 4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2 − 4 𝑉𝑉ζ2 
 𝐻𝐻1 = 4𝑉𝑉ζ   �𝑉𝑉2 − 𝑉𝑉ξ    𝑈𝑈 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 � 

 𝐻𝐻0 = 𝑈𝑈2 Δ𝑑𝑑𝑀𝑀𝑀𝑀2  −   �𝑉𝑉2 − 𝑉𝑉ξ    𝑈𝑈 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �
2
 

 

This is the most significant special case. It requires that measurements 𝑡𝑡𝑀𝑀 and 𝑡𝑡𝑈𝑈 be tested for 
equality, and when that condition is true, that Eq 281 be used rather than Eq 279 and Eq 278. An 
alternative method of addressing is Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0 is to redefine the coordinate axes so that the 
solution involves division by Δ𝑑𝑑𝑀𝑀𝑀𝑀 rather than Δ𝑑𝑑𝑀𝑀𝑀𝑀. 

Aircraft Equidistant from Station M and Stations U and V — When an aircraft is equidistant 
from both station pairs, MU and MV, the discriminant for the quadratic equation in ζ𝐴𝐴 (Eq 281) is 
zero. Then the quadratic equation has a double root at:  
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ξ𝐴𝐴 = 1
2𝑈𝑈               ζ𝐴𝐴 =

𝑉𝑉2 − 𝑈𝑈 𝑉𝑉ξ
2  𝑉𝑉ζ

= 1
2𝑉𝑉ζ +

𝑉𝑉ξ
2 𝑉𝑉ζ

�𝑉𝑉ξ − U� Eq 282 

Aircraft at a Degenerate Point — When 𝐻𝐻2 = 0 in Eq 281, the quadratic equation is degenerate; 
then there is a single root at:  

ξ𝐴𝐴 = 1
2𝑈𝑈                 ζ𝐴𝐴 =

𝑈𝑈2 𝑉𝑉ζ
4 𝑉𝑉ξ   �𝑈𝑈  − 𝑉𝑉ξ�

−
𝑉𝑉ξ   �𝑈𝑈 −𝑉𝑉ξ�

4 𝑉𝑉ζ   
 Eq 283 

The possible existence of a single-root requires that the quadratic equation in Eq 281 be tested 
for 𝐻𝐻2 = 0 and that Eq 283 be utilized when the test is satisfied. The single-root case is dis-
cussed below (Eq 285), without requiring that Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0. 

Aircraft on a Baseline Extension — When an aircraft is at a station or on a baseline extension, 
the slant-range difference for the two stations on the associated baseline is the same for any 
location and is equal in magnitude to the baseline length. For the station geometry shown above, 
assume that the aircraft is on the ξ-axis at or to the left of M. Then ∆𝑑𝑑𝑀𝑀𝑀𝑀 = −𝑈𝑈, so the discrim-
inant for Eq 279 is zero, indicating the occurrence of a double-root. Thus the aircraft position is  

ξ𝐴𝐴 = −
𝐶𝐶0
𝐶𝐶1

=
𝑉𝑉2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2

2 �𝑉𝑉ξ   + Δ𝑑𝑑𝑀𝑀𝑀𝑀�
                 ζ𝐴𝐴 = 0 Eq 284 

The expression for the location of the aircraft relative to the nearest station (i.e., ξ𝐴𝐴 in Eq 284) 
does not depend upon the length of the baseline involved. This solution (Eq 284) is a simplificat-
ion of the general solution; it need not be treated as a special case. 

The solution in Eq 284 depends on both conditions |∆𝑑𝑑𝑀𝑀𝑀𝑀| = 𝑈𝑈 and |∆𝑑𝑑𝑀𝑀𝑀𝑀| ≤ 𝑉𝑉 being valid. If 
either is violated, the solution will change in character — either it may not exist (the discriminant 
is negative) or the double root may divide into two single roots (the discriminant is positive). For 
this reason, locations on the baseline extensions (including at a station) are unstable. Also, while 
Eq 284 is derived for only one of six baseline extensions, by transforming the coordinate axes, it 
can be applied to any baseline extension.  

Single Root – Degenerate Quadratic — While Eq 279 is generally a quadratic function of ξ𝐴𝐴, it 
reduces to a linear function of ξ𝐴𝐴 when 𝐸𝐸2 = 0. The condition 𝐸𝐸2 = 0 is equivalent to 

𝑉𝑉2 Δ𝑑𝑑𝑀𝑀𝑀𝑀2 + 𝑈𝑈2 Δ𝑑𝑑𝑀𝑀𝑀𝑀2 − 2 𝑈𝑈 𝑉𝑉ξ    Δ𝑑𝑑𝑀𝑀𝑀𝑀  Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 𝑈𝑈2𝑉𝑉ζ2 = 0 Eq 285 

The loci of locations having a single-root solution can be found by substituting Eq 275 into Eq 
285. The result is analytically intractable, as it involves all possible products of the three radicals 
in Eq 275; repeated isolating and squaring will yield in a 8th order polynomial. Alternatively, the 
expression can be readily solved numerically — e.g., using the methods of Subsection 2.1.8. The 
result of such a calculation, for stations that form an equilateral triangle with unit baselines, is 



DOT Volpe Center   

 7-24 

shown as the green curves in Figure 31. Geometrically, the single-solution case occurs when the 
hyperbolas corresponding to Δ𝑑𝑑𝑀𝑀𝑈𝑈 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 have parallel asymptotes.  

 
Figure 31  Solution Regions for Three Pseudo Slant-Range Stations in Flatland 

7.7.4 Characterization of General Case Solutions 

The loci of single-root solutions to Eq 281 (three green curves in Figure 31) partition the ξ – ζ  
plane into four regions. When there are two roots to Eq 279, both are located in the same region 
(Ref. 48). When the aircraft is near the boundary separating two regions, the incorrect solution is 
very distant from the correct solution. 

Extraneous Solution: Roots from Different Branches — This situation occurs when the 
aircraft is in the ‘extraneous (correct solution detectable)’ area of the ξ – ζ plane in Figure 31. An 
algebraic indicator is that 𝐸𝐸 in Eq 279 is negative. Geometrically, each solution is formed by the 
intersection of hyperbola branches which are distinct from those which form the other solution 
(Figure 32(a)). The filled circle corresponds to the correct slant-range differences, and the 
unfilled circle to their sign-reversed versions.  

Ambiguous Solution: Roots from Same Branches — This situation occurs when the aircraft is 
in one of the three rounded-V-shaped ‘ambiguous solution’ areas in Figure 31. An algebraic 
indicator is that 𝐸𝐸 in Eq 279 is positive. Both solutions are formed by intersections of the 
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branches of the hyperbolas which correspond to the correct slant-range differences (Figure 
32(b)). The correct solution cannot be identified from the available information. 

   
 (a) Different Branches (Extraneous Soln.) (b) Same Branches (Ambiguous Soln.) 

Figure 32  Types of Solutions for Three Pseudo Slant-Range Stations 

For the square area shown in Figure 31 (3 x 3 BLUs), the ‘extraneous (correct solution detect-
able)’ region is 62.5% of the total area, and each of the three ‘ambiguous (correct solution not 
detectable)’ regions is 12.5%. If attention is limited to 1.5 x 1.5 BLUs (which better resembles a 
region of operational interest), the ‘extraneous’ region is 79.8% of the total and each of the three 
‘ambiguous’ regions is 6.7%. 

7.7.5 Stations Form a Straight Line 

General Case — Arranging three pseudo-range stations in a straight line is not common, but 
may be an option in some situations — e.g., for a surveillance system monitoring off-shore 
flights that are nominally parallel to a coastline. When the stations form a line, the ‘Flatland 
plane’ can be defined by the stations and each aircraft, and need not be ‘horizontal’. For this 
station arrangement (i.e., 𝑉𝑉ζ = 0 and 𝑉𝑉 = 𝑉𝑉ξ), the general case solution of Eq 278 - Eq 279 fails. 
However, the same solution process can be followed, starting from Eq 277, yielding 

ξ𝐴𝐴 =
(𝑉𝑉2Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 𝑈𝑈2Δ𝑑𝑑𝑀𝑀𝑀𝑀) + Δ𝑑𝑑𝑀𝑀𝑀𝑀  Δ𝑑𝑑𝑀𝑀𝑀𝑀 (Δ𝑑𝑑𝑀𝑀𝑀𝑀 − Δ𝑑𝑑𝑀𝑀𝑀𝑀)

2 (U Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 𝑉𝑉 Δ𝑑𝑑𝑀𝑀𝑀𝑀)  

ζ𝐴𝐴 = ±�
�𝑈𝑈2 − 2 𝑈𝑈ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4 Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− ξ𝐴𝐴

2           Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

Eq 286 
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ζ𝐴𝐴 = ±�
�𝑉𝑉2 − 2 𝑉𝑉ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4 Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− ξ𝐴𝐴

2           Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

The two solutions in Eq 286 are symmetric with respect to the line on which the stations are 
located, and the incorrect solution is ambiguous (rather than extraneous). Symmetric solutions 
are not unexpected for stations in a line; the same symmetry occurs for two slant-range measure-
ments in Flatland (Subsection 7.12.1). This suggests that stations that ‘almost’ form a straight 
line will have ambiguous solutions that are ‘almost’ symmetric about that ‘line’.  

Aircraft Equidistant from Station M and Stations U and V — For this station arrangement, it 
is not possible for both Δ𝑑𝑑𝑀𝑀𝑀𝑀 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 to be zero. 

Aircraft on Baseline Extension — When an aircraft is on an extension of both baselines con-
necting stations M, U and V, then ∆𝑑𝑑𝑀𝑀𝑀𝑀 = ±𝑈𝑈 and ∆𝑑𝑑𝑀𝑀𝑀𝑀 = ±𝑉𝑉, with the same sign applying to 
both measurements. Thus, the expression for ξ𝐴𝐴   in Eq 286 is singular and a solution does not 
exist. Recourse to Eq 277 yields ζ𝐴𝐴 = 0 from both expressions; there is no solution for ξ𝐴𝐴. 

7.7.6 Remarks 

Service Area — Navigation or surveillance systems are intended to provide service in a defined 
geographic area or volume. In a system’s service area/volume, the measurement geometry (as 
well as the signal-to-noise ratio) must be satisfactory. For a three-station pseudorange system 
with equal baselines, the service area is approximately a circle with its center at the mid-point of 
the station locations and radius equal to one-half the baseline length (Figure 31). This region 
includes most of the area within triangle connecting the stations and part of the regions outside 
(but adjacent to) the baselines. Subsection 8.5.2 addresses service areas. 

Contribution of Derivation — Fang’s (Ref. 44) solution to the ‘three pseudo slant-ranges in 
Flatland’ problem has several advantages: (1) The coordinate system is sensor based; (2) it only 
requires finding the roots of a quadratic equation in one position coordinate; and (3) it provides 
insight into the effects of geometry on the solution. In contrast, Bancroft’s algorithm employs 
vectors and involves the solution of a quadratic equation for the Lorentzian norm of the aircraft 
location, which itself is a quadratic quantity. Interestingly, the requirements for the coordinate 
frames for the two methods conflict. A third derivation takes a coordinate-free approach utilizing 
distances and angles (Ref. 52).  

Key to Derivation — The key step in Fang’s derivation is dividing the two equations in Eq 277. 
If, instead, one were to square the two equations separately to eliminate the radicals, the result 
would be two fourth-order polynomial equations. Geometrically, two families of hyperbolas, one 
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associated with each baseline, intersect at up to four points and thus can require a fourth-order 
polynomial for computing all the intersections. Fang’s derivation takes advantage of the fact that 
the two slant-range differences have one station in common.  

Two Pairs of Stations — One could define a hyperbolic system involving four stations 
comprised of two separately synchronized pairs of stations (similar to Loran-C cross-chaining). 
A derivation similar to the above would require two squaring operations to remove all radicals, 
which would result in a fourth-order polynomial.  

Numerical Calculations — When numerical results are needed, Bancroft’s algorithm may be 
preferable to implementing the method of this section. If vector-matrix software is available, the 
coding task is simpler and does not require that ∆𝑑𝑑𝑀𝑀𝑀𝑀 = 0 be treated as a special case.  

Aircraft Latitude/Longitude Coordinates — If the Cartesian ξ – ζ frame origin and axes are 
known relative to the ECEF e-frame (Section 5.1), or if the station latitudes/longitudes/(altitudes) 
are known, then aircraft locations in the ξ – ζ frame can be converted to e-frame coordinates and 
thence to latitude/ longitude/(altitude) — see Subsection 7.8.2. Omitting/ignoring altitude 
implicitly assumes that the stations are on the surface of the earth. 

Relationship to Classic Hyperbola Parameters — Figure 33 shows the classic form of a 
hyperbola which satisfies the equation 

𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑏𝑏2
= 1 Eq 287 

This classic hyperbola can be related to the hy-
perbola described by the first line of Eq 275. 
Equating the distances between the vertices and 
the foci of the two hyperbolas, yields: 

2 𝑎𝑎 = |∆𝑑𝑑𝑀𝑀𝑀𝑀| 

2�𝑎𝑎2 + 𝑏𝑏2 = 𝑈𝑈 
Eq 288 

Thus the tangent of the acute angle that an 
asymptote makes with the baseline is: 

𝑏𝑏
𝑎𝑎

= ��
𝑈𝑈

Δ𝑑𝑑𝑀𝑀𝑀𝑀
�
2

− 1                Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 Eq 289 

The quantity under the radical in Eq 289 is fundamental to this formulation, and also appears in 
the expressions for 𝐶𝐶0 (Eq 278) and 𝐸𝐸2, 𝐸𝐸1 and 𝐸𝐸0 (Eq 279). 

 
Figure 33  Classic Form for Hyperbola 
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Application to Ellipsoid LOPs — Reference 44 points out that — with some sign reversals — 
the equations of this section would apply to measurements of the two sums of the slant-ranges 
for three ground stations to an aircraft. While not commonly implemented (e.g., by a multi-static 
radar involving one transmitter and two non-colocated receivers), it is a point worth noting. 

Insight into More Complex Situations — The problem addressed in this section is a simpler 
version of the problem addressed in Section 7.10, which involves a spherical earth. Qualitatively, 
the solutions behave similarly. 

7.8 Traditional Solution for Three Slant-Ranges 

7.8.1 Cartesian Coordinate Solution 

An aircraft’s position can be found from three slant-range 
using Bancroft’s vector norm (Section 7.3). However, a 
simpler approach, whereby the aircraft coordinates are found 
directly and in sequence, is readily developed using the station 
geometry employed in Section 7.7. Accordingly, consider the 
station arriangement shown on the right, where the three 
stations all lie in the ξ – ζ plane which is embedded in the 
three-dimensional the ξ – ζ–η space. 

The three slant-range measurements – 𝑑𝑑𝑖𝑖𝑖𝑖 ( 𝑖𝑖 = 𝑀𝑀,𝑈𝑈,𝑉𝑉) – satisfy the equations 

�ξ𝐴𝐴�
2

+ �ζ𝐴𝐴�
2

+ (𝜂𝜂𝐴𝐴)2 = (𝑑𝑑𝑀𝑀𝑀𝑀)2 

�ξ𝐴𝐴 − 𝑈𝑈�
2

+ �ζ𝐴𝐴�
2

+ (𝜂𝜂𝐴𝐴)2 = (𝑑𝑑𝑈𝑈𝑈𝑈)2 

�ξ𝐴𝐴 − 𝑉𝑉ξ�
2

+ �ζ𝐴𝐴 −  𝑉𝑉ζ�
2

+ (𝜂𝜂𝐴𝐴)2 = (𝑑𝑑𝑉𝑉𝑉𝑉)2 

Eq 290 

Completing the squares and differencing first line with the second and third lines yields 

−2 𝑈𝑈 ξ𝐴𝐴 + 𝑈𝑈2 = (𝑑𝑑𝑈𝑈𝑈𝑈)2 − (𝑑𝑑𝑀𝑀𝑀𝑀)2 
−2 𝑉𝑉ξ    ξ𝐴𝐴 − 2 𝑉𝑉ζ    ζ𝐴𝐴 + 𝑉𝑉2 = (𝑑𝑑𝑉𝑉𝑉𝑉)2 − (𝑑𝑑𝑀𝑀𝑀𝑀)2 Eq 291 

It follows that the aircraft position components (ξ𝐴𝐴  , ζ𝐴𝐴,𝜂𝜂𝐴𝐴) can be found in sequence by 

ξ𝐴𝐴 =
1
2
𝑈𝑈 +

(𝑑𝑑𝑀𝑀𝑀𝑀)2 − (𝑑𝑑𝑈𝑈𝑈𝑈)2

2 𝑈𝑈
 

ζ𝐴𝐴 = −
𝑉𝑉ξ
𝑉𝑉ζ
ξ𝐴𝐴 +

𝑉𝑉2

2 𝑉𝑉ζ
+

(𝑑𝑑𝑀𝑀𝑀𝑀)2 − (𝑑𝑑𝑉𝑉𝑉𝑉)2

2 𝑉𝑉ζ
 

𝜂𝜂𝐴𝐴± = ±�(𝑑𝑑𝑀𝑀𝑀𝑀)2 − �ξ𝐴𝐴�
2
− �ζ𝐴𝐴�

2
 

Eq 292 
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Remarks: 
 The traditional solution approach discussed in this section involves significantly fewer 

computations than Bancroft’s method (Section 7.3).  

 The simplicity of this method is due to selection of the coordinate frame based on the 
station locations. However, that station-based frame is often not operationally useful. 
Calculation of aircraft latitude/longitude/altitude values is the subject of the following 
subsection. 

 For this approach, the correct and ambiguous solutions (Eq 292) are symmetric about the 
plane containing the sensors. This behavior is also observed for the Bancroft approach in 
Subsection 7.3.3. For most aircraft application, the ‘–’ solution can be rejected. 

7.8.2 Aircraft Latitude/Longitude/Altitude 

To convert the solution of Eq 292 to more useful geodetic quantities, assume that the latitudes 𝐿𝐿𝑖𝑖, 
longitudes 𝜆𝜆𝑖𝑖 and altitudes ℎ𝑖𝑖 of the stations are known (𝑖𝑖 = 𝑀𝑀,𝑈𝑈,𝑉𝑉). Then, for a spherical 
model of the earth, the ECEF e-frame station coordinates are (Section 5.1) 

𝐫𝐫𝐎𝐎𝑖𝑖𝐞𝐞 = �
𝑥𝑥𝑂𝑂𝑂𝑂𝑒𝑒

𝑦𝑦𝑂𝑂𝑂𝑂𝑒𝑒

𝑧𝑧𝑂𝑂𝑂𝑂𝑒𝑒
� = �

cos(𝐿𝐿𝑖𝑖) cos(𝜆𝜆𝑖𝑖)
cos(𝐿𝐿𝑖𝑖) sin(𝜆𝜆𝑖𝑖)

sin(𝐿𝐿𝑖𝑖)
� (𝑅𝑅𝑒𝑒 + ℎ𝑖𝑖)          𝑖𝑖 = 𝑀𝑀,𝑈𝑈,𝑉𝑉 Eq 293 

Subscript O, denoting the center of the earth, is added to 𝐫𝐫𝐎𝐎𝑖𝑖𝐞𝐞  and its components for emphasis, as 
two coordinate origins are involved. The e-frame unit vectors for the coordinate axis ξ – ζ–η are  

𝟏𝟏ξ𝐞𝐞  = �
1ξ,𝑥𝑥e

1ξ,𝑦𝑦e

1ξ,𝑧𝑧e
� =

𝐫𝐫𝐎𝐎𝑈𝑈𝐞𝐞 − 𝐫𝐫𝐎𝐎𝑀𝑀𝐞𝐞

�𝐫𝐫𝐎𝐎𝑈𝑈𝐞𝐞 − 𝐫𝐫𝐎𝐎𝑀𝑀𝐞𝐞 �
 

𝟏𝟏𝜂𝜂𝐞𝐞  = �
1𝜂𝜂,𝑥𝑥
e

1𝜂𝜂,𝑦𝑦
e

1𝜂𝜂,𝑧𝑧
e
� =

𝟏𝟏ξ𝐞𝐞 ⨯ �𝐫𝐫𝐎𝐎𝑉𝑉𝐞𝐞 − 𝐫𝐫𝐎𝐎𝑀𝑀𝐞𝐞 �
�𝟏𝟏ξ𝐞𝐞 ⨯ �𝐫𝐫𝐎𝐎𝑉𝑉𝐞𝐞 − 𝐫𝐫𝐎𝐎𝑀𝑀𝐞𝐞 ��

 

𝟏𝟏ζ𝐞𝐞  = �
1ζ,𝑥𝑥e

1ζ,𝑦𝑦e

1ζ,𝑧𝑧e
� = 𝟏𝟏𝜂𝜂𝐞𝐞 ⨯ 𝟏𝟏ξ𝐞𝐞 

Eq 294 

The vector from the earth’s center to the aircraft is the sum of the vectors 𝐫𝐫𝐎𝐎𝑀𝑀𝐞𝐞  and 𝐫𝐫𝐌𝐌𝐴𝐴±
𝐞𝐞 , the 

latter being [ξ𝐴𝐴 ζ𝐴𝐴 𝜂𝜂𝐴𝐴±]𝑇𝑇 after a coordinate transformation. Thus  

𝐫𝐫𝐎𝐎𝐴𝐴±
𝐞𝐞 = �

𝑥𝑥𝑂𝑂𝑂𝑂±
𝑒𝑒

𝑦𝑦𝑂𝑂𝑂𝑂±
𝑒𝑒

𝑧𝑧𝑂𝑂𝑂𝑂±
𝑒𝑒

� = �
𝑥𝑥𝑂𝑂𝑂𝑂𝑒𝑒

𝑦𝑦𝑂𝑂𝑂𝑂𝑒𝑒

𝑧𝑧𝑂𝑂𝑂𝑂𝑒𝑒
� + �

1ξ,𝑥𝑥e 1ζ,𝑥𝑥e 1𝜂𝜂,𝑥𝑥
e

1ξ,𝑦𝑦e 1ζ,𝑦𝑦e 1𝜂𝜂,𝑦𝑦
e

1ξ,𝑧𝑧e 1ζ,𝑧𝑧e 1𝜂𝜂,𝑧𝑧
e
� �
ξ𝐴𝐴
ζ𝐴𝐴
𝜂𝜂𝐴𝐴±

� Eq 295 

It follows that 
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𝐿𝐿𝐴𝐴± = arctan

⎝

⎛ 𝑧𝑧𝑂𝑂𝑂𝑂±
𝑒𝑒

��𝑥𝑥𝑂𝑂𝑂𝑂±
𝑒𝑒 �

2
+ �𝑦𝑦𝑂𝑂𝑂𝑂±

𝑒𝑒 �
2
⎠

⎞ 

𝜆𝜆𝐴𝐴± = arctan�𝑦𝑦𝑂𝑂𝑂𝑂±
𝑒𝑒  , 𝑥𝑥𝑂𝑂𝑂𝑂±

𝑒𝑒 � 

ℎ𝐴𝐴± = ��𝑥𝑥𝑂𝑂𝑂𝑂±
𝑒𝑒 �

2
+ �𝑦𝑦𝑂𝑂𝑂𝑂±

𝑒𝑒 �
2

+ �𝑧𝑧𝑂𝑂𝑂𝑂±
𝑒𝑒 �

2
− 𝑅𝑅𝑒𝑒 

Eq 296 

For an ellipsoidal model of the earth, Eq 293 and Eq 296 must be modified (see Section 9.3). 

7.9 Traditional Solution for Four Pseudo Slant-Ranges 

7.9.1 Problem Formulation 

The solution for three pseudo slant-range stations in Flatland — addressed in Section 7.8 and 
based on Ref. 44 — can be extended to four pseudo slant-range stations in a three-dimensional 
‘world’. The resulting solution is an alternative to using Bancroft’s method (Section 7.2). 
Accordingly, and extending the notation of Section 7.8, consider a Cartesian coordinate frame 
with axes (ξ,  ζ, 𝜂𝜂). The four stations and their known coordinates are:  M (0,0,0), U (𝑈𝑈, 0,0), V 
(𝑉𝑉ξ,𝑉𝑉ζ, 0) and W (𝑊𝑊ξ,𝑊𝑊ζ,𝑊𝑊𝜂𝜂). The aircraft and its unknown coordinates are denoted by A 
(ξ𝐴𝐴,  ζ𝐴𝐴, 𝜂𝜂𝐴𝐴). The stations have synchronized clocks. Each station measures the time of arrival — 
denoted by in 𝑡𝑡𝑀𝑀, 𝑡𝑡𝑈𝑈, 𝑡𝑡𝑉𝑉 and 𝑡𝑡𝑊𝑊, respectively — of the same aircraft transmission. The time of 
transmission is not known to the stations. 

The first step is to eliminate the common clock offset included in 𝑡𝑡𝑀𝑀, 𝑡𝑡𝑈𝑈, 𝑡𝑡𝑉𝑉 and 𝑡𝑡𝑊𝑊. The 
resulting slant-range differences Δ𝑑𝑑𝑀𝑀𝑀𝑀, Δ𝑑𝑑𝑀𝑀𝑀𝑀 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 are formed by taking M as the common 
station and 𝑐𝑐 as the propagation speed of electromagnetic waves 

Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 𝑐𝑐 (𝑡𝑡𝑀𝑀 − 𝑡𝑡𝑈𝑈) Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 𝑐𝑐 (𝑡𝑡𝑀𝑀 − 𝑡𝑡𝑉𝑉) Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 𝑐𝑐 (𝑡𝑡𝑀𝑀 − 𝑡𝑡𝑊𝑊) Eq 297 

The scaled measured time differences are equated to the modeled geometric range differences, 
with the aircraft coordinates ξ𝐴𝐴, ζ𝐴𝐴 and 𝜂𝜂𝐴𝐴 as unknown variables 

Δ𝑑𝑑𝑀𝑀𝑀𝑀 = �ξ𝐴𝐴
2 + ζ𝐴𝐴

2 + 𝜂𝜂𝐴𝐴
2 −��ξ𝐴𝐴 − 𝑈𝑈�

2
+ ζ𝐴𝐴

2 + 𝜂𝜂𝐴𝐴
2  

Eq 298 Δ𝑑𝑑𝑀𝑀𝑀𝑀 = �ξ𝐴𝐴
2 + ζ𝐴𝐴

2+𝜂𝜂𝐴𝐴
2 −��ξ𝐴𝐴 − 𝑉𝑉ξ�

2
+ �ζ𝐴𝐴 −  𝑉𝑉ζ�

2
+𝜂𝜂𝐴𝐴

2  

Δ𝑑𝑑𝑀𝑀𝑀𝑀 = �ξ𝐴𝐴
2 + ζ𝐴𝐴

2+𝜂𝜂𝐴𝐴
2 −��ξ𝐴𝐴 −𝑊𝑊ξ�

2
+ �ζ𝐴𝐴 −  𝑊𝑊ζ�

2
+ �𝜂𝜂𝐴𝐴 −  𝑊𝑊𝜂𝜂�

2
 

In Eq 298, each equation describes a hyperbola of revolution (also called a hyperboloid). The 
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two stations involved are the hyperpola foci and their connecting baseline forms the major axis, 
as well as the axis of revolution. The solution (aircraft position) is the intersection of specific 
branches of each hyperboloid. Implicit in this formulation is that 

 |Δ𝑑𝑑𝑀𝑀𝑀𝑀| ≤ 𝑈𝑈 |Δ𝑑𝑑𝑀𝑀𝑀𝑀| ≤ 𝑉𝑉 |Δ𝑑𝑑𝑀𝑀𝑀𝑀| ≤ 𝑊𝑊 Eq 299 

After re-arranging, then squaring, each equation in Eq 298, the results are 

𝑈𝑈2 − 2 𝑈𝑈 ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 = −2  Δ𝑑𝑑𝑀𝑀𝑀𝑀�ξ𝐴𝐴
2 + ζ𝐴𝐴

2 + 𝜂𝜂𝐴𝐴
2  

𝑉𝑉2 − 2 𝑉𝑉ξ   ξ𝐴𝐴 − 2 𝑉𝑉ζ    ζ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 = −2  Δ𝑑𝑑𝑀𝑀𝑀𝑀�ξ𝐴𝐴
2 + ζ𝐴𝐴

2 + 𝜂𝜂𝐴𝐴
2  

𝑊𝑊2 − 2 𝑊𝑊ξ   ξ𝐴𝐴 − 2 𝑊𝑊ζ    ζ𝐴𝐴 − 2 𝑊𝑊𝜂𝜂 𝜂𝜂𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 = −2  Δ𝑑𝑑𝑀𝑀𝑀𝑀�ξ𝐴𝐴
2 + ζ𝐴𝐴

2 + 𝜂𝜂𝐴𝐴
2  

Eq 300 

In Eq 300, 𝑉𝑉2 = 𝑉𝑉ξ2 + 𝑉𝑉ζ2 and 𝑊𝑊2 = 𝑊𝑊ξ
2 + 𝑊𝑊ζ

2 + 𝑊𝑊𝜂𝜂
2.  

7.9.2 Solution General Case 

Referring to Eq 300, dividing the second line by the first and re-arranging yields 

ζ𝐴𝐴 = 𝐶𝐶1  ξ𝐴𝐴 + 𝐶𝐶0 Eq 301 

𝐶𝐶1 =
𝑈𝑈  Δ𝑑𝑑𝑀𝑀𝑀𝑀
 𝑉𝑉ζ   Δ𝑑𝑑𝑀𝑀𝑀𝑀

−
𝑉𝑉ξ
 𝑉𝑉ζ

              𝑉𝑉ζ ≠ 0               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐶𝐶0 =
1

2 𝑉𝑉ζ
  �𝑉𝑉2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀 Δ𝑑𝑑𝑀𝑀𝑀𝑀 ��

𝑈𝑈
Δ𝑑𝑑𝑀𝑀𝑀𝑀

�
2

− 1��          𝑉𝑉ζ ≠ 0          Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

Eq 301 is identical to Eq 278. Condition 𝑉𝑉ζ ≠ 0 requires that stations M, U and V  not form a 
straight line — see Subsections 7.9.5 and 7.9.6. Condition ∆𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 requires that the aircraft 
not be on the perpendicular bisector of the baseline MU — see Subsection 7.9.3. 

In Eq 300, dividing third line by the first, using Eq 301 to eliminate ζ𝐴𝐴 and re-arranging yields 

𝜂𝜂𝐴𝐴 = 𝐷𝐷1  ξ𝐴𝐴 + 𝐷𝐷0 Eq 302 

𝐷𝐷1 =
𝑈𝑈  Δ𝑑𝑑𝑀𝑀𝑀𝑀
𝑊𝑊𝜂𝜂  Δ𝑑𝑑𝑀𝑀𝑀𝑀

−
 𝑊𝑊ξ   +  𝑊𝑊ζ    𝐶𝐶1

𝑊𝑊𝜂𝜂
             𝑊𝑊𝜂𝜂 ≠ 0               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐷𝐷0 =  
1

2 𝑊𝑊𝜂𝜂
�𝑊𝑊2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 −𝑊𝑊ζ    𝐶𝐶0 − ��

𝑈𝑈
Δ𝑑𝑑𝑀𝑀𝑀𝑀

�
2

− 1�Δ𝑑𝑑𝑀𝑀𝑀𝑀Δ𝑑𝑑𝑀𝑀𝑀𝑀�  

Conditions 𝑊𝑊𝜂𝜂 ≠ 0 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 apply to both lines of Eq 302. Condition 𝑊𝑊𝜂𝜂 ≠ 0 requires that 
station W not be in the plane formed by stations M, U and V — see Subsection 7.9.4.  

Using Eq 301 and Eq 302 to substitute for ζA and 𝜂𝜂𝐴𝐴, respectively, in the first line in Eq 300, then 
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squaring and collecting like terms, yields:   

𝐸𝐸2 ξ𝐴𝐴
2 + 𝐸𝐸1 ξ𝐴𝐴 + 𝐸𝐸0 = 0  Eq 303 

𝐸𝐸2 = 4Δ𝑑𝑑𝑀𝑀𝑀𝑀2 (1 + 𝐶𝐶12 + 𝐷𝐷12) − 4𝑈𝑈2  

𝐸𝐸1 = 4Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �2𝐶𝐶0𝐶𝐶1   + 2𝐷𝐷0𝐷𝐷1 + 𝑈𝑈��
𝑈𝑈

Δ𝑑𝑑𝑀𝑀𝑀𝑀
�
2

− 1��  

𝐸𝐸0 = 4Δ𝑑𝑑𝑀𝑀𝑀𝑀2 (𝐶𝐶02 + 𝐷𝐷02) − (𝑈𝑈2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 )2  

The aircraft coordinates are found by substituting the two solutions to Eq 303 into Eq 301 and Eq 
302, then determining which coordinate set is correct. The incorrect solution may be either 
extraneous (and detectable by substituting into Eq 298) or ambiguous (and not detectable without 
additional information). If needed, the aircraft time of transmission 𝑡𝑡𝐴𝐴 can be found from  

𝑡𝑡𝐴𝐴 = 𝑡𝑡𝑀𝑀 −
1
𝑐𝑐
�ξ𝐴𝐴

2 + ζ𝐴𝐴
2 + 𝜂𝜂𝐴𝐴

2  Eq 304 

7.9.3 Solution Special Cases 

Aircraft Equidistant from Stations M and U — The general solution of Eq 301 - Eq 303 fails 
when Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0. In this case, the first line of Eq 300 yields ξ𝐴𝐴 = 1

2𝑈𝑈. Then, dividing the third 
line of Eq 300 by the second and re-arranging yields 

𝜂𝜂𝐴𝐴 = 𝐹𝐹1   ζ𝐴𝐴 + 𝐹𝐹0 Eq 305 

𝐹𝐹1 =
 𝑉𝑉ζ    Δ𝑑𝑑𝑀𝑀𝑀𝑀 −  𝑊𝑊ζ    Δ𝑑𝑑𝑀𝑀𝑀𝑀

 𝑊𝑊𝜂𝜂  Δ𝑑𝑑𝑀𝑀𝑀𝑀
=
𝑉𝑉ζ    Δ𝑑𝑑𝑀𝑀𝑀𝑀
𝑊𝑊𝜂𝜂  Δ𝑑𝑑𝑀𝑀𝑀𝑀

−
𝑊𝑊ζ    
𝑊𝑊𝜂𝜂  

          Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐹𝐹0 = −
�𝑉𝑉2 −  𝑉𝑉ξ   U − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 � Δ𝑑𝑑𝑀𝑀𝑀𝑀

2𝑊𝑊𝜂𝜂  Δ𝑑𝑑𝑀𝑀𝑀𝑀
+
𝑊𝑊2 − 𝑊𝑊ξ   U − Δ𝑑𝑑𝑀𝑀𝑀𝑀2    

2𝑊𝑊𝜂𝜂  
          Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

Using Eq 305 to substitute for 𝜂𝜂𝐴𝐴 in the second line in Eq 300, then squaring and collecting like 
terms, yields:   

𝐺𝐺2 ζ𝐴𝐴
2 + 𝐺𝐺1  ζ𝐴𝐴 + 𝐺𝐺0 = 0 Eq 306 

𝐺𝐺2 = 4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2 (1 + 𝐹𝐹12) − 4𝑉𝑉ζ2 
 𝐺𝐺1 = 8  Δ𝑑𝑑𝑀𝑀𝑀𝑀2 𝐹𝐹0𝐹𝐹  + 4 𝑉𝑉ζ   �𝑉𝑉2 − 𝑉𝑉ξ   U − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 � 

 𝐺𝐺0 = 4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �14𝑈𝑈
2 +   𝐹𝐹02� − �𝑉𝑉2 − 𝑉𝑉ξ   U − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2
 

 

This case requires that measurements 𝑡𝑡𝑀𝑀 and 𝑡𝑡𝑈𝑈 be tested for equality. If that condition is true, 
then ξ𝐴𝐴 = 1

2𝑈𝑈 and Eq 305 and Eq 306 are used rather than Eq 301 - Eq 303.  
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Aircraft Equidistant from Stations M and Stations U and V — The solution of Eq 305 and Eq 306 
fails when both Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0. In this ‘double special case’, the first and second lines 
of Eq 300 yield expressions identical to Eq 282  

ξ𝐴𝐴 = 1
2𝑈𝑈 ζ𝐴𝐴 =

𝑉𝑉2 −  𝑉𝑉ξ   U
2 𝑉𝑉ζ

 Eq 307 

When this occurs, the third line of Eq 300 reduces to  

𝐻𝐻2 𝜂𝜂𝐴𝐴
2 + 𝐻𝐻1  𝜂𝜂𝐴𝐴 + 𝐻𝐻0 = 0 Eq 308 

𝐻𝐻2 = 4  �Δ𝑑𝑑𝑀𝑀𝑀𝑀2 − 𝑊𝑊𝜂𝜂
2� 

 𝐻𝐻1 = 4 𝑊𝑊𝜂𝜂 �𝑊𝑊2 −𝑊𝑊ξ   U −
𝑊𝑊ζ

 𝑉𝑉ζ
   �𝑉𝑉2 −  𝑉𝑉ξ   U� − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 � 

 𝐻𝐻0 =  Δ𝑑𝑑𝑀𝑀𝑀𝑀2  (𝑈𝑈2 + 𝑉𝑉2) − �𝑊𝑊2 −𝑊𝑊ξ   U −
𝑊𝑊ζ

 𝑉𝑉ζ
  �𝑉𝑉2 −  𝑉𝑉ξ   U� − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

 

 

This case requires that measurements 𝑡𝑡𝑀𝑀 and 𝑡𝑡𝑉𝑉 be tested for equality, after measurements 𝑡𝑡𝑀𝑀 
and 𝑡𝑡𝑈𝑈 have been found to be equal. If 𝑡𝑡𝑀𝑀 = 𝑡𝑡𝑉𝑉, then Eq 307 and Eq 308 are used rather than Eq 
305 and Eq 306.  

Aircraft Equidistant from Station M and Stations U, V and W — When all three range differ-
ences are zero — i.e., Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0, Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0  and Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0 — the values of ξ𝐴𝐴 and ζ𝐴𝐴 are 
given by Eq 307 and Eq 308 reduces to  

�2 𝑊𝑊𝜂𝜂𝜂𝜂𝐴𝐴 − �𝑊𝑊2 −𝑊𝑊ξ   U −𝑊𝑊ζ   V��
2

= 0 Eq 309 

Thus, there is a double root at  

ξ𝐴𝐴 = 1
2𝑈𝑈 ζ𝐴𝐴 =

𝑉𝑉2 −  𝑉𝑉ξ   U
2 𝑉𝑉ζ

 𝜂𝜂𝐴𝐴 =
𝑊𝑊2 −𝑊𝑊ξ   U−𝑊𝑊ζ   V

2𝑊𝑊𝜂𝜂
 Eq 310 

Single Root – Degenerate Quadratic — While Eq 303 is nominally a quadratic function of ξ𝐴𝐴, 
it reduces to a linear function when 𝐸𝐸2 = 0. Similarly, Eq 306 is nominally a quadratic function 
of ζ𝐴𝐴 but reduces to a linear function when 𝐺𝐺2 = 0. Also, Eq 308 is nominally a quadratic 
function of 𝜂𝜂𝐴𝐴 but reduces to a linear function when 𝐻𝐻2 = 0. For the Flatland scenario addressed 
in Section 7.7, the locus of points where a governing quadratic equation degenerates to a linear 
function forms a boundary between an area where the incorrect solution is extraneous to an area 
where it is ambiguous. It is expected that a similar situation pertains to spatial volumes as well.  
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7.9.4 Stations in the Same Plane 

General Case — Eq 300 is valid when the stations are in the same plane — i.e., 𝑊𝑊𝜂𝜂 = 0. Thus, 
Eq 301, which is the result of dividing the first and second lines, remains correct. However, Eq 
302, which is formed by dividing the second and third lines of Eq 300, is replaced by 

ζ𝐴𝐴 = 𝐷𝐷1′  ξ𝐴𝐴 + 𝐷𝐷0′  Eq 311 

𝐷𝐷1′ =
𝑈𝑈  Δ𝑑𝑑𝑀𝑀𝑀𝑀
𝑊𝑊ζ   Δ𝑑𝑑𝑀𝑀𝑀𝑀

−
 𝑊𝑊ξ   
𝑊𝑊ζ

               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

𝐷𝐷0′ =
𝑊𝑊2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2

2 𝑊𝑊ζ   
−  

(𝑈𝑈2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 )Δ𝑑𝑑𝑀𝑀𝑀𝑀
2 𝑊𝑊ζ   Δ𝑑𝑑𝑀𝑀𝑀𝑀

          Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0  

Upon solving Eq 301 and Eq 311 simultaneously for ξ𝐴𝐴 and ζ𝐴𝐴, then substituting the result into 
the first line of Eq 300, the result is:  

ξ𝐴𝐴 =
𝐷𝐷0′ − 𝐶𝐶0
𝐶𝐶1 − 𝐷𝐷1′

                    ζ𝐴𝐴 =
𝐶𝐶1𝐷𝐷0′ − 𝐶𝐶0𝐷𝐷1′

𝐶𝐶1 − 𝐷𝐷1′
               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

Eq 312 

𝜂𝜂𝐴𝐴 = ±�
�𝑈𝑈2 − 2 𝑈𝑈 ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− (ξ𝐴𝐴

2 + ζ𝐴𝐴
2)               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

The two roots of Eq 312 are symmetric with respect to the plane containing the stations. The 
same symmetry occurs for three true slant-range measurements (Section 7.8). This suggests that 
stations which are ‘almost’ in the same plane will have correct and ambiguous solutions which 
are ‘almost’ symmetric about that ‘plane’. 

Aircraft Equidistant from Stations M and U — The solution of Eq 312 fails when Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0 
(in which case, ξ𝐴𝐴 = 1

2𝑈𝑈). When this occurs, dividing third line of Eq 300 by the second and re-
arranging yields a closed-form solution for ζ𝐴𝐴. When the solutions for ξ𝐴𝐴 and ζ𝐴𝐴 are substituted 
into the second line of Eq 300, the result is 

ξ𝐴𝐴 = 1
2𝑈𝑈 

Eq 313 
ζ𝐴𝐴 =

�𝑊𝑊2 −  𝑊𝑊ξ  𝑈𝑈 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �Δ𝑑𝑑𝑀𝑀𝑀𝑀 − �𝑉𝑉2 −  𝑉𝑉ξ   U − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �Δ𝑑𝑑𝑀𝑀𝑀𝑀
2 𝑊𝑊ζ    Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 2 𝑉𝑉ζ    Δ𝑑𝑑𝑀𝑀𝑀𝑀

 

𝜂𝜂𝐴𝐴 = ±�
�𝑉𝑉2 −  𝑉𝑉ξ   U − 2 𝑉𝑉ζ    ζ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− (ξ𝐴𝐴

2 + ζ𝐴𝐴
2)               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

Aircraft Equidistant from Station M and Stations U and V — The solution of Eq 313 fails when 
both Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0. In this ‘double special case’, solving Eq 300 yields  



DOT Volpe Center   

 7-35 

ξ𝐴𝐴 = 1
2𝑈𝑈 ζ𝐴𝐴 =

𝑉𝑉2 −  𝑉𝑉ξ   U
2 𝑉𝑉ζ

 

Eq 314 

𝜂𝜂𝐴𝐴 = ±�
�𝑊𝑊2 − 2 𝑊𝑊ξ   ξ𝐴𝐴 − 2 𝑊𝑊ζ    ζ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− (ξ𝐴𝐴

2 + ζ𝐴𝐴
2) 

Aircraft Equidistant from Station M and Stations U, V and W — The case of all three range 
differences being zero — i.e., Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0, Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0  and Δ𝑑𝑑𝑀𝑀𝑀𝑀 = 0 — cannot occur unless the 
perpendicular bisector of the line between stations M and W passes through the intersection of 
the perpendicular bisectors between M and U and between M and V at ξ𝐴𝐴 and ζ𝐴𝐴 given by Eq 
314. This occurs when 𝑊𝑊ξ   and 𝑊𝑊ζ satisfy  

𝑊𝑊ξ  𝑈𝑈 + 𝑊𝑊ζ
𝑉𝑉2 −  𝑉𝑉ξ   U

 𝑉𝑉ζ
= 𝑊𝑊2 = 𝑊𝑊ξ

2 + 𝑊𝑊ζ
2 Eq 315 

One way that Eq 315 is satisfied is when the stations form a rectangle — i.e., 𝑉𝑉ξ = 0,  𝑉𝑉ζ =
𝑉𝑉,𝑊𝑊ξ  = 𝑈𝑈,𝑊𝑊ζ = 𝑉𝑉. When all range differences are zero, a solution for 𝜂𝜂𝐴𝐴 does not exist (all 
values of 𝜂𝜂𝐴𝐴 result in the same range differences). 

7.9.5 Stations in the Same Plane, Three Form a Line 

General Case — For this configuration, the stations are located in the same plane — i.e., 𝑊𝑊𝜂𝜂 =
0 — and stations M, U and V form a straight line — i.e., 𝑉𝑉ζ = 0, 𝑉𝑉 = 𝑉𝑉ξ. In this situation, the 
solution of Subsection 7.9.4 fails. However, Eq 300 can be solved for these conditions, yielding  

ξ𝐴𝐴 =
(𝑉𝑉2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 )Δ𝑑𝑑𝑀𝑀𝑀𝑀 − (𝑈𝑈2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 )Δ𝑑𝑑𝑀𝑀𝑀𝑀

2 𝑉𝑉Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 2 𝑈𝑈Δ𝑑𝑑𝑀𝑀𝑀𝑀
 

Eq 316 

   ζ𝐴𝐴 =
� 𝑈𝑈Δ𝑑𝑑𝑀𝑀𝑀𝑀 −  𝑊𝑊ξ   Δ𝑑𝑑𝑀𝑀𝑀𝑀� 

 𝑊𝑊ζ
ξ𝐴𝐴 +

(𝑊𝑊2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 )Δ𝑑𝑑𝑀𝑀𝑀𝑀 − (𝑈𝑈2 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 )Δ𝑑𝑑𝑀𝑀𝑀𝑀
2 𝑊𝑊ζ

 

𝜂𝜂𝐴𝐴 = ±�
�𝑈𝑈2 − 2 𝑈𝑈 ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− (ξ𝐴𝐴

2 + ζ𝐴𝐴
2)               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

𝜂𝜂𝐴𝐴 = ±�
�𝑉𝑉2 − 2 𝑉𝑉 ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �

2

4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− (ξ𝐴𝐴

2 + ζ𝐴𝐴
2)               Δ𝑑𝑑𝑀𝑀𝑀𝑀 ≠ 0 

Aircraft Equidistant from Station M and Stations U and V — For this station configuration, 
it is not possible for both Δ𝑑𝑑𝑀𝑀𝑀𝑀 and Δ𝑑𝑑𝑀𝑀𝑀𝑀 to be zero. 

Aircraft on M-U-V Baseline Extension — When an aircraft is on an extension of the baseline 
containing stations M, U and V, then ∆𝑑𝑑𝑀𝑀𝑀𝑀 = ±𝑈𝑈 and ∆𝑑𝑑𝑀𝑀𝑀𝑀 = ±𝑉𝑉, with the same sign applying 
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to both measurements. Thus, the expression for ξ𝐴𝐴   in Eq 316 is singular and a solution does not 
exist. 

7.9.6 Four Stations Form a Straight Line 

General Case — Arranging four pseudo-range stations in a straight line is not common, but may 
be considered in some situations. For that geometry: 𝑉𝑉ζ = 0, 𝑉𝑉 = 𝑉𝑉ξ, and 𝑊𝑊ζ = 𝑊𝑊𝜂𝜂 = 0, 𝑊𝑊 =
𝑊𝑊ξ. The general case solution (Eq 301 - Eq 303) then fails. However, the same solution process 
can be followed, starting from Eq 300, yielding 

ξ𝐴𝐴 =
(𝑉𝑉2Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 𝑈𝑈2Δ𝑑𝑑𝑀𝑀𝑀𝑀) + Δ𝑑𝑑𝑀𝑀𝑀𝑀  Δ𝑑𝑑𝑀𝑀𝑀𝑀 (Δ𝑑𝑑𝑀𝑀𝑀𝑀 − Δ𝑑𝑑𝑀𝑀𝑀𝑀)

2 (U Δ𝑑𝑑𝑀𝑀𝑀𝑀 − 𝑉𝑉 Δ𝑑𝑑𝑀𝑀𝑀𝑀)  

ζ𝐴𝐴
2 + 𝜂𝜂𝐴𝐴2 =

�𝑈𝑈2 − 2 𝑈𝑈 ξ𝐴𝐴 − Δ𝑑𝑑𝑀𝑀𝑀𝑀2 �
2

4  Δ𝑑𝑑𝑀𝑀𝑀𝑀2
− ξ𝐴𝐴

2  
Eq 317 

Using cyclical substitutions — i.e., 𝑈𝑈 → 𝑉𝑉 → 𝑊𝑊 — two other expressions for ξ𝐴𝐴 and ζ𝐴𝐴
2 + 𝜂𝜂𝐴𝐴2  can 

be written, independently, for each line of Eq 317. These can be used as alternatives when 
‘divide by zero’ situations occur, but otherwise result in the same values. However, on both ends 
of the extension of the baselines connecting station M, U, V and W, all expressions for ξ𝐴𝐴 fail. 

This equation (both lines) indicates that four stations located along a line can determine an 
aircraft’s location parallel to that line and the distance to a circle centered on the line where the 
aircraft is located. However, this station configuration cannot determine the lateral distance from 
the line nor its vertical displacement from the line. Qualitatively, four pseudo slant-range stations 
in a line provide no more information than three stations do (Subsection 7.7.5). 

7.9.7 Remarks 
 Upon comparing the traditional solution approach in this section to Bancroft’s method 

(Section 7.2), it is evident that:  
(a) The approaches are fundamentally consistent, in that each requires solution of a 

quadratic equation;  
(b) The traditional approach is algebraically tedious and requires handling some 

measurements as special cases, but can be implemented using scalar equations. 
Conversely, Bancroft’s method is elegant and does not involve special cases, but 
requires use of vector/matrix calculations including inversion of a 4 x 4 matrix;  

(c) The traditional approach explicitly reveals the geometric issues associated with the 
station locations, while Bancroft’s method contains these geometric issues in the 
requirement that a matrix be invertible. 

 A method for determining the aircraft latitude, longitude and altitude from the Cartesian 
coordinates (ξ𝐴𝐴,  ζ𝐴𝐴, 𝜂𝜂𝐴𝐴) is given in Subsection 7.8.2. 

 Height Monitoring Units (HMUs), deployed by the FAA and several other nations, using 
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a set of multilateration stations to measure the altitude of overflying aircraft. HMU 
ground stations are ‘almost’ in a plane. Typically, four stations form a square 30 NM on a 
side, and a fifth station is located at the center of the square. 

 With some sign reversals the equations of this section would apply to measurements of 
slant-range sums for one transmitter and three receive stations (Ref. 44). 

7.10 Traditional Solution for Three Pseudo Spherical-Ranges 

7.10.1 Problem Formulation 

Pseudo spherical-ranges are the basis for several 
radionavigation systems, most prominently 
Loran-C and Omega. Spherical ranging systems 
are intended for use on or near the earth’s 
surface; altitude has no role in their concepts or 
solutions.  

Figure 34 illustrates a basic scenario using 
Loran-C station labels: M at latitude/longitude 
(𝐿𝐿𝑀𝑀, 𝜆𝜆𝑀𝑀) is the master station, and X (𝐿𝐿𝑋𝑋 ,𝜆𝜆𝑋𝑋) 
and Y (𝐿𝐿𝑌𝑌, 𝜆𝜆𝑌𝑌) are secondary stations whose 
transmissions are synchronized with those from 
M. The coordinates of all stations are known. 
The assumption is that aircraft A is employing 
the system for navigation, and wishes to 
determine its latitude and longitude (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴).  

Two time-difference-of-arrival (TDOA) measurements available from the station’s transmis-
sions; these are grouped as ‘M minus X’ and ‘M and Y’. The TDOAs are equivalent to two 
spherical-range differences with constrained magnitudes: 

Δ𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜃𝜃𝑀𝑀𝑀𝑀 − 𝜃𝜃𝑋𝑋𝑋𝑋 
Δ𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜃𝜃𝑀𝑀𝑀𝑀 − 𝜃𝜃𝑌𝑌𝑌𝑌 

|Δ𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀| ≤ 𝜃𝜃𝑀𝑀𝑀𝑀 
|Δ𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀| ≤ 𝜃𝜃𝑀𝑀𝑀𝑀 

Eq 318 

7.10.2 Problem Solution 

This solution follows Ref. 45 by Razin. Figure 34 depicts two mathematical spherical triangles 
MXA and MYA with common side MA. The goal in analyzing these triangles is to find 𝜃𝜃𝑀𝑀𝑀𝑀 and 
either 𝛽𝛽𝑋𝑋 or 𝛽𝛽𝑌𝑌; having these quantities reduces the task to solution of the Direct problem of 
geodesy. As occurs for position determination based of three pseudo slant-range measurements 
in Flatland (Section 7.7), two solutions can occur.  

 
Figure 34  Scenario Involving Three Pseudo 

Spherical-Range Stations and Aircraft 
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Step 0: Solve the Indirect problem of geodesy (Section 4.2) for the paths MX and MY, yielding 
the geocentric angles 𝜃𝜃𝑀𝑀𝑀𝑀 and 𝜃𝜃𝑀𝑀𝑀𝑀 and the azimuth angles 𝜓𝜓𝑋𝑋/𝑀𝑀 and 𝜓𝜓𝑌𝑌/𝑀𝑀.  

Step 1: Form the difference of the azimuth angles 𝜓𝜓𝑋𝑋/𝑀𝑀 and 𝜓𝜓𝑌𝑌/𝑀𝑀, yielding the angle 𝛽𝛽 between 
great circle arcs MX and MY satisfying 0 < 𝛽𝛽 ≤ 𝜋𝜋 

𝛽𝛽 = min��𝜓𝜓𝑌𝑌/𝑀𝑀 − 𝜓𝜓𝑋𝑋/𝑀𝑀�, �𝜓𝜓𝑌𝑌/𝑀𝑀 − 𝜓𝜓𝑋𝑋/𝑀𝑀 + 2𝜋𝜋�, �𝜓𝜓𝑌𝑌/𝑀𝑀 − 𝜓𝜓𝑋𝑋/𝑀𝑀 − 2𝜋𝜋�� Eq 319 

To establish the sign conventions, assume that the vehicle is within the V-shaped region with 
sides MX and MY. Then both 𝛽𝛽𝑋𝑋 and 𝛽𝛽𝑌𝑌 are positive as shown. The following is always true: 

𝛽𝛽 = 𝛽𝛽𝑋𝑋 + 𝛽𝛽𝑌𝑌 Eq 320 

Step 2: Solve Eq 318 for 𝜃𝜃𝑋𝑋𝑋𝑋 and 𝜃𝜃𝑌𝑌𝑌𝑌, then take the cosine of both sides, yielding: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )MYAMAMYAMAYA

MXAMAMXAMAXA

θθθθθ
θθθθθ

∆+∆=
∆+∆=

sinsincoscoscos
sinsincoscoscos

 Eq 321 

Step 3: Apply the spherical triangle law of cosines for sides (Eq 71) to MXA and MYA, yielding:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )YMYMAMYMAYA

XMXMAMXMAXA

     =  
     =  

βθθθθθ
βθθθθθ

cossinsincoscoscos
cossinsincoscoscos

+
+

 Eq 322 

Step 4: The first and second lines, respectively, of Eq 321 and Eq 322 are equated, eliminating 
𝜃𝜃𝑋𝑋𝑋𝑋 and 𝜃𝜃𝑌𝑌𝑌𝑌. Then solving for 𝜃𝜃𝑀𝑀𝑀𝑀 yields: 

( ) ( ) ( )
( ) ( ) ( )XMXMXA

MXAMX
MA βθθ

θθθ
cossinsin

coscostan
−∆

∆−
=  

( ) ( ) ( )
( ) ( ) ( )YMYMYA

MYAMY
MA βθθ

θθθ
cossinsin

coscostan
−∆

∆−
=  

Eq 323 

Step 5: Equate the two expressions for 𝜃𝜃𝑀𝑀𝑀𝑀 in Eq 323 and eliminate 𝛽𝛽𝑌𝑌 using Eq 320, yielding:  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )XMYMYA

MYAMY

XMXMXA

MXAMX

ββθθ
θθ

βθθ
θθ

−−∆
∆−

=
−∆

∆−
cossinsin

coscos
cossinsin

coscos
 Eq 324 

Step 6: Re-write Eq 324 as: 

( ) ( ) CBB XsXc =+ ββ sincos  

Eq 325 
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )]cos[cossin]cos[cossin
sin]cos[cossin

cos]cos[cossin]cos[cossin

MXAMXMYAMYAMYMXA

MXAMXMYs

MXAMXMYMYAMYMXc

C
B
B

θθθθθθ
βθθθ

βθθθθθθ

∆−∆−∆−∆=
∆−−=

∆−−∆−=

 

Step 7: Re-write Eq 325 as: 
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( )

( ) ( ) ( )csscm

Xm

BBBBB

CB

,arctan

cos

22 =+=

=−

γ

γβ
 Eq 326 

The four-quadrant arc tangent function is used in Eq 326. 

Step 8: Find 𝛽𝛽𝑋𝑋 using Eq 327.  

𝛽𝛽𝑋𝑋 = arctan(𝐵𝐵𝑠𝑠,𝐵𝐵𝑐𝑐) ± Arccos �
𝐶𝐶
𝐵𝐵𝑚𝑚

� Eq 327 

In Eq 327, Arccos denotes the principal value of the arccos function — i.e., the value in the 
range [0, π]. Thus, in general, two solutions are possible. 

Step 9: For both possible solutions, find 𝜃𝜃𝑀𝑀𝑀𝑀 using the first line of Eq 323. 

Step 10: For both possible solutions, find the aircraft’s latitude and longitude (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) as a 
solution to the Direct problem of geodesy, given the latitude/longitude (𝐿𝐿𝑀𝑀, 𝜆𝜆𝑀𝑀), the geocentric 
angle 𝜃𝜃𝑀𝑀𝑀𝑀 and the azimuth angle 𝜓𝜓𝐴𝐴/𝑀𝑀 = 𝜓𝜓𝑋𝑋/𝑀𝑀 + 𝛽𝛽𝑋𝑋.  

Step 11: For both possible solutions, the geocentric angles 𝜃𝜃𝑋𝑋𝑋𝑋 and 𝜃𝜃𝑌𝑌𝑌𝑌 are found from the 
aircraft and station latitudes and longitudes as solutions to the Indirect problem of geodesy.  

Step 12: For both possible solutions, substitute the angles 𝜃𝜃𝑀𝑀𝑀𝑀, 𝜃𝜃𝑋𝑋𝑋𝑋 and 𝜃𝜃𝑌𝑌𝑌𝑌 in the right-hand 
side of Eq 318. Compare the resulting spherical-range difference to the measured values for 
these quantities. Discard a possible solution when agreement does not occur. 

7.10.3 Types of Solutions 

No Solution — Measurement errors can cause one of the inequalities in Eq 318 to be violated. 
That, in turn, can cause the argument of the arc cosine function in Eq 327 to be greater than one 
in magnitude, in which case a solution does not exist.  

Double-Root Solution — If the aircraft is on a baseline extension, including at a station, then Eq 
324 becomes indeterminate and the equations immediately before it must be used. For example, 
assume the aircraft is on the extension of MX, closer to X. Then 𝜃𝜃𝑀𝑀𝑀𝑀 = Δ𝜃𝜃𝑀𝑀𝑋𝑋𝑋𝑋, and equating the 
first two lines of Eq 321 and Eq 322 yields 𝛽𝛽𝑋𝑋 = 0, hence 𝛽𝛽𝑌𝑌 = 𝛽𝛽. Thus, since 0 < 𝛽𝛽 < 𝜋𝜋, there 
is a single solution for 𝜃𝜃𝑀𝑀𝑀𝑀 which is given by the second line of Eq 323.  

Single Solution — In Eq 327, if Bm=C then the arccos term is zero and there is only one 
solution for 𝛽𝛽𝑋𝑋. The locus of latitudes/longitudes for which Bm=C can be found numerically. 

Two Solutions: Ambiguous vs. Extraneous — In most instances, two candidate solutions are 
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found by the method described in Subsection 7.10.2. One is always correct. The other is either: 
(a) extraneous, corresponding to the negation of the measured spherical-range differences (thus 
will be detected in Step 12); or (b) ambiguous, also corresponding to the measured spherical-
range differences, and thus not resolvable without additional information.  

The intended service area for a pseudorange system is, approximately, the region within the 
perimeter of the polygon enclosing the stations (but not close to a station) and the border area 
outside the perimeter but near the bisector of the baseline joining the closest two stations. In the 
service area, one candidate solution is extraneous and corresponds to the ‘+’ sign in Eq 327, 
while the correct solution corresponds to the ‘–’ sign. Example 10 in Subsection 7.12.3 illustrates 
where both ambiguous and extraneous solutions occur. 

7.10.4 Remarks 

System Applications — The primary U.S. examples of long-range (over 1,000 NM) pseudo 
spherical-range systems are Loran-C and Omega. For their characteristics (ranges between 
stations and aircraft, radio wave propagation paths), steps in addition to those described in 
Subsection 7.10.2 were generally needed to achieve the systems’ potential accuracies. 

Accuracy Enhancements — Two areas have been addressed to improve the accuracy of low-
frequency spherical-range difference systems: 
 Earth Geometry — For distances of more than a few hundred miles, the ellipticity 

error incurred by using a spherical-earth model is usually unacceptably large. One 
approach is to employ approximations to an ellipsoid (Refs. 11-16 and 13-15) which 
are not amenable to closed-form solution. These can be utilized in an iterative 
solution technique that is initialized with the solution obtained from Razin’s 
algorithm (see Chapter 8). A second approach is to tailor the spherical-earth model to 
the service area involved (Refs. 45 and 53).  

 Radiowave Propagation — Low-frequency electromagnetic ground waves cannot be 
assumed to travel with constant speed, since their propagation depends upon the 
conductivity of the ground over which they travel. Modeling and measurements have 
both been used to address this issue. The resulting adjustments are easily incorporated 
in the pseudo spherical-range difference measurements. 

Validation — Reference 53 contains the findings of a comparison, using Loran-C measure-
ments, of Razin’s algorithm and the semi-official, iterative algorithm published by the Radio 
Technical Commission for Maritime Services (RTCM) (Ref. 54). Differences between the 
computed latitude/longitude coordinates for the two algorithms are between 3 ft and 5 ft. 

Similarity to Flatland Solution — Although the analysis formulations are different (rectangular 
versus spherical), the qualitative characteristics of the solutions for the Flatland/Fang and 
spherical-earth/Razin algorithms are qualitatively similar. Both have two solutions, with the 
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incorrect one being detectable in their useful service areas. Solutions for both are unstable along 
the extended baselines, and degraded in the V-shaped regions between two baselines. 

7.11 Traditional Solution for Two Pairs of Pseudo Spherical-Ranges 

7.11.1 Problem Formulation 

This section addresses a problem close to the topic of the previous section: determining an 
aircraft’s position from two spherical-range difference measurements. However, in this section, 
the measurements are obtained from four stations comprising two distinct pairs, rather than from 
three stations comprising two pairs having a common station (Figure 35). It is also close to the 
topic of Section , which addresses two pairs of stations that measure pseudo slant-ranges. 

 
Figure 35  Pseudo Spherical-Range Scenario: Two Station Pairs and an Aircraft 

In Figure 35, Loran-C-like station labels are used. Station M at latitude/ longitude (𝐿𝐿𝑀𝑀, 𝜆𝜆𝑀𝑀) is a 
master station, and station X (𝐿𝐿𝑋𝑋 ,𝜆𝜆𝑋𝑋) is an associated secondary. Similarly, station N (𝐿𝐿𝑁𝑁 ,𝜆𝜆𝑁𝑁) is 
the master for a second chain, and station Y (𝐿𝐿𝑌𝑌,𝜆𝜆𝑌𝑌) is an associated secondary. The transmis-
sions of each master-secondary pair are synchronized, but are asynchronous with those of the 
other pair.  

The assumption is that aircraft A is employing this set of stations for navigation. The aircraft’s 
first priority is to determine its latitude/longitude (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) coordinates. A second priority is to 
determine the spherical-range to and azimuth angle toward each of the four stations. 
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Two time-difference-of-arrival (TDOA) measurements are available from the stations’ 
transmissions; these follow the convention ‘M minus X’ and ‘N minus Y’. These TDOAs are 
equivalent to two spherical-range differences. These are, with limitations on their magnitudes:  

NYNYAYANANYA

MXMXAXAMAMXA

θθθθθ

θθθθθ

≤∆−=∆

≤∆−=∆
 Eq 328 

7.11.2 Problem Solution 

Figure 35 depicts three mathematical spherical triangles: MXA, NYA and MNA. The goal in 
analyzing these triangles is to find values for the two spherical-range/bearing pairs 𝜃𝜃𝑀𝑀𝑀𝑀 and 𝛽𝛽𝑋𝑋 
and 𝜃𝜃𝑁𝑁𝑁𝑁 and 𝛽𝛽𝑌𝑌. Knowing these quantities reduces the task of finding (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) to a solution of the 
Direct problem of geodesy. As in other multi-dimensional problems, multiple solutions for 
(𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) may occur; when they do, the validity of each must be checked. 

The immediate goal is to find 𝛽𝛽𝑋𝑋, as the quantities 𝜃𝜃𝑀𝑀𝑀𝑀, 𝜃𝜃𝑁𝑁𝑁𝑁 and 𝛽𝛽𝑌𝑌 follow readily.  

Step 0: Solve the Indirect problem of geodesy for three paths between stations: 
 MX (master and associated secondary): Provides 𝜃𝜃𝑀𝑀𝑀𝑀 and 𝜓𝜓𝑋𝑋/𝑀𝑀  

 NY (master and associated secondary): Provides 𝜃𝜃𝑁𝑁𝑁𝑁 and 𝜓𝜓𝑌𝑌/𝑁𝑁  

 MN (two master stations): Provides 𝜃𝜃𝑀𝑀𝑀𝑀, 𝜓𝜓𝑀𝑀/𝑁𝑁 and 𝜓𝜓𝑁𝑁/𝑀𝑀  

Define the positive angles between the path MN and, respectively, the paths MX and NY 

{ }
{ }πψψπψψψψψ

πψψπψψψψψ
2,2,min

2,2,min

//////

//////

−−+−−=
−−+−−=

NMNYNMNYNMNYN

MXMNMXMNMXMNM  Eq 329 

Formally define 𝛽𝛽𝑋𝑋 as the angle XMA, measured clockwise from XM. Similarly, define 𝛽𝛽𝑌𝑌 as the 
angle YNA, measured counter-clockwise from YN.   

Step 1: Solve Eq 328 for 𝜃𝜃𝑋𝑋𝑋𝑋 and 𝜃𝜃𝑌𝑌𝑌𝑌, then take the cosine of both sides, yielding: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )NYANANYANAYA

MXAMAMXAMAXA

θθθθθ
θθθθθ

∆+∆=
∆+∆=

sinsincoscoscos
sinsincoscoscos

 Eq 330 

Step 2: Apply the spherical law of cosines for sides to triangles MXA and NYA, yielding: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )YNYNANYNAYA

XMXMAMXMAXA

βθθθθθ
βθθθθθ

cossinsincoscoscos
cossinsincoscoscos

+=
+=

 Eq 331 

Step 3: The first lines of Eq 330 and Eq 331 are equated, eliminating 𝜃𝜃𝑋𝑋𝑋𝑋. Then solving for the 
master station-aircraft distance yields 𝜃𝜃𝑀𝑀𝑀𝑀 as a function of 𝛽𝛽𝑋𝑋 and known quantities 
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( ) ( )
( ) ( ) ( )









−∆

∆−
=

XMXMXA

MXAMX
MA βθθ

θθθ
cossinsin

coscosarctan  Eq 332 

In Eq 332, the single-argument arc tangent function should be used. 

Step 4: Consider spherical triangle MNA. The four-part cotangent formula yields an expression 
for 𝛽𝛽𝑌𝑌 as an explicit function of 𝛽𝛽𝑋𝑋 and quantities that are either known or are functions of 𝛽𝛽𝑋𝑋: 

( )
( ) ( )









−−

−
−=

XMMNMAMN

XM
NY     

  
βψθθθ

βψψβ
cos)cos(cot)(sin

sinarctan  Eq 333 

In Eq 333, the two-argument arc tangent function should be used. 

Step 5: The second lines of Eq 330 and Eq 331 are equated, eliminating 𝜃𝜃𝑌𝑌𝑌𝑌. Then solving for 
the master station-aircraft distance yields 𝜃𝜃𝑁𝑁𝑁𝑁 as a function of 𝛽𝛽𝑌𝑌 and known quantities 

( ) ( )
( ) ( ) ( )









−∆

∆−
=

YNYNYA

NYANY
NA βθθ

θθθ
cossinsin

coscosarctan  Eq 334 

In Eq 334, the single-argument arc tangent function should be used. 

Step 6: The value of 𝛽𝛽𝑋𝑋 sought is a root of the following equation (application of the Law of 
Sines to spherical triangle MNA) 

( )
( )

( )
( )MA

YN

NA

XM

θ
βψ

θ
βψ

sin
sin

sin
sin −

=
−

 Eq 335 

By substituting and re-substituting Eq 332, Eq 333 and Eq 334 into Eq 335, the result would be 
an explicit function of 𝛽𝛽𝑋𝑋 and known quantities. There is no point in doing so, however, since the 
expression would be too complex to be solved analytically for 𝛽𝛽𝑋𝑋. Instead, a root finding 
technique (Subsection 2.1.8) can used to find one or more values for 𝛽𝛽𝑋𝑋. 

Step 7: For each candidate solution for 𝛽𝛽𝑋𝑋, find the corresponding value for 𝜃𝜃𝑀𝑀𝑀𝑀 using Eq 332. 

Step 8: For each candidate solution pair for bearing 𝛽𝛽𝑋𝑋 and range 𝜃𝜃𝑀𝑀𝑀𝑀, find the aircraft’s latitude 
and longitude (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) as a solution to the Direct problem of geodesy. 

Step 9: If multiple solutions to Eq 335 occur, for each solution set, find the geocentric angles 𝜃𝜃𝑋𝑋𝑋𝑋 
and 𝜃𝜃𝑌𝑌𝑌𝑌 from the aircraft and station coordinates as solutions to the Indirect problem of geodesy.  

Step 10: For each solution set, substitute the angles 𝜃𝜃𝑀𝑀𝑀𝑀, 𝜃𝜃𝑋𝑋𝑋𝑋 and 𝜃𝜃𝑁𝑁𝑁𝑁, 𝜃𝜃𝑌𝑌𝑌𝑌 in the right-hand side 
of Eq 328. Compare the resulting spherical-range difference to the measured values for these 
quantities. Discard a candidate solution when agreement does not occur. 
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7.11.3 Remarks 
 An obvious application of this algorithm is to Loran-C ‘cross-chaining’ — finding pos-

ition solutions using TDOA measurements from two separate chains. Loran-C cross-
chaining can involve three stations, with one station being dual-rated. However, in terms 
of the position-solution algorithm, three-station cross-chaining is no different than three 
stations from a single chain. This section addresses the more-complex situation involving 
two pairs of stations, one pair from each chain.  

 Sequences of equations other than those developed herein can be used derive a function 
of 𝛽𝛽𝑋𝑋 (only) whose root is to be found. The solution sequence presented herein follows 
Razin (Ref. 45) and appears to yield satisfactory results (Subsection 7.12.4). 

7.12 Example Applications 

7.12.1 Example 8:  Slant-Range Measurement System in Flatland 

Problem Statement — This example considers the simplest 
application of Bancroft’s algorithm — finding the intersections 
of two circles in a plane; it relates most closely to Section 7.3, 
which addresses a three-dimensional version. Stated as a 
navigation problem, an aviator in Flatland measures his/her 
slant-range to two stations — say, 𝑑𝑑1𝐴𝐴 to station S1 and 𝑑𝑑2𝐴𝐴 to 
station S2, where both stations have known coordinates. This is 
a simplified version of computing a DME/DME fix. 

The first step is selecting the coordinate frame. Because Bancroft’s algorithm involves calcu-
lating the inverse of a matrix based on station coordinates (e.g., 𝐁𝐁 in Eq 232), the origin cannot 
be in-line with the two stations. A convenient choice is to place each station on one axis, equi-
distant from the origin (illustrated). A normalized distance scale is chosen such that the separ-
ation between the stations is one unit — i.e., distances are quantified in Base Line Units (BLUs).  

Solution — Making the assignments indicated in Section 7.3 yields 

𝐁𝐁 = �
 12√2 0

0  12√2
�                          𝐁𝐁−1 = � √2 0

0  √2
� 

Eq 336 
𝐛𝐛 = �

(𝑥𝑥1)2 + (𝑦𝑦1)2 − (𝑑𝑑1𝐴𝐴)2

(𝑥𝑥2)2 + (𝑦𝑦2)2 − (𝑑𝑑2𝐴𝐴)2� = �
1
2 − 𝑑𝑑1𝐴𝐴2

 12 − 𝑑𝑑2𝐴𝐴2
�                𝟏𝟏 = �11� 

𝐮𝐮 = �
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦� = 1

2   𝐁𝐁
−1  𝟏𝟏 = 1

2√2 �11� 

𝐯𝐯 = �
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = 1

2   𝐁𝐁
−1  𝐛𝐛 = 1

2√2 �
1
2 − 𝑑𝑑1𝐴𝐴2

 12 − 𝑑𝑑2𝐴𝐴2
� 
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Therefore 

𝛼𝛼 𝜆𝜆2 + 𝛽𝛽 𝜆𝜆 + 𝛾𝛾 = 0 

𝛼𝛼 = 〈𝐮𝐮,𝐮𝐮〉 = 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 

𝛽𝛽 = 2〈𝐮𝐮, 𝐯𝐯〉 − 1 = 2 𝑢𝑢𝑥𝑥𝑣𝑣𝑥𝑥 + 2 𝑢𝑢𝑦𝑦𝑣𝑣𝑦𝑦 − 1 = −[𝑑𝑑1𝐴𝐴2 + 𝑑𝑑2𝐴𝐴2 ] 

𝛾𝛾 = 〈𝐯𝐯, 𝐯𝐯〉 = 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 = 1
2 �

1
2 − 𝑑𝑑1𝐴𝐴2 �

2
− 1

2 �
1
2 − 𝑑𝑑2𝐴𝐴2 �

2
 

Eq 337 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛽𝛽2 − 4𝛼𝛼𝛼𝛼 = [𝑑𝑑1𝐴𝐴2 + 𝑑𝑑2𝐴𝐴2 ]2 − 2 �12 − 𝑑𝑑1𝐴𝐴2 �
2
− 2 �12 − 𝑑𝑑2𝐴𝐴2 �

2

= 2[𝑑𝑑1𝐴𝐴2 + 𝑑𝑑2𝐴𝐴2 ] − [𝑑𝑑1𝐴𝐴2 − 𝑑𝑑2𝐴𝐴2 ]2 − 1 
 

Thus 

𝜆𝜆± = 1
2   �𝑑𝑑1𝐴𝐴

2 + 𝑑𝑑2𝐴𝐴2 ± �2[𝑑𝑑1𝐴𝐴2 + 𝑑𝑑2𝐴𝐴2 ] − [𝑑𝑑1𝐴𝐴2 − 𝑑𝑑2𝐴𝐴2 ]2 − 1� 

Eq 338 
�
𝑥𝑥𝐴𝐴±
𝑦𝑦𝐴𝐴±

� = 𝜆𝜆±  𝐮𝐮+ 𝐯𝐯 = 𝜆𝜆±
1
2√2 �11� + 1

2√2 �
1
2 − 𝑑𝑑1𝐴𝐴2

 12 − 𝑑𝑑2𝐴𝐴2
� 

Types of and Conditions on Solutions — Insight into the solution can be obtained by exam-
ining the sum and difference of the slant-ranges. Thus let 

Σ𝑑𝑑 = 𝑑𝑑1𝐴𝐴 + 𝑑𝑑2𝐴𝐴                    Δ𝑑𝑑 = 𝑑𝑑1𝐴𝐴 − 𝑑𝑑2𝐴𝐴 
𝑑𝑑1𝐴𝐴 = 1

2
(Σ𝑑𝑑 + Δ𝑑𝑑)                    𝑑𝑑2𝐴𝐴 = 1

2
(Σ𝑑𝑑 − Δ𝑑𝑑) Eq 339 

Upon substituting, the discriminant 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 can be written as 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛽𝛽2 − 4𝛼𝛼𝛼𝛼 = [(Σ𝑑𝑑)2 − 1][1 − (Δ𝑑𝑑)2] Eq 340 

Four possible solution cases for the norm 𝜆𝜆 are enumerated in Subsection 7.2.4. It follows from 
Eq 337 that, since 𝛼𝛼 = 1, a single real root cannot occur (Case (b)). Geometrically, this is 
because two circles in a plane must cross at two points (Case (d)), be tangent at a point (double 
root, Case (c)) or not cross (Case (a)).  

Cases (a), (c) and (d) can all occur, depending upon the value of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. For a solution (i.e., real 
roots) to occur, both of the following conditions on the measurements must be true: 

Σ𝑑𝑑 = 𝑑𝑑1𝐴𝐴 + 𝑑𝑑2𝐴𝐴 ≥ 1               |Δ𝑑𝑑| = |𝑑𝑑1𝐴𝐴 − 𝑑𝑑2𝐴𝐴| ≤ 1 Eq 341 

Since the two stations are separated by one BLU, Eq 341 ‘says’ that in the absence of measure-
ment errors (a) the sum of the ranges to the stations must be at least equal to the separation 
between the stations, and (b) the absolute value of the difference between the ranges to the 
stations must be no more than the separation between the stations. Based on geometric reasoning, 
when Σ𝑑𝑑 is unity, the aircraft must be on the baseline separating the stations, and when |Δ𝑑𝑑| is 
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unity the aircraft must be on an extension of the baseline. Similar conditions are derived in 
Subsection 6.4.3 for the analogous problem involving a spherical earth.  

Aircraft locations along the baseline connecting the stations and its extensions are unstable 
because small measurement errors can change the character of the solution — to a situation 
where a solution does not exist or to one where there are two separate candidate solutions. 

It follows from Eq 338 and Eq 340 that 

𝜆𝜆± = 1
4  

[(Σ 𝑑𝑑)2 + (Δ 𝑑𝑑)2] ± 1
2  
�[(Σ 𝑑𝑑)2 − 1][1 − (Δ 𝑑𝑑)2] Eq 342 

Either solution to Eq 342 (and to Eq 338 as well) may be correct mathematically. Of course, only 
one solution is actually equal to the vehicle’s true position — the other solution is ambiguous. 
Two slant-ranges do not provide enough information to make a determination. 

‘Natural’ Coordinate System — While the (𝑥𝑥,𝑦𝑦) frame is 
compatible with Bancroft’s algorithm, it is not the natural 
frame for this problem. Thus, consider the (ξ, ζ) frame (Figure 
36) which is generated by rotating the (𝑥𝑥,𝑦𝑦) frame counter 
clockwise by 45 deg, then offsetting it by one-half a BLU to 
the right. The result is that (a) both stations lie on the ζ-axis, 
and (b) the ξ-axis is the perpendicular bisector of the baseline 
connecting the stations. The solutions for the aircraft location 
can be expressed in the (ξ, ζ) frame as: 

�
ξ𝐴𝐴
ζ𝐴𝐴
� =

1
2
�±�2[𝑑𝑑1𝐴𝐴2 + 𝑑𝑑2𝐴𝐴2 ] − [𝑑𝑑1𝐴𝐴2 − 𝑑𝑑2𝐴𝐴2 ]2 − 1

𝑑𝑑1𝐴𝐴2 − 𝑑𝑑2𝐴𝐴2
� Eq 343 

This solution can also be written as 

�
ξ𝐴𝐴
ζ𝐴𝐴
� =

1
2
�±[(Σ 𝑑𝑑)2 − 1][1 − (Δ 𝑑𝑑)2]

(Σ 𝑑𝑑)(Δ 𝑑𝑑) � Eq 344 

Let a breve diacritic mark above a normalized quantity denote its un-normalized version — e.g., 
ξ� = 𝐵𝐵 ξ and ζ� = 𝐵𝐵 ζ, where B is the baseline length. The un-normalized version Eq 344 then is 

�
ξ�𝐴𝐴
ζ�𝐴𝐴
� =

1
2𝐵𝐵

�
± ��Σ 𝑑̆𝑑�

2
− 𝐵𝐵2� �𝐵𝐵2 − �Δ 𝑑̆𝑑�

2
�

�Σ 𝑑̆𝑑��Δ 𝑑̆𝑑�
� Eq 345 

Geometry-Based Derivation — There is an older, more direct, geometry-based derivation of Eq 
343. Referring to Figure 36, the two slant-ranges satisfy Pythagoras’ theorem: 

 
Figure 36  Two Slant-Range 

Stations and Aircraft in Flatland 
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𝑑𝑑1𝐴𝐴2 = ξ𝐴𝐴
2 + �ζ𝐴𝐴 + 1

2  �
2
 

𝑑𝑑1𝐴𝐴2 = ξ𝐴𝐴
2 + �ζ𝐴𝐴 −

1
2  �

2
 

Eq 346 

Completing the squares and subtracting the second equation from the first in Eq 346 yields the 
second line of Eq 343 

ζ𝐴𝐴 = 1
2  

(𝑑𝑑1𝐴𝐴2 − 𝑑𝑑2𝐴𝐴2 ) Eq 347 

Then, substituting for ζ𝐴𝐴 in the first equation in Eq 346 yields the first line of Eq 343: 

ξ𝐴𝐴 = ±  12�2[𝑑𝑑1𝐴𝐴2 + 𝑑𝑑2𝐴𝐴2 ] − [𝑑𝑑1𝐴𝐴2 − 𝑑𝑑2𝐴𝐴2 ]2 − 1 Eq 348 

Remarks  
 In the absence of slant-range measurement errors that cause one or both of the 

inequalities of Eq 341 to be violated, there are no aircraft positions where either line in 
Eq 343 fails — i.e., the solution equations do not have any singularities.  

 If the aircraft position is on the ζ-axis — either on the baseline connecting the stations or 
on an extension — the discriminant (Eq 340) is zero and Eq 337 has an unstable double 
root. This is slightly different than the situation for three pseudorange stations in a plane 
(Section 7.10); there, only positions on the baseline extensions are unstable. 

 If the aircraft is not on the ζ-axis, then Eq 337 has two separate real roots that correspond 
to the actual and ambiguous aircraft locations. 

 The correct and ambiguous solutions are symmetrically located with respect to the ζ-axis 
but cannot be distinguished based on two slant-range measurements. However, other 
information may be available (Subsection 6.1.3). Movement of the aircraft with a 
component toward or away from the ζ-axis (determined by, e.g., an on-board compass) is 
a method for determining the correct solution. 

 The effect of measurement errors on the solution depends strongly on the location of the 
aircraft. This is the topic of Subsection 8.5.1. 

 The two-ranging-stations-in-Flatland problem is a simplified version of the DME/DME/ 
Altitude problem addressed in Section 6.4. Qualitatively, the solutions behave similarly. 

7.12.2 Example 9:  Three Pseudo Slant-Range Stations in Flatland 

This subsection presents examples of results obtained using Fang’s algorithm described in Sec-
tion 7.7 for finding the two-dimensional position of an aircraft from three pseudo slant-range 
measurements. Figure 37 depicts three such stations, labeled M, U and V. The three green curves 
partition the space into four regions that contain both the correct and the incorrect (either ambig-
uous or extraneous) solutions — refer to Eq 285 and Figure 31. 

The thicker, solid blue and red lines with filled symbols at their ends represent hypothetical 
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aircraft flight tracks. The thinner, dashed blue and red lines with unfilled symbols at their ends 
depict the incorrect solutions yielded by the algorithm for the hypothetical tracks of the same 
color. An asterisk marks the center of each hypothetical flight track. 

 
Figure 37  Three Pseudo Slant-Range Stations in Flatland and Two Aircraft Tracks 

The solid blue track corresponding to the correct solution is well within the service area, as is its 
corresponding incorrect dashed blue track (which is in approximately the opposite direction, and 
is slightly curved). In the ‘extraneous’ region, the correct solution can be identified by inspec-
tion. For example, the filled blue circle is equidistant from M and U and furthest from V. In 
contrast, its counterpart, the unfilled blue circle, is equidistant from M and U and closest to V 
(i.e., the order is reversed). Similar statements can be made about every point in this region. The 
magnitudes of the slant-range differences are the same for the correct and incorrect solutions; 
however, their signs are reversed.  

In contrast to the blue tracks, the red tracks corresponding to the incorrect solution transition 
from the ‘extraneous’ region to the ‘ambiguous’ region. Starting from the circle symbols the 
correct solution moves directly ‘north’ in a straight line, while the incorrect solution moves 
largely ‘south’ in a slightly curved path. As the aircraft approaches and crosses the transition 
between the regions, the incorrect solution moves at a high rate to the ‘south’ then reappears at 
the far ‘north’ and again moves at a high rate to the ‘south’. As the aircraft moves away from the 
transition curve, the incorrect solution moves close to the correct solution. 



DOT Volpe Center   

 7-49 

7.12.3 Example 10:  Three Pseudo Spherical-Range Stations 

This subsection presents an example application of Razin’s algorithm (Section 7.10) utilizing 
three pseudo spherical-range navigation stations in the U.S. Northeast Loran-C chain (Ref. 55). 
In Figure 38: M represents the master station at Seneca, NY; W represents the secondary station 
at Caribou, ME; and X represents the secondary station at Nantucket, MA. For a spherical-earth 
formulation, the baselines and their extensions for these stations are great circles. 

 
Figure 38  Position Solutions for Triad of Stations from the Northeast U.S. Loran-C Chain 

Fourteen airport locations were selected, and spherical-range differences for the station pairs M-
W and M-X were calculated using a spherical-earth model. The methodology of Section 7.10 was 
used to find solutions for the airport locations from the range differences. Green (‘–’ solution) 
and red (‘+’ solution) icons of the same shapes represent the algorithm’s solutions for the same 
airport. Blue-colored symbols depict the actual airport locations, and overprint the correct 
solution (in all cases, they agree to machine precision). 

Six airports are in the service area for these stations: Reagan National, VA (DCA); LaGuardia, 
NY (LGA); Boston, MA (BOS); Portland, ME (PWM); Bangor, ME (BGR); and Halifax, Nova 
Scotia (YHZ). A blue line represents a hypothetical flight path connecting these airports. A 
thinner red line connects the incorrect ‘+’solutions.  

For airports in the service area, the incorrect solutions can be detected by inspection, as the range 
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differences for an extraneous solution will be negative versions of the range differences for the 
correct solution. For example, DCA is closest to station M and furthest from W; its extraneous 
version is closest to W and furthest from M. Another method for detecting the correct solution is 
to examine the flight path. In this case, the incorrect ‘flight path’ is, overall, in the opposite 
direction of the correct track. 

Eight other airports are also depicted by blue symbols: Pittsburgh, PA (PIT); Cleveland, OH 
(CLE); Columbus, OH (CMH); Indianapolis, IN (IND); Milwaukee, WI (MKE); Buffalo, NY 
(BUF); Goose Bay, Labrador (YYR); and Bermuda (BDA). These airports are all outside the 
nominal service area for the stations, and are in or near the three regions bounded by baseline 
extensions. The incorrect solutions, which may be either the ‘–’ or ‘+’ solution of Eq 327, are all 
ambiguous — i.e., the range differences calculated from the correct and incorrect airport 
locations are identical. 

This example is revisited in Subsection 8.5.4, which addresses the effect of mis-modeling the 
earth as a sphere (i.e., the ellipticity error), and presents a solution. 

7.12.4 Example 11:  Two Pairs of Pseudo Spherical-Range Stations 

This subsection presents an example of the solution algorithm for two pairs of pseudo spherical-
range navigation stations described in Section 7.11. Figure 39 depicts the master station at 
Seneca, NY for the U.S. Northeast Loran-C chain and a secondary station at Nantucket, MA. It 
also depicts the master station for the U.S. Great Lakes Loran-C chain at Dana, IN, and a 
secondary station at Malone, FL. (Loran station coordinates can be found in Ref. 53.) 

Figure 39 also shows seven airports which represent possible locations of aircraft employing 
these stations for navigation: LaGuardia, NY (LGA); Elizabeth City, NC (ECG); Charleston, SC 
(CHS); Charleston, WV (CRW); Atlanta, GA (ATL); Nashville, TN (BNA); and St. Louis, MO 
(STL). All of the airports are within the expected service area for such a navigation system.  

The solution algorithm presented in Section 7.11 is straightforward except for the process of 
finding values for 𝛽𝛽𝑋𝑋 that are roots of Eq 335. Thus the primary issue explored is the behavior of 
Eq 335 as a function of 𝛽𝛽𝑋𝑋 — i.e., with 𝜃𝜃𝑀𝑀𝑀𝑀, 𝜃𝜃𝑁𝑁𝑁𝑁 and 𝛽𝛽𝑌𝑌 determined from 𝛽𝛽𝑋𝑋. (Here, 𝛽𝛽𝑋𝑋 is the 
angle, measured clockwise, from (a) the baseline from Seneca to Nantucket to (b) a great circle 
path from Seneca to the aircraft.) 
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Figure 39  Two Pairs of Loran-C Stations and Seven Airport Locations 

Figure 40 shows the difference between the left- and right-hand sides of Eq 335 as a function of 
assumed values for 𝛽𝛽𝑋𝑋 in the range (𝜓𝜓𝑀𝑀 − 𝜋𝜋) ≤ 𝛽𝛽𝑋𝑋 ≤ 𝜓𝜓𝑀𝑀. Each of the seven possible aircraft 
locations are considered for the half-sphere on the southeast side of the great circle path through 
Dana and Seneca. The curves for six of the seven airports (all except STL) have the same basic 
shape — a ‘sideways S’. Most important is that each curve in Figure 40, including that for STL, 
has only one root, so ambiguous and extraneous solutions do not occur for locations in the area 
of interest. If the roots for 𝛽𝛽𝑋𝑋 shown in Figure 40 are substituted into Steps 7-10 of the algorithm 
in Section 7.11, the original aircraft locations result. 

A plot similar to Figure 40 was generated for the area on the northwest side of the great circle 
path through Dana and Seneca. Four of the airports of interest (LGA, ECG, CRW and BNA) had 
a single extraneous solution in this area. CHS and ATL did not have a second solution, and STL 
has two additional solutions. This example is re-visited in Subsection 8.5.5. 
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Figure 40  Example 11: Sensitivity of Law-of-Sines Difference to Trial Values of βX 

7.12.5 Example 12:  Wide Area Multilateration (WAM) 

As an example of the solution technique presented in Section 7.5, a WAM system is postulated 
which has ground stations at three airports: Boston, MA (BOS); Manchester, NH (MHT); and 
Hartford, CT (BDL) — see Figure 41. To investigate its performance in its intended service 
volume, an aircraft is assumed to over-fly five airports in the system’s service area at an altitude 
of 25,000 ft: Westfield-Barnes Regional, MA (BAF); Dillant-Hopkins, Keene NH (EEN); 
Fitchburg Municipal, MA (FIT); Lawrence Municipal, MA (LWM); and Hanscom Field, 
Bedford MA (BED). To provide insight into the algorithm’s behavior for poor measurement 
geometries, solutions are also computed for three locations outside the service volume and near 
extended baselines: Barnstable Municipal, MA (HYA); Stewart International, NY (SWF); and 
Portland International, ME (PWM). 

Interest in the algorithm of Section 7.5 centers on the solution to Eq 251 for the aircraft time of 
transmission 𝑡𝑡𝐴𝐴. In this example, the times of reception at the ground stations 𝑡𝑡𝑖𝑖 were shifted by 
the same amount, so that the earliest occurred at 𝑡𝑡𝑖𝑖 = 0. As a result, the correct value for 𝑡𝑡𝐴𝐴 must 
be negative. The four roots of Eq 251 were found using the Matlab routine ‘roots’. These were 
multiplied by the speed of light, c, converting their units to nautical miles. Thus, the correct 
solution is the negative of the slant-range between the aircraft and the nearest ground station. 
Since the reception range of a WAM ground station is limited by line-of-sight considerations 
(Figure 8), ranges beyond a few hundred nautical miles are not feasible. 

The calculated roots (potential values for 𝑡𝑡𝐴𝐴) are displayed in Table 13. Positive roots cannot be 
correct, nor can complex roots; only the two negative roots are possible solutions. For the five 
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airports in the WAM system’s service area, the negative root nearer to zero is the obvious correct 
choice. (The magnitude of other negative root is approximately an earth-radius.) In fact, the 
absolute values of the calculated correct roots are the slant-ranges used to generate the simulated 
measurements. For the three airports outside the service area, either negative root could be 
correct. Similar situations involving and ambiguous solutions occur in Examples 9 and 10. 

Table 13  Roots for Aircraft Transmission Time, in NM, for Example 12 

Aircraft Root 1 Root 2 Root 3 Root 4 
Location Real Imag Real Imag Real Imag Real Imag 

BAF -4,002.6 0.0 -13.3 0.0 82.8 0.0 4,066.4 0.0 
EEN -4,748.8 0.0 -36.9 0.0 78.9 0.0 4,795.0 0.0 
FIT -6,361.5 0.0 -27.0 0.0 58.9 0.0 6,397.5 0.0 

LWM -4,022.4 0.0 -19.0 0.0 74.1 0.0 4,094.9 0.0 
BED -4,771.9 0.0 -15.1 0.0 86.0 0.0 4,812.5 0.0 
HYA -52.1 0.0 -29.5 0.0 106.1 -3,508.9 106.1 3,508.9 
SWF -68.7 0.0 -35.6 0.0 135.6 -1,072.8 135.6 1,072.8 
PWM -177.1 0.0 -65.3 0.0 211.6 -1,053.7 211.6 1,053.7 

This example is re-visited in Subsection 8.5.6, where an ellipsoidal earth model is considered. 

 

 
Figure 41  Hypothetical Three-Station WAM System and Flight Track 
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8. GAUSS-NEWTON NON-LINEAR LEAST-SQUARES (NLLS) METHOD 

8.1 General NLLS Method 

8.1.1 Background / Context 

This final chapter is a fundamental departure from the previous chapters in several aspects. 
Situations addressed in Chapters 3-7 explicitly or implicitly assume that 
 There are exactly as many measurements as there are unknown variables. There is no 

role for redundant measurements 
 The measurements are described by equations that can be inverted to find the 

aircraft’s coordinates (and/or other quantities of interest). There is no role for 
uninvertible expressions (often complex, involving recursion and/or tabular data). 

One implication of the second limitation is that the problem’s coordinate framework must be a 
spherical earth or a rectangular Cartesian system. An ellipsoidal earth framework does not 
provide for closed-form solutions. This chapter removes both of these restrictions, enabling more 
general situations to be addressed. It can be said that Chapters 3-7 provide analytic solutions to 
approximate problems, while this chapter provides numerical solutions to exact problems.  

A drawback of the ability to address more general problems is that the techniques involved are 
iterative/numerical rather than analytic/closed-form. An important consequence is a loss of 
insight. For example, an iterative method does not reveal how many solutions may exist, or their 
nature (unique, extraneous, ambiguous, etc.). Moreover, iterative techniques require that an 
initial value be provided, which may be derived by an analytic method. Thus, there are useful 
roles for both closed-form and iterative techniques. 

There are two basic alternatives for the coordinate system (framework) employed for the 
dependent navigation variables. When a spherical or ellipsoidal earth model is employed, the 
aircraft position variables are generally its latitude 𝐿𝐿𝐴𝐴 and longitude 𝜆𝜆𝐴𝐴, and possibly altitude ℎ𝐴𝐴. 
When an earth-fixed rectangular coordinate system is used, the unknown aircraft position vari-
ables are usually its Cartesian components (𝑥𝑥𝐴𝐴,𝑦𝑦𝐴𝐴, 𝑧𝑧𝐴𝐴). Appendix Section 9.3 shows how to 
convert between these formulations for an ellipsoidal earth. When pseudorange measurements 
are involved, the time of transmission by the aircraft 𝑡𝑡𝐴𝐴 (surveillance) or a set of ground station 
𝑡𝑡𝑆𝑆 (navigation) is also an unknown variable. 

The coordinate system selection may be influenced by the measurements available. Analysis of a 
situation involving only slant-ranges (and/or slant-range differences) is often simpler using a 
rectangular Cartesian frame. Conversely, analysis of a situation involving only spherical-ranges 
(and/or their differences) and/or azimuth angles may be simpler using a spherical-earth frame. 
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However, either framework can be employed to analyze any measurement type. 

In terms of mathematical methodologies, the Non-Linear Least Squares (NLLS) technique 
utilizes the linear algebra of vectors and matrices. The apparent contradiction in terminology 
(linear algebra used to solve a non-linear problem) arises because — rather than attack the non-
linear problem directly — linear algebra is employed iteratively to solve a sequence of linear 
problems. In contrast, Chapters 3-4 and 6-7 solve multiple, non-linear scalar equations.  

The NLLS methodology of this chapter applies to problems where the number of measurements 
n is equal to or exceeds the number of unknown variables p. The n  =  p situation is often termed 
fully-determined; herein it is also referred to as the Newton situation. The n  >  p situation is often 
termed over-determined; herein it is also referred to as the Gauss situation. The solution tech-
nique is independent of whether a Newton or Gauss situation is involved. However, the 
properties of the resulting solutions are different enough that a distinction is useful. 

8.1.2 Problem Formulation 

For specificity, in this section a spherical coordinate system is used for the unknown navigation 
variables. However, the basic technique also applies to a rectangular coordinate system. Thus the 
navigation variables are taken to be those immediately below, but other sets are possible. 

Example:    𝐱𝐱 = [𝐿𝐿𝐴𝐴 𝜆𝜆𝐴𝐴 ℎ𝐴𝐴 𝑡𝑡𝑋𝑋]𝑇𝑇                   dim(𝐱𝐱) = p Eq 349 

It is assumed that a set of measurements 𝑧̃𝑧𝑖𝑖 are available (combinations of slant-ranges, 
spherical-ranges, pseudo slant- and spherical-ranges, azimuth angles, etc.) which are of the form  

𝑧̃𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖 + 𝑣𝑣𝑖𝑖                  𝑖𝑖 = 1,⋯ , 𝑛𝑛  
𝑧𝑧𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝐿𝐿𝐴𝐴,𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) = 𝑓𝑓𝑖𝑖(𝐱𝐱)       

Eq 350 

Here: (a) x denotes the vector of p unknown variables (p  =  2,  3  or  4 in this document); (b) n is the 
number of measurements (which must satisfy n  ≥  p); and (c) 𝑣𝑣𝑖𝑖 is the measurement error that is 
usually present. When included, the time of transmission 𝑡𝑡𝑋𝑋 may refer to either the aircraft (𝑡𝑡𝐴𝐴, 
surveillance) or to a station (𝑡𝑡𝑆𝑆, navigation).  

The measurement errors are characterized by as having a zero-mean vector v and known 
covariance matrix R. Thus, all known biases have been removed from the measurements. 

𝐸𝐸(𝐯𝐯) = 𝟎𝟎              𝐸𝐸(𝐯𝐯  𝐯𝐯𝑇𝑇) = R Eq 351 

Eq 350 is termed the non-linear measurement model. Functions 𝑓𝑓𝑖𝑖(𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) are known in 
the sense that they can be evaluated when the variables (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) are known. These 
functions need not be invertible; they can be combinations of analytic expressions, recursive 
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algorithms and tables. However, reasonably accurate analytic, differentiable approximations to 
𝑓𝑓𝑖𝑖(𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) must be known. For the range and angle measurements considered herein, plane 
and spherical geometry and trigonometry provide the required approximations. 

8.1.3 Solution Approach 

To find a solution, each unknown variable is expressed as the sum of an initial estimate for the 
iteration step involved, denoted here by an overbar, and a perturbation term, having 𝛅𝛅 as a prefix. 
For the first iteration step, the initial estimate must be provided (e.g., an approximate solution or 
previous position solution); for subsequent steps, the initial estimate is the updated value for the 
previous step. Thus,  

𝐱𝐱 = 𝐱𝐱 + 𝛅𝛅𝛅𝛅 Eq 352 

𝐱𝐱 = �𝐿𝐿𝐴𝐴  𝜆𝜆𝐴𝐴  ℎ𝐴𝐴  𝑡𝑡𝑋𝑋�
𝑇𝑇

            𝛅𝛅𝛅𝛅 = [𝛿𝛿𝛿𝛿𝐴𝐴  𝛿𝛿𝛿𝛿𝐴𝐴  𝛿𝛿ℎ𝐴𝐴  𝛿𝛿𝑡𝑡𝑋𝑋]𝑇𝑇  

By linearizing the measurement functions 𝑓𝑓𝑖𝑖(𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) — or analytic approximations thereto 
— about the initial values 𝐱𝐱, the scalar measurement 𝑧̃𝑧𝑖𝑖 can be replaced by the first-order 
(linearized) measurement 

𝛿𝛿𝛿𝛿𝑖𝑖 ≡ 𝑧̃𝑧𝑖𝑖 − 𝑓𝑓𝑖𝑖(𝐿𝐿�𝐴𝐴, 𝜆̅𝜆𝐴𝐴,ℎ�𝐴𝐴, 𝑡𝑡𝑋̅𝑋) 

=
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝐿𝐿𝐴𝐴

�
𝐱𝐱�
𝛿𝛿𝐿𝐿𝐴𝐴 +

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝜆𝜆𝐴𝐴

�
𝐱𝐱�
𝛿𝛿𝜆𝜆𝐴𝐴 +

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕ℎ𝐴𝐴

�
𝐱𝐱�
𝛿𝛿ℎ𝐴𝐴 +

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑡𝑡𝑋𝑋

�
𝐱𝐱�
𝛿𝛿𝑡𝑡𝑋𝑋 + 𝑣𝑣𝑖𝑖 

Eq 353 

In Eq 353, all partial derivatives are evaluated at the current estimate 𝐱𝐱 for the unknown 
variables. The quantity 𝛿𝛿𝑧𝑧𝑖𝑖 = 𝑧̃𝑧𝑖𝑖 − 𝑓𝑓𝑖𝑖(𝐱𝐱) is the measurement residual. An abnormally large 
residual can be the basis for rejecting a measurement as anomalous.  

A quadratic scalar cost function C that quantifies the measurement residuals is chosen: 

C = 𝛅𝛅𝛅𝛅𝑇𝑇W  𝛅𝛅𝛅𝛅= (W½  δz)𝑇𝑇(W½  𝛅𝛅𝛅𝛅) Eq 354 
𝛅𝛅𝛅𝛅 = 𝐳𝐳� − 𝐟𝐟(𝐱𝐱) = 𝐳𝐳� − 𝐟𝐟(𝐿𝐿�𝐴𝐴, 𝜆̅𝜆𝐴𝐴,ℎ�𝐴𝐴, 𝑡𝑡𝑋𝑋) 

𝛅𝛅𝛅𝛅 = [𝛿𝛿𝛿𝛿1  𝛿𝛿𝛿𝛿2 ⋯𝛿𝛿𝑧𝑧𝑛𝑛]𝑇𝑇          𝐳𝐳� = [𝑧̃𝑧1  𝑧̃𝑧2 ⋯ 𝑧̃𝑧𝑛𝑛]𝑇𝑇          𝐟𝐟 = [𝑓𝑓1  𝑓𝑓2 ⋯𝑓𝑓𝑛𝑛]𝑇𝑇 
 

Here, W = W½W½ is an analyst-defined positive semi-definite, symmetric matrix that weights 
the measurement equations. Common choices are: (1) W = 𝐈𝐈, the measurements are equally 
weighted; and (2) W = 𝐑𝐑−1, the measurments are weighted by the inverse of the measurement 
error covariance matrix, to take account of unequal measurement accuracies and correlations 
between measurement pairs (Subsection 8.1.5).  

The full set of equations for the linearized measurement model (Eq 353) can be written as 
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� Eq 355 

Denoting the matrix of partial derivatives as J (for Jacobian*), Eq 355 can be written as the 
linearized matrix measurement model 

𝛅𝛅𝛅𝛅 = J  𝛅𝛅𝛅𝛅 + 𝐯𝐯 
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𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝜆𝜆𝐴𝐴

𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕ℎ𝐴𝐴

𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑡𝑡𝑋𝑋⎦

⎥
⎥
⎥
⎤

               𝐯𝐯 = �

𝑣𝑣1
⋮
⋮
𝑣𝑣𝑛𝑛

� 
Eq 356 

Informally, the estimation problem corresponding to Eq 356 is sometimes stated as: “find the 
value for 𝛅𝛅𝛅𝛅 that best satisfies”  

J  𝛅𝛅𝛅𝛅 ≈ 𝛅𝛅𝛅𝛅 Eq 357 

In general, matrix J is non-square and cannot be inverted.  

8.1.4 Iterative Solution Process 

Cost Function — The standard approach to addressing Eq 357 is to compute the value of 𝛅𝛅𝛅𝛅 
that minimizes the weighted sum of the squared measurement residuals after being adjusted by 
based on a the linear model of Eq 356. Thus, denoting C� as the cost function after adjustment, 𝛅𝛅𝛅𝛅 
is selected to minimize: 

min
𝛅𝛅𝛅𝛅

C� =   (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝛅𝛅)𝑇𝑇W (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝛅𝛅)

= 𝛅𝛅𝐳𝐳𝑇𝑇W𝛅𝛅𝛅𝛅 − 2𝛅𝛅𝐱𝐱𝑇𝑇J𝑇𝑇W 𝛅𝛅𝛅𝛅 + 𝛅𝛅𝐱𝐱𝑇𝑇J𝑇𝑇W J 𝛅𝛅𝛅𝛅 
Eq 358 

Normal Equations — Taking the derivative of the right-hand side of Eq 358 with respect to 𝛅𝛅𝛅𝛅 
and setting the result equal to zero yields the well-known Normal Equation(s). Here, consistent 
with convention, 𝛅𝛅𝐱𝐱� denotes the solution to the Normal Equations  

�JT  W  J � 𝛅𝛅𝐱𝐱� =  J𝑇𝑇  W  𝛅𝛅𝛅𝛅 Eq 359 

General Estimator — The value for 𝛅𝛅𝛅𝛅 that minimizes C� in Eq 358 is  

                                                 
* Carl Gustav Jacob Jacobi (Dec. 10, 1804 – Feb. 18, 1851) was a German mathematician. 
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𝛅𝛅𝐱𝐱� = �JT  W  J �
−1
 J𝑇𝑇 W  𝛅𝛅𝛅𝛅 = 𝐊𝐊  𝛅𝛅𝛅𝛅 

𝐊𝐊 = �JT  W  J �
−1
 J𝑇𝑇 W= ��W½J�

𝑇𝑇
�W½J��

−1
�W½J�

𝑇𝑇
W½     

Eq 360 

Matrix 𝐊𝐊 = �JTW J �
−1
 J𝑇𝑇W is called the estimator matrix. Existence of the matrix inverse 

indicated in Eq 360 requires that W½ J be of full rank, i.e., to have linearly independent columns. 
Thus J must have linearly independent columns. (That is, every unknown variable must affect 
the measurements, taken as a group, differently.) 

Optimal Estimator — For the estimator in Eq 360, the variance of the estimation error, i.e., of 
the difference 𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅, is smallest when W = 𝐑𝐑−1 (see Eq 365 and Eq 366). Thus, the optimal 
estimator is  

𝛅𝛅𝐱𝐱� = �JT  R−1J �
−1
 J𝑇𝑇 R−1  𝛅𝛅𝛅𝛅 = 𝐊𝐊  𝛅𝛅𝛅𝛅 

𝐊𝐊 = �J𝑇𝑇  R−1J �
−1
 J𝑇𝑇 R−1    

Eq 361 

Newton Estimator — For the situation where the number of measurements is the same as the 
number of unknown variables, Eq 360 and Eq 361 reduce to Eq 362 below, which is the Newton 
form of the estimator. In such situations, there is no role for a weighting matrix W. 

𝛅𝛅𝐱𝐱� = J−1  𝛅𝛅𝛅𝛅 = 𝐊𝐊  𝛅𝛅𝛅𝛅                    dim(𝐱𝐱) = dim(𝐳𝐳) 
𝐊𝐊  = J−1   

Eq 362 

It is possible to implement Eq 360 or Eq 361 for all situations where 𝑛𝑛 = dim(𝐳𝐳) ≥ 𝑝𝑝 = dim(𝐱𝐱). 
Then when 𝑛𝑛 = 𝑝𝑝, such an implementation will be algebraically equivalent to Eq 362. Thus, a 
least-squares approximation will not actually be involved; however, that would not necessarily 
be obvious to the analyst.  

Update Estimate for Variables — Given the estimate for the perturbation, 𝛅𝛅𝐱𝐱�, the estimates of 
the unknown variables are updated in accordance with 

𝐱𝐱�  =  𝐱𝐱 + 𝛅𝛅𝐱𝐱� Eq 363 

𝐿𝐿�𝐴𝐴 = 𝐿𝐿�𝐴𝐴 + 𝛿𝛿𝐿𝐿�𝐴𝐴          𝜆̂𝜆𝐴𝐴 = 𝜆̅𝜆𝐴𝐴 + 𝛿𝛿𝜆̂𝜆𝐴𝐴          ℎ�𝐴𝐴 = ℎ�𝐴𝐴 + 𝛿𝛿ℎ�𝐴𝐴          𝑡̂𝑡𝑋𝑋 = 𝑡𝑡𝑋̅𝑋 + 𝛿𝛿𝑡̂𝑡𝑋𝑋  

Iteration Process Summary 

0. The initial estimate for the independent variables, 𝐱𝐱�0, must be provided. 

After completing an iteration (say, k), the process is repeated for iteration k+1: 

1. Assign the updated values for the independent variables found in the previous step to 𝐱𝐱�𝑘𝑘+1 
—i.e., set 𝐱𝐱� ≡ 𝐱𝐱�𝑘𝑘+1 = 𝐱𝐱�𝑘𝑘.  

2. Evaluate the measurement residual 𝛅𝛅𝛅𝛅 using 𝐱𝐱� (Eq 354) 
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3. Optional: Examine the components of 𝛅𝛅𝛅𝛅 and determine/reject outliers, if present 

4. Optional/recommended: Compute the cost function C using 𝛅𝛅𝛅𝛅 (Eq 354) 

5. Compute the Jacobian matrix J for 𝐱𝐱� (Eq 356)  

6. Compute the estimated perturbation vector 𝛅𝛅𝐱𝐱� = 𝛅𝛅𝐱𝐱�𝑘𝑘+1 (Eq 360, Eq 361 or Eq 362)  

7. Update the estimate of the variables sought 𝐱𝐱� = 𝐱𝐱�𝑘𝑘+1 (Eq 363) 

8. Examine 𝛅𝛅𝐱𝐱�𝑘𝑘+1 = 𝐱𝐱�𝑘𝑘+1 − 𝐱𝐱�𝑘𝑘, and possibly other quantities, and decide among: 
(1) Convergence to the correct solution is occurring and the iteration process should 

continue;  
(2) Convergence to the correct solution has occurred and the process should be stopped;  
(3) Convergence to an incorrect solution is occurring and the process should be stopped 
(4) Divergence is occurring and the process should be stopped. 

Possibilities (3) and (4) are addressed in Subsection 8.1.7. 

Computing Cost Function — While not required, it is recommended that the cost function 
(item 4) be computed during each interation. Since the measurement residuals are available 
(item 2) there is little added effort and the cost function provides information on the nature of the 
solution being computed. For a Newton estimator, the cost function ‘should’ converge to zero. If 
it does not, then there may be an inconsistency in the measurement equations (a solution may not 
exist) or the initial estimate may be ‘too far’ from the solution. For a Gauss estimator, one 
expects the statistics of the cost function to be related to the measurement errors. 

Minimum Number of Iterations — If the measurement functions 𝐟𝐟(𝐱𝐱) depend nonlinearly on 
the unknown variables (virtually always the case for navigation and surveillance applications), at 
least two iterations should be performed. The final iteration confirms that the changes in the 
values of the variables sought are negligible.  

8.1.5 Solution Properties 

Overview — Linear Least Squares (LLS), also called linear regression, is perhaps the most 
widely used statistical technique, and consequently has a rich literature. LLS characteristics/ 
properties, which apply to each iteration of the NLLS approach, are summarized first. 
Characteristics of the NLLS solution (i.e., upon convergence) are then provided. 

Numerical Solution of the Normal Equation — The Normal Equation (Eq 359) has been 
called the defining equation of the Gauss-Newton technique (Ref. 56). One viewpoint is that the 
cost function of Eq 354 is simply a rationale for generating the Normal Equation. The iteration 
process described above can be performed without computing the value for a cost function. 

Methods are available for solving the Normal Equation that are more numerically stable than 
computing the inverse of the matrix on the left-hand side of Eq 359. Perhaps the best approach is 
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to perform orthogonal decomposition on W½ J (i.e., utilize the antecedent of Eq 359, similar to 
Eq 357). Some software packages have this capability. 

General Estimator Error Covariance — If the expression in Eq 356 is substituted into Eq 360, 
the result is  

 𝛅𝛅𝐱𝐱� = 𝛅𝛅𝛅𝛅  + �J𝑇𝑇W  J �
−1

J𝑇𝑇W  𝐯𝐯 Eq 364 

Thus, in the context of the linearized measurement model,  𝛅𝛅𝐱𝐱� from Eq 360 is an unbiased 
estimate of 𝛅𝛅𝛅𝛅 and is corrupted only by measurement errors. The covariance matrix of the 
estimation error for the general estimator is 

𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇  = �JT  WJ �
−1

JT  W R W J �JT  WJ �
−1

 Eq 365 

Optimal Estimator Error Covariance — It can be shown (Ref. 57, Section 6.7) that, when the 
measurement error covariance matrix R is invertible, the estimation error covariance for the 
unknown variables (Eq 365) has a lower bound of �JT  R−1  J �

−1
 and this lower bound is achieved 

when and only when W = 𝐑𝐑−1. Thus, when R−1 exists, the optimal estimator’s error covariance 
matrix is  

𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇  = �JT  R−1J �
−1

 Eq 366 

When R is not invertible, for some combinations of  J, R, and  W the right-hand side of Eq 365 
reduces to an expression of the form �JT  Q J �

−1
 where Q is positive semi-definite. Subsec-

tion 8.4.4 provides an example.  

Newton Estimator Error Covariance — If the number of measurements and unknown 
variables are equal, then J is square and must be invertible for a solution to exist. That being the 
case, the error covariance for estimator of Eq 362 becomes  

𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇  =   J −1R  J−𝑇𝑇  = �JT  R−1   J �
−1

 dim(𝐱𝐱) = dim(𝐳𝐳) Eq 367 

Existence of the right-most expression in Eq 367, �JT  R−1  J �
−1

, requires that R be invertible. In 
such situations, the Newton estimator’s error covariance has the same form as that for the 
optimal estimator when redundant measurements are available. In contrast, the directly-derived 
expression   J −1R  J−𝑇𝑇 does not require R to be invertible, and addresses situations involving both 
error-corrupted and perfect measurements. 

Uncorrelated Similar Measurements — For situations where the measurement errors can be 
considered to be uncorrelated with a common variance 𝜎𝜎meas

2  (typically a situation involving 
similar stations for a single system such as GPS), both Eq 366 and Eq 367 reduce to (where 𝐈𝐈𝑛𝑛  is 
the n x n identity matrix) 
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𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇 = �JT  J �
−1
𝜎𝜎meas
2                   R = 𝜎𝜎meas

2   𝐈𝐈𝑛𝑛    Eq 368 

Linearized Model Residuals — During each iteration, after 𝛅𝛅𝐱𝐱� has been found from Eq 360 
(the general estimator), the difference between 𝐳𝐳� its updated residual value is 

𝐳𝐳� − [𝐟𝐟(𝐱𝐱) + J  𝛅𝛅𝐱𝐱�] = [𝐳𝐳� − 𝐟𝐟(𝐱𝐱)]− J  𝛅𝛅𝐱𝐱� = � 𝐈𝐈𝑛𝑛 − J �JT  W  J �
−1
 J𝑇𝑇  W� 𝛅𝛅𝛅𝛅 Eq 369 

Eq 369 provides an estimate for (but is not equal to) the residual measurement error for the non-
linear model, 𝐳𝐳� − 𝐟𝐟(𝐱𝐱�).  

It is often expected that the updated residual measurement vector of Eq 369 will have 
components that are statistically similar, and tests have been developed for identifying ‘large’ 
residuals. Examination of residuals has been tailored for GPS, a system that usually provides 
more than the minimum required number of measurements needed for a fix. 

Projection Matrix — The matrix P defined in Eq 370 — or when W is proportional to 𝐈𝐈𝑛𝑛, by 
P  ≡  J �JT   J �

−1
 J𝑇𝑇 — is termed the projection matrix for the Jacobian matrix J.  

P   ≡   J �JT  W J �
−1
 J𝑇𝑇W = J ��W½J�

𝑇𝑇
�W½J��

−1
�W½J�

𝑇𝑇
W½ Eq 370 

In Statistics, P is sometimes called the influence (or, informally, the hat) matrix. Matrix P 
projects the measurement residuals onto the column space of J. (This can be proved using 
singular value decomposition.) Thus, 𝐈𝐈𝑛𝑛   -  P  projects onto the space which is orthogonal to the 
column space of J.  

Formally, matrix P is idempotent, P P  =   P , and satisfies P J= J . Both are necessary conditions 
for P to be a projection matrix for J. Similarly, 𝐈𝐈𝑛𝑛   -  P  is idempotent and satisfies (𝐈𝐈𝑛𝑛   -  P )J = 𝟎𝟎. 
Matrix W P  = (W P)𝑇𝑇   =  P𝑇𝑇W is symmetric. It follows that W P = W P P =(W P)𝑇𝑇P =  P𝑇𝑇W P and 
W [I-P] = [I-P]𝑇𝑇W [I-P] P is symmetric when W is proportional to I. When J is square and 
invertible, P becomes the identity matrix. 

Estimator Matrix — The estimator matrix 𝐊𝐊 (Eq 360, Eq 361 and Eq 362) always satisfies 
𝐊𝐊  J = 𝐈𝐈p (where 𝐈𝐈p  is the p x p identity matrix). Thus 𝐊𝐊 is one form of an inverse of J — the 
unique, true inverse when J is square, or a non-unique left-inverse when J is not square. This 
situation is consistent with 𝛅𝛅𝐱𝐱� = 𝐊𝐊  𝛅𝛅𝛅𝛅 being a ‘best solution’ to Eq 357.  

A physical interpretation of 𝐊𝐊 is readily available for a system utilizing (a) a Cartesian 
coordinate formulation and (b) uncorrelated slant-range measurements. In that case (Subsection 
8.4.3), the rows of J are unit vectors 𝐮𝐮𝑖𝑖𝑖𝑖 from each station Si to the assumed location of the 
aircraft A (embedded in 𝐱𝐱�). Thus 𝐊𝐊 and 𝛅𝛅𝐱𝐱� can be thought of as the products of two factors  
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𝛅𝛅𝐱𝐱� = �JT  J �
−1
 J𝑇𝑇𝛅𝛅𝛅𝛅 = �JT  J �

−1
� 𝛿𝛿𝑧𝑧𝑖𝑖  𝐮𝐮𝑖𝑖𝑖𝑖

𝑖𝑖
 Eq 371 

On the right-hand side of Eq 371, the summation involves the station-aircraft unit vectors scaled 
by the associated measurement residuals 𝛿𝛿𝑧𝑧𝑖𝑖 (the differences between the measured ranges to the 
aircraft and the calculated ranges based on its assumed location 𝐱𝐱). The factor �JT  J �

−1
 converts 

coordinatized range residuals into incremental position values. In effect, multiplication by 
�JT  J �

−1
 removes the correlations in the components of J𝑇𝑇𝛅𝛅𝛅𝛅. 

Estimated Cost Function Reduction — Using P, Eq 369 can be written 

𝐳𝐳� − [𝐟𝐟(𝐱𝐱) + J  𝛅𝛅𝐱𝐱�] = [𝐳𝐳� − 𝐟𝐟(𝐱𝐱)]− J  𝛅𝛅𝐱𝐱� = [ 𝐈𝐈 − P]𝛅𝛅𝛅𝛅 Eq 372 

Thus, invoking W P = P𝑇𝑇W P, C� in Eq 358 evaluates to  
C� =   𝛅𝛅𝛅𝛅𝑇𝑇 [𝐈𝐈  − 𝐏𝐏]𝑇𝑇  W [I  − P]𝛅𝛅𝛅𝛅
= 𝛅𝛅𝛅𝛅𝑇𝑇W 𝛅𝛅𝛅𝛅 − (𝐏𝐏  𝛅𝛅𝛅𝛅)𝑇𝑇W(𝐏𝐏  𝛅𝛅𝛅𝛅) 

Eq 373 

The second line of Eq 373 shows that C� is the difference between the weighted sum of the 
squared residuals before updating and the estimated amount, (𝐏𝐏  𝛅𝛅𝛅𝛅)𝑇𝑇W(𝐏𝐏  𝛅𝛅𝛅𝛅), that the residual 
would be reduced based on a linear model estimate 𝛅𝛅𝐱𝐱�. The first line shows that C� must be non-
negative (Ref. 57).  

When the number of equations is equal to the number of unknowns, since J must be invertible in 
that situation, C� is equal to zero for each iteration. This is the multi-dimensional version of the 
characteristic behavior of the Newton-Raphson algorithm. 

Equating the two lines of Eq 373 shows that pre-update and post-update residuals for the linear 
model are related by a version of Pythagoras’s theorem. This relationship is well-known in 
statistics. 

𝛅𝛅𝛅𝛅𝑇𝑇W 𝛅𝛅𝛅𝛅 = (𝐏𝐏  𝛅𝛅𝛅𝛅)𝑇𝑇W(𝐏𝐏  𝛅𝛅𝛅𝛅) + 𝛅𝛅𝛅𝛅𝑇𝑇 [𝐈𝐈  − 𝐏𝐏]𝑇𝑇  W [I  − P]𝛅𝛅𝛅𝛅 Eq 374 

Orthogonality of Estimate and Updated Residual — Using Eq 370 for P and Eq 360 for 𝛅𝛅𝐱𝐱� 
(and invoking W P = P𝑇𝑇W P) yields  

J 𝛅𝛅𝐱𝐱� = 𝐏𝐏  𝛅𝛅𝛅𝛅                   𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝐱𝐱� = [I − P]𝛅𝛅𝛅𝛅 
(𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝐱𝐱�)𝑇𝑇  W J 𝛅𝛅𝐱𝐱� = 𝛅𝛅𝛅𝛅𝑇𝑇[𝐈𝐈  − 𝐏𝐏]𝑇𝑇W P 𝛅𝛅𝛅𝛅 = 0 

Eq 375 

The second line of Eq 375 is interpreted as stating that the vectors 𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝐱𝐱� and  J 𝛅𝛅𝐱𝐱� are 
orthogonal after each iteration. Thus, in the context of linear algebra, there no information 
remaining in 𝛅𝛅𝛅𝛅 that can be used to improve the estimate 𝛅𝛅𝐱𝐱�. When/if convergence is achieved 
and 𝛅𝛅𝐱𝐱� = 𝟎𝟎, the residual measurement error 𝛅𝛅𝛅𝛅 = 𝐳𝐳� − 𝐟𝐟(𝐱𝐱) is in the null space of P, or 
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equivalently, orthogonal to the column space of J.  

Using Eq 375, an alternate to Eq 373 for computing C� is 

C� =   (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝐱𝐱�)𝑇𝑇  W  𝛅𝛅𝛅𝛅 = 𝛅𝛅𝐳𝐳𝑇𝑇  W 𝛅𝛅𝛅𝛅 − 𝛅𝛅𝐱𝐱�𝑇𝑇J𝑇𝑇  W 𝛅𝛅𝛅𝛅 Eq 376 

Equivalence of NLLS to Newton and Gauss Solutions — Combining Eq 354, Eq 362 and Eq 
363 for the Newton estimator yields  

𝐱𝐱� = 𝐱𝐱 + J−1[𝐳𝐳� − 𝐟𝐟(𝐱𝐱)] dim(z) = dim(x) Eq 377 

Eq 377 is the multi-dimensional Newton-Raphson formula for solving 𝐳𝐳� = 𝐟𝐟(𝐱𝐱) by iteration. It 
applies when the number of measurements is equal to the number of unknown variables — a 
common situation in navigation and surveillance applications.  

Combining Eq 354, Eq 360 and Eq 363 for the general estimator yields  

𝐱𝐱�  =  𝐱𝐱  + �JTW J �
−1
 J𝑇𝑇W [𝐳𝐳� − 𝐟𝐟(𝐱𝐱)]     dim(z) > dim(x) Eq 378 

Eq 378 is the Gauss-Newton formula for solving 𝐳𝐳� ≈ 𝐟𝐟(𝐱𝐱) by iteration, and applies when the 
number of measurements n exceeds the number of unknown variables p.  

In contrast to Eq 377 and Eq 378, the solutions of Chapters 3-7 can be written 𝐱𝐱 = 𝐟𝐟−1(𝐳𝐳�) in the 
vector/matrix notation employed in this chapter. In Chapters 3-7, by taking advantage of the 
structure of specific problems, the measurement equations can be inverted.  

Measurement Residual at Convergence — Assuming that the iteration process described in 
Subsection 8.1.4 converges, the solution  𝛅𝛅𝐱𝐱� to the Normal Equation Eq 359 becomes a p-length 
null vector. However, the associated conditions imposed on the measurement residual vector  𝛅𝛅𝛅𝛅 
for the Newton and Gauss solutions are different. 

Newton Solution — When the number of measurements n equals the number of unknown 
variables p, if the iterative solution process converges the residual measurement 𝛅𝛅𝛅𝛅 becomes a p-
length null vector. Equivalently, the equation 𝐳𝐳� = 𝐟𝐟(𝐱𝐱) is satisfied. In this case, an approximation 
employed for the Jacobian matrix J need not be very accurate. This situation is analogous to 
employing the secant method for finding the root of a scalar equation using approximations to 
the derivative of the equation (Subsection 2.1.8). In some situations, the equation 𝐳𝐳� = 𝐟𝐟(𝐱𝐱) 
cannot be satisfied and convergence does not occur. 

Gauss Solution — When the number of measurements n exceeds the number of unknown 
variables p, if the iterative solution process converges, the product J𝑇𝑇  W  𝛅𝛅𝛅𝛅 = �W½J�

𝑇𝑇
�W½𝛅𝛅𝛅𝛅�   

must be a p-length null vector (Eq 360). Equivalently, the inner (dot) product of every column of 
W½J and the vector W½𝛅𝛅𝛅𝛅 is the scalar zero. Thus, unlike the Newton solution: (a) 𝛅𝛅𝛅𝛅 is not 
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driven to the null vector, and (b) the choices for W and J may affect the solution. After 
convergence, the derivative of the cost function (Eq 354) satisfies  

𝜕𝜕C
𝜕𝜕𝐱𝐱

= −2  J𝑇𝑇  W  𝛅𝛅𝛅𝛅 = −2  �W½J�
𝑇𝑇
�W½𝛅𝛅𝛅𝛅� = 0           𝑛𝑛 > 𝑝𝑝 , at convergence Eq 379 

The fact that the Newton and Gauss solutions satisfy different conditions can lead to an apparent 
contradiction. If one has error-free measurements and n  =  p, then the Newton solution will yield 
the exact aircraft location although an approximate Jacobian matrix is used. However, if 
additional error-free measurements are available, then the Gauss solution may be in error due to 
the use of an approximate Jacobian matrix.  

Utilizing Perfect Measurements — The Newton estimator (Eq 362) does not take account of 
measurement errors, and can utilize measurements which are treated as perfect (i.e., have zero 
error) without modification. However, when redundant measurements are available, the optimal 
estimator (Eq 361) utilizes the inverse of measurement error covariance R−1 as the weighting 
matrix, and thus cannot utilize perfect measurements per se. There are several ways to address 
situations involving assumed-perfect measurements and n  >  p:  
 Use the general estimator with a weight matrix W that has a positive diagonal 

element for the perfect measurement that is much larger than the other diagonal 
elements. Although inelegant, this method is simple to implement and is always 
available. 

 Recast the minimization problem of Eq 358, treating the perfect measurement as a 
constraint that’s handled using a Lagrange multiplier. This method requires slightly 
more effort to implement, and is described in Appendix Section 9.5. It is not often 
used in navigation or surveillance systems.  

 Discard as many measurements as necessary to arrive at a situation where the number 
of measurements is equal to the number of variables. Presumably, the discarded 
measurements are less accurate and/or redundant relative to the measurements 
retained. Then use the Newton estimator. While not desirable, this method is always 
available. 

 Choose a coordinate framework such that the perfectly measured quantity is one of 
the variables sought. The problem can be then be recast with that variable as a known 
parameter. This method is not always available, but is available for a common 
aviation situation — the aircraft’s altimeter measurement is considered to be error-
free. In such situations, the spherical earth framework is used. 

While a measurement may be treated as error-free when computing the unknown variables, it 
need not be considered to be error-free when computing their estimation error covariance.  

8.1.6 Advantages 

Uses All Measurements — An important reason for employing the NLLS technique is to be 
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able to utilize all measurements — i.e., all types (see next two paragraphs) and a greater number 
than there are unknown variables. Using redundant equations has several advantages: (1) enables 
averaging of measurement errors, (2) usually eliminates ambiguous/extraneous solutions that can 
occur with the minimum required number of measurements, and (3) generally reduces the 
accuracy needed for the initial estimate in order to avoid divergence during the iteration process. 

Utilizes Uninvertible Measurement Equations — While all of the measurement equations in 
Chapters 3-7 are analytically invertible (i.e., expressions exist for the unknown variables as 
functions of the known quantities), invertibility is not always possible. Thus, another important 
reason for utilizing the NLLS approach is its capability to utilize measurement equations that 
cannot be inverted. Such situations can arise because a set of analytic expression that accurately 
characterize the measurements is too complex to be inverted. But there are other reasons as well. 

Utilize Measurements Lacking an Analytic Expression — The measurement equations — 
symbolized by 𝑓𝑓𝑖𝑖(𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) in Eq 350 — are the most accurate available representation of 
the quantities that are measured. Since invertibility is not required, these ‘equations’ need not be 
analytic expressions. What is required is the capability to compute numerical values, for a given 
set of values for the independent variables, for each measured quantity (e.g., aircraft-station 
range or signal time-of-arrival). Combinations of complex analytic expressions, numerical 
algorithms (such as Vincenty’s) and lookup tables have been used in measurement ‘equations’. 

Approximate Jacobians Are Useful — The elements of the Jacobian matrix (J in Eq 356) need 
not be precisely equal to the partial derivatives of the measurement equations (which may not 
even have analytic expressions for its derivatives). In navigation and surveillance applications, 
the natural sources of such approximations are the plane and spherical geometry and trigonom-
etry that describes most measurements (Subsection 8.3.2). The analyst should be aware that, in 
the over-determined / Gauss situation (n  >  p), the choices for both the weight matrix W and the 
Jacobian matrix J may affect the solution — see Subsection 8.1.5 (Eq 379). However, use of the 
spherical earth approximation for the elements of J, when an ellipsoid earth model is used for the 
measurement equations, is common practice and appears to have a negligible effect on solution 
accuracy (Subsection 8.5.7). 

Provides Accuracy/Error Estimates — An important characteristic of the NLLS technique is 
that it provides expressions for both (a) the unknown navigation variables and (b) the variance of 
the estimation error of those variable. These quantities are computed separately — one is not 
needed to find the other. The methods addressed in Chapters 3-7 do not provide characterizations 
of the sensitivity of their solutions to various parameters. 

Estimates of aircraft position error sensitivity to aircraft location, station types/locations and 
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measurement error statistics are needed to understand a system’s capabilities. They are often 
used in planning studies to assess the feasibility of a proposed new system or modification. Since 
measurement error statistics are usually not regarded as having the same precision as position 
solutions, characterizing the earth as an ellipsoid is usually not necessary in planning studies.  

Useful/Proven Optimization Criterion — When there are more measurements than unknown 
variables, there is no single best way to combine the equations. In addition to the above-cited 
advantages, the case for the NLLS technique largely rests on four points: (1) it’s logical to 
weight the equations in accordance with their expected accuracy; (2) the NLLS technique is 
analytically tractable, involving recursive solution of linear equations based on (possibly 
approximate) first derivatives of the measurement equations but not requiring their second 
derivatives; (3) when the number measurements and unknowns are equal, the NLLS technique 
reduces to Newton’s method for finding the roots of a set of equations, a technique which is over 
350 years old and still in common use; and (4) the Gauss method for utilizing redundant meas-
urements has proven to be a useful in a wide variety of applications for over 200 years.  

A case study of several optimization techniques (Ref. 50) concluded that — for a navigation 
application — the NLLS technique always yields a ‘good’, and often the ‘best’ solution for the 
techniques considered. Several important radio navigation systems have been deployed with the 
presumption that users would employ the NLLS technique or an evolved form of it (e.g., Kalman 
Filter) to convert a set of measurements to latitude/longitude coordinates. Examples include 
Loran-C, Omega and GPS.  

8.1.7 Disadvantages 

Lack of Physical Insight — The primary disadvantage of the Gauss-Newton NLLS technique is 
that it provides only limited insight into the properties/limitations of the problem involved, 
especially those that are related to the geometry. With the NLLS technique, the measurement 
equations are considered individually, while the solution methods addressed in previous chapters 
consider the measurements as a group. By inverting the measurement equations simultaneously, 
the properties of the solution can be ascertained. The most important of these are: 
 Existence — Can a solution be found from the measurements available? For what parts of 

the area near the sensors does a solution exist/not exist? 

 Uniqueness — Given a set of measurements, is there more than one solution? What parts 
of the area near the sensors has an ambiguous and/or extraneous solution? 

These properties are illustrated in Figure 26 and Figure 31. Lack of problem insight does not 
imply that such properties are not a concern. (The Jacobian matrix and DoP matrix, which is a 
function of the Jacobian matrix, do provide some indication of the solution’s behavior.) One 
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remedy to this disadvantage is to conduct a separate analysis using a method similar to those 
described in earlier chapters, which may require approximating the problem at hand. Another 
approach is to perform extensive simulations using the NLLS method, to understand its behavior. 

Convergence Failure — For any iterative method, there are two concerns regarding conver-
gence of the process:  
 Divergence — failure to converge to any solution 

 False convergence — settling on a different minimum than the one corresponding to the 
vehicle location.  

Occurrence of these may be related to the lack of insight into the problem. For example: a 
solution may not exist for some combinations of measurement values, causing the iteration 
process to diverge. Alternatively, the iteration process may converge to an ambiguous solution of 
the measurement equations, rather than to the actual vehicle location.  

General remedies to convergence failure are (1) prevention during the system design and 
(2) detection during real-time operation — either before or after the iteration process. By having 
insight into a problem, conditions that are conducive to divergence and false convergence may 
be prevented by the design. Example prevention measures include: (a) placement of sensors so 
that ambiguous locations are not in the service area; (b) providing redundant measurements, 
which generally reduce/eliminate problem areas; and (c) providing accurate values to initialize 
the iteration process. Subsection 8.5.1 contains examples of (b) and (c). 

Examples of real-time measures include, checking the measurements for infeasible values before 
beginning the iteration process. This is particularly relevant when the minimum number of 
sensors is being used. Examples of are found in Subsections 6.3.2, 6.4.3, 6.5.3, 7.2.4, 7.7.1, 
7.9.1, 7.10.1 and 7.12.1. However, not all non-convergent situations can be identified from the 
measurements. After the iteration process has converged, the solution can be compared with a 
previous solution or information from another sensor. Usually, the speed and direction of the 
correct and an ambiguous solution are quite different. 

8.1.8 Remarks 

Historical Credit — Ascribing the NLLS technique to Gauss and Newton is established practice 
(Ref. 58), if perhaps not totally accurate. The least-squares technique is usually credited to Carl 
Friedrich Gauss. However, a case has been made for Adrien-Marie Legendre (Ref. 56). Isaac 
Newton is usually credited with the technique for iterative solution of an equation whereby the 
independent variable is changed by the ratio of the dependent variable to its derivative. 
Reporedly, however, “his method differs substantially from the modern method” (Ref. 59). 
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Dilution of Precision (DoP) — When the measurement errors for individual stations are 
uncorrelated and have a common variance, then the accuracy of the solution for the navigation 
variables (Eq 368) is the product of: (a) a factor, (JT J)-1, that depends only on the geometry of 
the aircraft and the stations; and (b) a factor, 𝜎𝜎meas

2 , that depends largely on the electronic systems 
involved. Investigations centered on the geometry factor — termed the Dilution of Precision 
(DoP) — are an important aspect of planning studies (Section 8.4).  

Sensitivity to Weight Matrix — Another type of planning study examines the effect of using a 
different error covariance matrix in measurement processing than is actually true. Eq 365, with 
W used for processing and R representing the true error, can be used for such studies. 

Jacobian Rank — The necessity that the Jacobian matrix J be of full rank is an observability 
requirement. Essentially, in order for an unknown variable to be determined, a change from the 
assumed initial value must cause a unique signature in the available measurements. 

Initial Estimate — The first iteration step requires that initial estimates be provided for the 
quantities sought. Potential sources for the initial estimates are: (1) a solution based on an 
assumed spherical-earth; (2) a previous estimate, possibly updated by changes from the previous 
solution (obtained from, e.g., a ‘tracker’ or dead-reckoning system); and (3) user-provided. 

Qualitative Characteristics — While the ordinary least-squares and NLLS techniques have 
been applied to many fields, qualitative conclusions drawn in one field may not be valid in 
another. Although least-squares grew out of the fields of astronomy and geodesy, much of the 
modern literature involves its application to model parameter identification. Often parameter 
identification situations can be characterized as fitting an equation with a few unknown 
parameters and heuristically chosen functions to many (hundreds or thousands of) measure-
ments* (e.g., Ref. 60). While this literature is mathematically relevant, care must be exercised 
before adopting qualitative conclusions to navigation and surveillance applications. 

In contrast to parameter identification, navigation/surveillance applications usually involve: 
(a) at most, only a few more measurements than unknown variables; (b) a scientific basis for the 
functions being fitted; and (c) good initial estimates for the unknown variables. These factors 
mitigate most concerns in the parameter estimation field — e.g., that a solution will diverge or 
yield a local (rather than a global) minimum, and that generating a solution will require signif-
icant computational resources. Informally, one might characterize navigation and surveillance 
applications as ‘Newton-like’ (whereby the ratio of measurements to variables is close to one), 

                                                 
* Generally, providing real-time navigation or surveillance measurements requires costs for ground stations — real 
estate, equipment, installation and maintenance. These are often several orders of magnitude more than that of 
parameter identification measurements. 
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while parameter identification applications are ‘Gauss-like’ (whereby the ratio of measurements 
to variables is much greater than one). 

Probabilistic Interpretation — Although not done herein, probability distributions can be 
assigned to the measurement errors. This enables generation of additional statistical metrics — 
e.g., hypothesis tests and confidence bounds (e.g., Ref. 61). Such analyses are most useful when 
there are many more measurements than there are unknown variables. 

Jacobian Matrix Units — The unit of measure of element (i,j) of the Jacobian matrix is the ratio 
of the unit for measurement 𝑧̃𝑧𝑖𝑖 divided by the unit for variable 𝑥𝑥𝑗𝑗. In situations where angles are 
involved — as the measurement and/or the variable — it may be necessary to multiply or divide 
an expression by the radius of the earth 𝑅𝑅𝑒𝑒 in order to achieve compatible units. 

8.2 Equations for Systems Employing Cartesian Coordinates 

8.2.1 Introduction 

Application of the NLLS technique described in Section 8.1 only requires specification of the 
measurement equations (Eq 350) and weight matrix (Eq 354). Moreover, the latter is not needed 
in some situations. Among the most common least-squares applications are those involving 
‘range-type’ measurements of the distance between an aircraft and a known location. These 
include: 
 Actual slant-range measurements of the distance between an aircraft and a station — 

such as a radar or a DME transponder. Usually, these involve transmission and 
reception of signals by both the station and the aircraft (two-way ranging).  

 Pseudo slant-range measurements of the distance, plus a range offset common to all 
stations, between an aircraft and one of set of stations with synchronized clocks — 
such as a multilateration remote unit or GPS satellite. Usually, these involve trans-
mission of signals by one entity and reception by the other (one-way ranging). 

 Altitude measurements of the distance between an aircraft and the center of the earth 
— usually performed by a barometric altimeter (see Appendix Section 9.1). 

Range-type measurements can be processed/analyzed using any rectangular coordinate frame, 
since the form of Pythagoras’s equation is the same in all frames. Thus the choice generally 
depends upon the application. (They can also be processed/analyzed in a spherical frame; this 
topic is addressed in Section 8.3.) One option, suitable for small areas, is a local tangent plane 
frame (Subsection 5.1.2). For larger areas, the earth-centered earth-fixed (ECEF) frame e 
introduced in Section 5.1.1 is more suitable, and is used in this section. If station S is has latitude 
𝐿𝐿𝑆𝑆, longitude 𝜆𝜆𝑆𝑆 and altitude ℎ𝑆𝑆, its ECEF coordinates are  
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𝐫𝐫𝐒𝐒𝐞𝐞 = �
𝑥𝑥S
𝑦𝑦𝑆𝑆
𝑧𝑧S
� = �

cos(𝐿𝐿𝑆𝑆) cos(𝜆𝜆𝑆𝑆)
cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝑆𝑆)

sin(𝐿𝐿𝑆𝑆)
� (𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) Eq 380 

Assuming that the aircraft A is has unknown latitude 𝐿𝐿𝐴𝐴, longitude 𝜆𝜆𝐴𝐴 and altitude ℎ𝐴𝐴, then its 
unknown ECEF coordinates are 

𝐫𝐫𝐒𝐒𝐞𝐞 = �
𝑥𝑥𝐴𝐴
𝑦𝑦𝐴𝐴
𝑧𝑧𝐴𝐴
� = �

cos(𝐿𝐿𝐴𝐴) cos(𝜆𝜆𝐴𝐴)
cos(𝐿𝐿𝐴𝐴) sin(𝜆𝜆𝐴𝐴)

sin(𝐿𝐿𝐴𝐴)
� (𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴) Eq 381 

A caveat concerning notation: In this section, the scalar 𝑧𝑧 denotes an axis in a rectangular 
coordinate frame, while in Section 8.1, the vector 𝐳𝐳 denotes a generic measurement.  

8.2.2 Measurement Equations 

Range Measurement — The non-linear scalar measurement model, corresponding to Eq 350, 
for the slant-range 𝑑𝑑𝐴𝐴𝐴𝐴 between ranging station S and aircraft A is  

𝑑̃𝑑𝐴𝐴𝐴𝐴 = 𝑑𝑑𝐴𝐴𝐴𝐴 + 𝑣𝑣𝐴𝐴𝐴𝐴 

𝑑𝑑𝐴𝐴𝐴𝐴 = �(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆)2 + (𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑆𝑆)2 
Eq 382 

Here, 𝑥𝑥𝑆𝑆, 𝑦𝑦𝑆𝑆, 𝑧𝑧𝑆𝑆 are the ECEF coordinates of S. The partial derivatives of 𝑑𝑑𝐴𝐴𝐴𝐴 with respect to the 
unknown aircraft position variables (corresponding to the partial derivatives in Eq 353) are 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

               
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

               
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

 Eq 383 

Pseudo Slant-Range Measurement — The non-linear scalar measurement model, 
corresponding to Eq 350, for the pseudo slant-range 𝑝𝑝𝐴𝐴𝐴𝐴 between station S and aircraft A is  

𝑝𝑝�𝐴𝐴𝐴𝐴 = 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑣𝑣𝐴𝐴𝐴𝐴 

𝑝𝑝𝐴𝐴𝐴𝐴 = �(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆)2 + (𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑆𝑆)2 + 𝑐𝑐𝑡𝑡𝑋𝑋 
Eq 384 

Here, 𝑥𝑥𝑆𝑆, 𝑦𝑦𝑆𝑆, 𝑧𝑧𝑆𝑆 are the Cartesian coordinates of S and c is the known speed of propagation.  

The partial derivatives of 𝑝𝑝𝐴𝐴𝐴𝐴 with respect to the unknown variables (corresponding to the partial 
derivatives in Eq 353) are, using 𝑑𝑑𝐴𝐴𝐴𝐴 defined in Eq 382 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

          
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

          
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

          
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝑋𝑋

= 𝑐𝑐 Eq 385 

Altitude Measurement — Let 𝑟𝑟𝐴𝐴 be the distance from the aircraft A to the earth’s center. Then 
the non-linear scalar measurement model, corresponding to Eq 350, for an altimeter measure-
ment is 
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𝑟̃𝑟𝐴𝐴 = 𝑅𝑅𝑒𝑒 + ℎ�𝐴𝐴 = 𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴 + 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝐴𝐴 = 𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴 = �(𝑥𝑥𝐴𝐴)2 + (𝑦𝑦𝐴𝐴)2 + (𝑧𝑧𝐴𝐴)2 
Eq 386 

The partial derivatives of 𝑟𝑟𝐴𝐴 with respect to the unknown variables are 
𝜕𝜕𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑥𝑥𝐴𝐴
𝑟𝑟𝐴𝐴

                    
𝜕𝜕𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑦𝑦𝐴𝐴
𝑟𝑟𝐴𝐴

                    
𝜕𝜕𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
𝑧𝑧𝐴𝐴
𝑟𝑟𝐴𝐴

 Eq 387 

Two-Dimensional Azimuth Measurement — Consider a two-dimensional Cartesian problem 
formulation where x denotes east and y denotes north. Then the azimuth angle 𝜓𝜓𝐴𝐴/𝑆𝑆 of the 
aircraft A with respect to station S is  

𝜓𝜓�𝐴𝐴/𝑆𝑆 = 𝜓𝜓𝐴𝐴/𝑆𝑆 + 𝜈𝜈𝐴𝐴𝐴𝐴 

𝜓𝜓𝐴𝐴/𝑆𝑆 = arctan �
𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆
𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆

� 
Eq 388 

The partial derivatives of 𝜓𝜓𝐴𝐴/𝑆𝑆 with respect to the unknown variables are 

𝜕𝜕𝜕𝜕𝐴𝐴/𝑆𝑆

𝜕𝜕𝑥𝑥𝐴𝐴
=

𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆
(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆)2               

𝜕𝜕𝜕𝜕𝐴𝐴/𝑆𝑆

𝜕𝜕𝑦𝑦𝐴𝐴
=

−(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆)
(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆)2 Eq 389 

8.2.3 Remarks 

Multilateration Application — An airport surface is a small enough region that the earth can be 
treated as flat within its perimeter, and a tangent plane coordinate system can be used. Also, 
aircraft on the surface can be assumed to be at the same altitude. Thus the multilateration pseudo 
slant-range equations can be processed with two position variables. If low-altitude aircraft are 
involved, altitude information provided by aircraft can be employed for the vertical dimension, 
and combined with the multilateration horizontal solution.  

GPS Application — GPS is at the opposite end of the size scale from airport multilateration. 
The ‘ground stations’ are satellites in orbit approximately 10,900 NM above the surface — about 
three times the earth’s radius. At this scale, the ECEF frame is the natural setting. 

Solution Option — When processing a set of pseudo slant-range measurements (Eq 384), one 
solution method is to subtract one pseudo slant-range from the others. Analytically, this reduces 
the number of measurement equations by one, eliminates 𝑡𝑡𝑋𝑋 as an unknown variable and 
increases the measurement error per equation. The hyperbolic geometry associated with range 
differences can provide insights into regions where a set of stations provides (and does not 
provide) effective measurements (e.g., Section 7.3). However, knowing the clock offset and 
associated TDoP may be useful in some situations, and the additional computational cost is 
insignificant. 
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8.3 Equations for Systems Employing Spherical Coordinates 

8.3.1 Introduction / Rationale 

As shown in Chapter 7, Cartesian coordinates and range-type measurements result in simple 
measurement equations. However, in the context of much of aircraft navigation — involving 
station-aircraft distances of hundreds of miles — ECEF coordinates have important limitations: 
 ECEF coordinates do not handle azimuth measurements well — e.g., the aircraft azimuth 

angle from a VOR or radar station  
 Each of the unknown ECEF variables 𝑥𝑥𝐴𝐴,𝑦𝑦𝐴𝐴, 𝑧𝑧𝐴𝐴  is a function of the aircraft latitude, 

longitude and altitude, complicating the placing of restrictions on the latter, more natural 
set of unknown variables. 

Another reason to utilize spherical coordinates in an NLLS solution is noted in Subsection 8.1.6, 
under the title “Approximate Jacobians Useful”. Accurate solutions can be readily found when 
the Jacobian matrix elements are approximations to derivatives of the measurement equation. A 
spherical earth model often is often used to obtain sufficiently accurate representations of the 
Jacobian elements.  

In this section, it is assumed that station S is has known latitude 𝐿𝐿𝑆𝑆, longitude 𝜆𝜆𝑆𝑆 and altitude ℎ𝑆𝑆. 
It is similarly assumed that the aircraft A is has unknown latitude 𝐿𝐿𝐴𝐴 and longitude 𝜆𝜆𝐴𝐴 and 
possibly unknown altitude ℎ𝐴𝐴. It is further assumed that initial estimates for the unknown aircraft 
coordinates 𝐿𝐿�𝐴𝐴, 𝜆̅𝜆𝐴𝐴,ℎ�𝐴𝐴 and the time of transmission 𝑡𝑡𝑋̅𝑋 by A or S (if applicable) are available. 

8.3.2 Measurement Equations 

Slant-Range Measurement — The slant-range 𝑑𝑑𝐴𝐴𝐴𝐴 between station S and aircraft A can be 
expressed in terms of 𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴 and ℎ𝐴𝐴 by substituting Eq 81 into Eq 212. Thus the nonlinear slant-
range measurement model is: 

𝑑̃𝑑𝐴𝐴𝐴𝐴 = 𝑑𝑑𝐴𝐴𝐴𝐴 + 𝑣𝑣𝐴𝐴𝐴𝐴 

𝑑𝑑𝐴𝐴𝐴𝐴 = �4(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)  sin2 �12𝜃𝜃𝐴𝐴𝐴𝐴� + (ℎ𝐴𝐴 − ℎ𝑆𝑆)2 

= �4(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆) �sin2 �12(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆)� + cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)��

+(ℎ𝐴𝐴 − ℎ𝑆𝑆)2
 

Eq 390 

The partial derivatives of 𝑑𝑑𝐴𝐴𝐴𝐴 with respect to the unknown aircraft position variables (corres-
ponding to the partial derivatives in Eq 353) are 
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𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)

𝑑𝑑𝐴𝐴𝐴𝐴
�sin(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆) − 2  sin(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)�� 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)

𝑑𝑑𝐴𝐴𝐴𝐴
  cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆) 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕ℎ𝐴𝐴

=
2(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆)

𝑑𝑑𝐴𝐴𝐴𝐴
�sin2 �12(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆)� + cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)�� +

ℎ𝐴𝐴 − ℎ𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴

 

Eq 391 

Pseudo Slant-Range Measurement — The pseudo slant-range 𝑝𝑝𝐴𝐴𝐴𝐴 between station S and 
aircraft A can be expressed in terms of 𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴 and ℎ𝐴𝐴 by modifying Eq 390 to include the clock 
synchronization offset Δ𝑡𝑡. Thus the nonlinear slant-range measurement model is: 

𝑝𝑝�𝐴𝐴𝐴𝐴 = 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑣𝑣𝐴𝐴𝐴𝐴 

𝑝𝑝𝐴𝐴𝐴𝐴 = 𝑑𝑑𝐴𝐴𝐴𝐴 + 𝑐𝑐 𝑡𝑡𝑋𝑋 
Eq 392 

Here 𝑝𝑝�𝐴𝐴𝐴𝐴 denotes the error-corrupted measurement, 𝑝𝑝𝐴𝐴𝐴𝐴 denotes the error-free pseudo slant-range 
and 𝑣𝑣𝑝𝑝𝑝𝑝 denotes the measurement error. 

The partial derivatives of 𝑝𝑝𝐴𝐴𝐴𝐴 with respect to the unknown variables (corresponding to the partial 
derivatives in Eq 353) are 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝐿𝐿𝐴𝐴

=
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝐿𝐿𝐴𝐴

            
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜆𝜆𝐴𝐴

=
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜆𝜆𝐴𝐴

            
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕ℎ𝐴𝐴

=
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕ℎ𝐴𝐴

            
𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝑡𝑡𝑋𝑋

= 𝑐𝑐 Eq 393 

The measurement residual, corresponding to the left-hand side of Eq 353, is 

𝛿𝛿𝑝𝑝𝐴𝐴𝐴𝐴 = 𝑝𝑝�𝐴𝐴𝐴𝐴 − 𝑝̅𝑝𝐴𝐴𝐴𝐴 Eq 394 

Altitude Measurement — The measurement model for the altitude of the aircraft A is simply:  

ℎ�𝐴𝐴 = ℎ𝐴𝐴 + 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 Eq 395 

Here ℎ�𝐴𝐴 denotes the error-corrupted measurement, ℎ𝐴𝐴 denotes the error-free altitude and 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 
denotes the measurement error. 

The partial derivatives of ℎ𝐴𝐴 with respect to the unknown variables (corresponding to the partial 
derivatives in Eq 353) are 

𝜕𝜕ℎ𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

= 0               
𝜕𝜕ℎ𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

= 0               
𝜕𝜕ℎ𝐴𝐴
𝜕𝜕ℎ𝐴𝐴

= 1 Eq 396 

Geocentric Angle (Spherical-Range) Measurement — The geocentric angle 𝜃𝜃𝐴𝐴𝐴𝐴 (equivalent to 
spherical-range) between station S and aircraft A can be expressed in terms of 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 using 
Eq 81. Thus the nonlinear slant-range measurement model is: 
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𝜃𝜃�𝐴𝐴𝐴𝐴 = 𝜃𝜃𝐴𝐴𝐴𝐴 + 𝑣𝑣𝜃𝜃𝜃𝜃 

𝜃𝜃𝐴𝐴𝐴𝐴 = 2  arcsin��sin2 �12(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆)� + cos(𝐿𝐿𝐴𝐴)  cos(𝐿𝐿𝑆𝑆)  sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)�� 
Eq 397 

Here 𝜃𝜃�𝐴𝐴𝐴𝐴 denotes the error-corrupted measurement, 𝜃𝜃𝐴𝐴𝐴𝐴 denotes the error-free geocentric angle 
and 𝑣𝑣𝜃𝜃𝜃𝜃 denotes the measurement error. 

The partial derivatives of 𝜃𝜃𝐴𝐴𝐴𝐴 with respect to the unknown aircraft position variables (corres-
ponding to the partial derivatives in Eq 353) are 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
1

sin(𝜃𝜃𝐴𝐴𝐴𝐴)
�sin(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆) − 2  sin(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)�� 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕𝐴𝐴

=
1

sin(𝜃𝜃𝐴𝐴𝐴𝐴)
  cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆) sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆) 

𝜕𝜕𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕ℎ𝐴𝐴

= 0 

Eq 398 

In Eq 398, the expression for sin(𝜃𝜃𝐴𝐴𝐴𝐴) can be found using Eq 397 or Eq 142. 

Azimuth Measurement, Station-to-Aircraft — The azimuth angle 𝜓𝜓𝐴𝐴/𝑆𝑆 of aircraft A with 
respect to station S is expressed in terms of 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 by Eq 87 (in a form compatible with the 
two-argument arc tangent function). Thus the nonlinear measurement model is: 

𝜓𝜓�𝐴𝐴/𝑆𝑆 = 𝜓𝜓𝐴𝐴/𝑆𝑆 + 𝑣𝑣𝜓𝜓𝜓𝜓   

𝜓𝜓𝐴𝐴/𝑆𝑆 = arctan �
cos(𝐿𝐿𝐴𝐴)  sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)

sin(𝐿𝐿𝐴𝐴)cos(𝐿𝐿𝑆𝑆) − cos(𝐿𝐿𝐴𝐴)sin(𝐿𝐿𝑆𝑆)cos(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)
� 

Eq 399 

Here 𝑣𝑣𝜓𝜓𝜓𝜓 denotes the angle measurement error. 

The partial derivatives of 𝜓𝜓𝐴𝐴/𝑆𝑆 with respect to the unknown aircraft position variables 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 
(corresponding to the partial derivatives in Eq 353) are 

𝜕𝜕𝜕𝜕𝐴𝐴/𝑆𝑆

𝜕𝜕𝐿𝐿𝐴𝐴
= −

Den  sin(𝐿𝐿𝐴𝐴)  sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)
Den2 + Num2

−
Num  [cos(𝐿𝐿𝐴𝐴)  cos(𝐿𝐿𝑆𝑆) + sin(𝐿𝐿𝐴𝐴)  sin(𝐿𝐿𝑆𝑆)  cos(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)]

Den2 + Num2  
Eq 400 

𝜕𝜕𝜕𝜕𝐴𝐴/𝑆𝑆

𝜕𝜕𝜆𝜆𝐴𝐴
=

Den  cos(𝐿𝐿𝐴𝐴)  cos(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆) − Num  cos(𝐿𝐿𝐴𝐴)  sin(𝐿𝐿𝑆𝑆)  sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆)
Den2 + Num2   

𝜕𝜕𝜕𝜕𝐴𝐴/𝑆𝑆

𝜕𝜕ℎ𝐴𝐴
= 0  

Num = cos(𝐿𝐿𝐴𝐴)  sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆) 
Den = sin(𝐿𝐿𝐴𝐴)  cos(𝐿𝐿𝑆𝑆) − cos(𝐿𝐿𝐴𝐴)  sin(𝐿𝐿𝑆𝑆)  cos(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆) 
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Azimuth Measurement, Aircraft-to-Station — The azimuth angle 𝜓𝜓𝑆𝑆/𝐴𝐴 of station S with 
respect to aircraft A is expressed in terms of 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 by Eq 86 (in a form compatible with the 
two-argument arc tangent function). Thus the nonlinear measurement model is: 

𝜓𝜓�𝑆𝑆/𝐴𝐴 = 𝜓𝜓𝑆𝑆/𝐴𝐴 + 𝑣𝑣𝜓𝜓𝜓𝜓  

𝜓𝜓𝑆𝑆/𝐴𝐴 = arctan �
cos(𝐿𝐿𝑆𝑆)  sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴)

sin(𝐿𝐿𝑆𝑆)cos(𝐿𝐿𝐴𝐴) − cos(𝐿𝐿𝑆𝑆)sin(𝐿𝐿𝐴𝐴)cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴)
� 

Eq 401 

Here 𝑣𝑣𝜓𝜓𝜓𝜓 denotes the angle measurement error. 

The partial derivatives of 𝜓𝜓𝑆𝑆/𝐴𝐴 with respect to the unknown aircraft position variables 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 
(corresponding to the partial derivatives in Eq 353) are 

𝜕𝜕𝜕𝜕𝑆𝑆/𝐴𝐴

𝜕𝜕𝐿𝐿𝐴𝐴
=

Num  [sin(𝐿𝐿𝐴𝐴)  sin(𝐿𝐿𝑆𝑆) + cos(𝐿𝐿𝐴𝐴)  cos(𝐿𝐿𝑆𝑆)  cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴)]
Num2 + Den2

 Eq 402 

𝜕𝜕𝜕𝜕𝑆𝑆/𝐴𝐴

𝜕𝜕𝜆𝜆𝐴𝐴
=
−Den  [cos(𝐿𝐿𝑆𝑆)  cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴)] + Num [ cos(𝐿𝐿𝑆𝑆)  sin(𝐿𝐿𝐴𝐴)  sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴)]

Num2 + Den2
  

𝜕𝜕𝜕𝜕𝑆𝑆/𝐴𝐴

𝜕𝜕ℎ𝐴𝐴
= 0  

Num = cos(𝐿𝐿𝑆𝑆)  sin(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴) 
Den = sin(𝐿𝐿𝑆𝑆)  cos(𝐿𝐿𝐴𝐴) − cos(𝐿𝐿𝑆𝑆)  sin(𝐿𝐿𝐴𝐴)  cos(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴) 

 

8.4 Solutions for Homogeneous Range-Type Measurements 

8.4.1 Introduction / Rationale 

Systems that employ a single type of range measurements are common. Examples are:  
 True slant-ranges: DME/DME 
 True spherical-ranges: Loran-C (experimental), star elevation* 
 Pseudo slant-ranges: GPS, Galileo, WAM 
 Pseudo spherical-ranges: Loran-C, Omega, Decca. 

Slant- and spherical-ranges can be interchanged, provided that the station and aircraft altitudes 
are known (e.g., Eq 44 and Eq 54 and Subsection 3.2.2). Often the purpose of a slant-range 
system is to obtain aircraft latitude/longitude, so that conversion of their measurements to 
spherical-ranges can be useful.  

                                                 
* When a spherical earth model is employed, spherical-ranges and geocentric angles are interchangeable (differing 
only by the earth’s radius as a scale factor). Then, a user’s elevation angle of a star is equivalent to the spherical-
range to the star subpoint. Since star elevation measurements are often not highly accurate, the spherical-earth 
approximation is sufficient for most applications. When high-accuracy measurements are available and an ellipsoi-
dal earth model is used, stellar elevations and spherical-ranges should be treated as separate measurements types. 
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As noted in Section 7.1, systems that utilize pseudo ranges and those that utilize range 
differences are virtually identical at the analysis level (Subsection 8.4.5 contains a proof). The 
term pseudo range is used when receivers estimate the time of signal transmission. However, 
once a range-difference system found the location of both a transmitter and receiver, the time of 
transmission can be computed if it is needed.  

8.4.2 Dilution of Precision (DoP) 

When the measurements have common characteristics (e.g., involve different ground stations 
performing the same function and of the same design), it’s frequently assumed that the 
measurement errors are uncorrelated and have the same variance 𝜎𝜎meas

2 . This assumption is 
buttressed when there are different propagation paths involved. In such situations, the estimation 
error covariance for the unknown variables (Eq 368) can be expressed the product of the scalar 
𝜎𝜎meas
2  and the matrix (JT J)-1. The matrix (JT J)-1 depends only on the measurement geometry, and 

can provide insight into advantageous locations for ground stations and/or aircraft operations.  

DoP analysis can be applied to problems formulated in both Cartesian (e.g., examples in Sub-
sections 8.5.1 and 8.5.2) and spherical (e.g., examples in Subsections 8.5.4 and 8.5.5) 
frameworks. An ellipsoidal earth model is almost never used for DoP calculations, as that level 
of precision is not needed for system characterization. DoP analysis is most often used in 
conjunction with slant- and spherical-range measurements, and their differences. However, DoP 
analysis can be used with angle-only systems. 

The DoP matrix M is a dimensionless — and possibly scaled and/or rotated — version of (JT J)-1. 
The corresponding axes are orthogonal and ‘commensurate’ — i.e., one unit of change in each 
‘DoP variable’ represents the same amount of physical distance. Although it’s not required, very 
often the first three DoP axes correspond to the east, north and up directions. If it’s appropriate, 
the fourth element corresponds the unknown time of transmission 𝑡𝑡𝑋𝑋. Thus 

M = 𝐂𝐂 �JTJ�
−1
𝐂𝐂T =

⎣
⎢
⎢
⎢
⎡
𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑛𝑛𝑛𝑛

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑢𝑢𝑢𝑢 𝑚𝑚𝑢𝑢𝑢𝑢

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑢𝑢𝑢𝑢 𝑚𝑚𝑡𝑡𝑡𝑡 ⎦
⎥
⎥
⎥
⎤

 Eq 403 

Various scalar DoP quantities are computed from M, including Horizontal Dilution of Precision 
(HDoP), Vertical Dilution of Precision (VDoP), Time Dilution of Precision (TDoP) and 
Geometric Dilution of Precision (GDoP): 

HDoP = �𝑚𝑚𝑒𝑒𝑒𝑒 + 𝑚𝑚𝑛𝑛𝑛𝑛   VDoP = �𝑚𝑚𝑢𝑢𝑢𝑢 

TDoP = �𝑚𝑚𝑡𝑡𝑡𝑡    GDoP = �𝑚𝑚𝑒𝑒𝑒𝑒 + 𝑚𝑚𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑡𝑡𝑡𝑡 
Eq 404 
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When the problem formulation utilizes the Cartesian ECEF frame, it’s conventional to rotate the 
matrix (JT J)-1 into the local-level frame at the estimated aircraft location using an expanded 
version of the direction cosine matrix of Eq 131:  

𝐂𝐂 =

⎣
⎢
⎢
⎢
⎢
⎡ −sin(𝜆̂𝜆𝐴𝐴) cos(𝜆̂𝜆𝐴𝐴) 0 0

sin(−𝐿𝐿�𝐴𝐴)  cos(𝜆̂𝜆𝐴𝐴) sin(−𝐿𝐿�𝐴𝐴)  sin(𝜆̂𝜆𝐴𝐴) cos(−𝐿𝐿�𝐴𝐴) 0

cos(−𝐿𝐿�𝐴𝐴)  cos(𝜆̂𝜆𝐴𝐴) cos(−𝐿𝐿�𝐴𝐴)  sin(𝜆̂𝜆𝐴𝐴) −sin(−𝐿𝐿�𝐴𝐴) 0

0 0 0 1⎦
⎥
⎥
⎥
⎥
⎤

 Eq 405 

When the problem formulation utilizes the spherical-earth framework, for DoP analysis the 
horizontal perturbation variables 𝛿𝛿𝐿𝐿𝐴𝐴 and 𝛿𝛿𝜆𝜆𝐴𝐴 are adjusted so that equal geocentric angles 
correspond to equal distances. Expressions are given later in this section. 

8.4.3 Range Measurement Systems 

Cartesian Coordinates / Slant-Range Measurements — For the case of problems formulated 
in Cartesian coordinates, the quantities sought are the aircraft coordinates 𝐱𝐱𝑐𝑐 = (𝑥𝑥𝐴𝐴,𝑦𝑦𝐴𝐴, 𝑧𝑧𝐴𝐴). A 
nominal value for 𝐱𝐱𝑐𝑐, denoted by 𝐱𝐱�𝑐𝑐, is known. The difference between 𝐱𝐱𝑐𝑐 and 𝐱𝐱�𝑐𝑐, denoted by 
𝛅𝛅𝛅𝛅𝑐𝑐, is to be found 

𝛅𝛅𝛅𝛅𝑐𝑐 = [𝛿𝛿𝛿𝛿𝐴𝐴   𝛿𝛿𝛿𝛿𝐴𝐴   𝛿𝛿𝛿𝛿𝐴𝐴]𝑇𝑇 Eq 406 

For slant-range measurements, the partial derivatives of the measurements with respect to the 
coordinates are given by Eq 383. This expression can be written as the unit vector pointing from 
ranging station Si toward aircraft A. Thus each row of the Jacobian matrix is 

𝐮𝐮𝑐𝑐,𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑢𝑢𝑐𝑐,𝐴𝐴𝐴𝐴𝐴𝐴,𝑥𝑥   𝑢𝑢𝑐𝑐,𝐴𝐴𝐴𝐴𝐴𝐴,𝑦𝑦   𝑢𝑢𝑐𝑐,𝐴𝐴𝐴𝐴𝐴𝐴,𝑧𝑧� = �
𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴

     
𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴

     
𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑆𝑆𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴

� Eq 407 

𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴 = �(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝑆𝑆𝑆𝑆)2 + (𝑦𝑦𝐴𝐴 − 𝑦𝑦𝑆𝑆𝑆𝑆)2 + (𝑧𝑧𝐴𝐴 − 𝑧𝑧𝑆𝑆𝑆𝑆)2  

The Jacobian matrix for the aggregate of n measurements can be written 

J = 𝐔𝐔𝑐𝑐 = �

𝐮𝐮𝑐𝑐,𝐴𝐴𝐴𝐴1
𝐮𝐮𝑐𝑐,𝐴𝐴𝐴𝐴2
⋮

𝐮𝐮𝑐𝑐,𝐴𝐴𝐴𝐴𝐴𝐴

� Eq 408 

The estimation problem to be solved is: find the value of 𝛅𝛅𝛅𝛅𝑐𝑐 that best satisfies 

𝐔𝐔𝑐𝑐  𝛅𝛅𝐱𝐱𝑐𝑐 ≈ 𝛅𝛅𝛅𝛅 Eq 409 

Here 𝛅𝛅𝛅𝛅 is the difference between the measured ranges and the computed ranges based on 𝐱𝐱�𝑐𝑐. 
The errors in 𝛅𝛅𝛅𝛅 are assumed to be independent and identically distributed.  
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From Eq 360, the estimate of the deviation of 𝐱𝐱𝑐𝑐 from its nominal value 𝐱𝐱�𝑐𝑐 is  

𝛅𝛅𝐱𝐱�𝑐𝑐 = [𝐔𝐔𝑐𝑐𝑇𝑇𝐔𝐔𝑐𝑐]−1𝐔𝐔𝑐𝑐𝑇𝑇 𝛅𝛅𝛅𝛅  Eq 410 

The covariance of the error in the estimate of 𝛅𝛅𝛅𝛅𝑐𝑐 is given by (see Eq 368) 

𝐸𝐸(𝛅𝛅𝐱𝐱�𝑐𝑐 − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱�𝑐𝑐 − 𝛅𝛅𝛅𝛅)𝑇𝑇 = [𝐔𝐔𝑐𝑐𝑇𝑇  𝐔𝐔𝑐𝑐]−1𝜎𝜎RngMeas
2  Eq 411 

Here, σRngMeas is the common standard deviation of the range measurements, expressed in linear 
units. The choice of 𝐔𝐔𝑐𝑐 for the Jacobian matrix for a system utilizing only slant-range measure-
ments alludes to the fact that its rows are dimensionless unit vectors. However, the properties of 
a unit vector are not used. It is also useful to have a separate symbol represent the Jacobian 
matrix elements for position variables alone. 

For this case, the DoP matrix 𝐌𝐌𝑐𝑐 is given by the three-variable version of Eq 403, where the 
matrix 𝐂𝐂 may be needed to transform the results into a local-level coordinate frame at the aircraft 
location. 

𝐌𝐌𝑐𝑐 = 𝐂𝐂 (𝐔𝐔𝑐𝑐𝑇𝑇  𝐔𝐔𝑐𝑐)−1𝐂𝐂T = �

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑛𝑛𝑛𝑛

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑢𝑢𝑢𝑢

� Eq 412 

Spherical Coordinates / Slant-Range Measurements — For a problem formulated in spherical 
coordinates, the quantities sought are the aircraft coordinates 𝐱𝐱𝑠𝑠 = (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴). Thus the 
perturbation quantities are 

𝛅𝛅𝛅𝛅𝑠𝑠 = [𝛿𝛿𝛿𝛿𝐴𝐴   𝛿𝛿𝛿𝛿𝐴𝐴   𝛿𝛿ℎ𝐴𝐴 ]𝑇𝑇 Eq 413 

The elements of 𝐱𝐱𝑠𝑠 and 𝛅𝛅𝛅𝛅𝑠𝑠 are ‘mixed’ — there are two angular and one linear distance, and the 
two angular variable correspond to different geocentric angles.  

For slant-range measurements, the partial derivatives of the measurements with respect to the 
coordinates are given by Eq 391. Thus the elements of the row 𝐮𝐮𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴 of the Jacobian corres-
ponding to station Si are 

𝑢𝑢𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴,𝐿𝐿 =
(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆𝑆𝑆)

𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴
�sin(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆𝑆𝑆) − 2  sin(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆𝑆𝑆)�� 

𝑢𝑢𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴,𝜆𝜆 =
(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆𝑆𝑆)

𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴
  cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆𝑆𝑆) 

𝑢𝑢𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴,ℎ =
2(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆𝑆𝑆)

𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴
�sin2 �12(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆𝑆𝑆)� + cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆𝑆𝑆)��

+
ℎ𝐴𝐴 − ℎ𝑆𝑆𝑆𝑆
𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴

 

Eq 414 
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𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴 = �

4(𝑅𝑅𝑒𝑒 + ℎ𝐴𝐴)(𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆𝑆𝑆)

�sin2 �12(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆𝑆𝑆)� + cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆𝑆𝑆)��

+(ℎ𝐴𝐴 − ℎ𝑆𝑆𝑆𝑆)2
 

The components of 𝐮𝐮𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴 in Eq 414 are not dimensionless and do not constitute a unit vector. 

If the subscript c (Cartesian formulation) is replaced by s (spherical formulation), the expressions 
for the Jacobian matrix (Eq 408), the perturbation vector (Eq 410) and its error covariance (Eq 
411) also apply to those for a spherical problem formulation.  

J = 𝐔𝐔𝑠𝑠 = �

𝐮𝐮𝑠𝑠,𝐴𝐴𝐴𝐴1
𝐮𝐮𝑠𝑠,𝐴𝐴𝐴𝐴2
⋮

𝐮𝐮𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴

� Eq 415 

𝛅𝛅𝐱𝐱�𝑠𝑠 = [𝐔𝐔𝑠𝑠𝑇𝑇𝐔𝐔𝑠𝑠]−1𝐔𝐔𝑠𝑠𝑇𝑇 𝛅𝛅𝛅𝛅   

𝐸𝐸(𝛅𝛅𝐱𝐱�𝑠𝑠 − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱�𝑠𝑠 − 𝛅𝛅𝛅𝛅)𝑇𝑇 = [𝐔𝐔𝑠𝑠𝑇𝑇  𝐔𝐔𝑠𝑠]−1𝜎𝜎RngMeas
2   

Here the DoP variables are considered to be 

𝛅𝛅𝛅𝛅𝑠𝑠′ = [𝑅𝑅𝑒𝑒 𝛿𝛿𝛿𝛿𝐴𝐴   𝑅𝑅𝑒𝑒 cos(𝐿𝐿𝐴𝐴) 𝛿𝛿𝛿𝛿𝐴𝐴   𝛿𝛿ℎ𝐴𝐴 ]𝑇𝑇 Eq 416 

The 3 x 3 DoP matrix for 𝛅𝛅𝛅𝛅𝑠𝑠′  is given by  

M𝑠𝑠 = 𝐂𝐂 (𝐔𝐔𝑠𝑠𝑻𝑻  𝐔𝐔𝑠𝑠)−𝟏𝟏𝐂𝐂𝑇𝑇 = �

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑛𝑛𝑛𝑛

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛 𝑚𝑚𝑢𝑢𝑢𝑢

� Eq 417 

𝐂𝐂 = diag(𝑅𝑅𝑒𝑒 ,𝑅𝑅𝑒𝑒 cos(𝐿𝐿𝐴𝐴) , 1) Eq 418 

Spherical Coordinates / Spherical-Range Measurements — Spherical ranges are inherently 
two-dimensional (latitude and longitude); altitude does not play a role. Thus the quantities sought 
are the aircraft coordinates 𝐱𝐱𝑎𝑎 = (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴). Consequently the perturbation variables are: 

𝛅𝛅𝛅𝛅𝑎𝑎 = [𝛿𝛿𝛿𝛿𝐴𝐴   𝛿𝛿𝛿𝛿𝐴𝐴 ]𝑇𝑇 Eq 419 

The partial derivatives of geocentric angle measurements with respect to the above coordinates 
are given by Eq 398. Thus the elements of the row 𝐮𝐮𝑎𝑎,𝐴𝐴𝐴𝐴𝐴𝐴 of the Jacobian matrix corresponding to 
station Si are 

𝑢𝑢𝑎𝑎,𝐴𝐴𝐴𝐴𝐴𝐴,𝐿𝐿 =
1

sin (𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴)
�sin(𝐿𝐿𝐴𝐴 − 𝐿𝐿𝑆𝑆𝑆𝑆) − 2  sin(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin2 �12(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆𝑆𝑆)�� 

𝑢𝑢𝑎𝑎,𝐴𝐴𝐴𝐴𝐴𝐴,𝜆𝜆 =
1

sin (𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴)
  cos(𝐿𝐿𝐴𝐴) cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin(𝜆𝜆𝐴𝐴 − 𝜆𝜆𝑆𝑆𝑆𝑆) 

Eq 420 
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sin(𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴) = �
[cos(𝐿𝐿𝑆𝑆𝑆𝑆) sin(𝜆𝜆𝑆𝑆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2

+[cos(𝐿𝐿𝑈𝑈) sin(𝐿𝐿𝑆𝑆𝑆𝑆) − sin(𝐿𝐿𝑈𝑈) cos(𝐿𝐿𝑆𝑆𝑆𝑆) cos(𝜆𝜆𝑆𝑆𝑆𝑆 − 𝜆𝜆𝑈𝑈)]2 

Provided the subscript c is replaced by a, the expressions for the Jacobian matrix (Eq 408), the 
estimate of the perturbation vector (Eq 410) and its error covariance (Eq 411) for a slant-range 
measurements and a Cartesian problem formulation also apply to those for spherical-range 
measurements and spherical coordinates.  

J = 𝐔𝐔𝑎𝑎 = �

𝐮𝐮𝑎𝑎,𝐴𝐴𝐴𝐴1
𝐮𝐮𝑎𝑎,𝐴𝐴𝐴𝐴2
⋮

𝐮𝐮𝑎𝑎,𝐴𝐴𝐴𝐴𝐴𝐴

� Eq 421 

𝛅𝛅𝐱𝐱�𝑎𝑎 = [𝐔𝐔𝑎𝑎𝑇𝑇𝐔𝐔𝑎𝑎]−1𝐔𝐔𝑎𝑎𝑇𝑇 𝛅𝛅𝛅𝛅   

𝐸𝐸(𝛅𝛅𝐱𝐱�𝑎𝑎 − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱�𝑎𝑎 − 𝛅𝛅𝛅𝛅)𝑇𝑇 = [𝐔𝐔𝑎𝑎𝑇𝑇  𝐔𝐔𝑎𝑎]−1𝜎𝜎RngMeas
2   

Here the DoP variables are considered to be 

𝛅𝛅𝛅𝛅𝑎𝑎′ = [𝛿𝛿𝛿𝛿𝐴𝐴   cos(𝐿𝐿𝐴𝐴) 𝛿𝛿𝛿𝛿𝐴𝐴 ]𝑇𝑇 Eq 422 

The 2 x 2 DoP matrix corresponding to 𝛅𝛅𝛅𝛅𝑎𝑎′  is  

M𝑎𝑎 = 𝐂𝐂 (𝐔𝐔𝑎𝑎𝑇𝑇  𝐔𝐔𝑎𝑎)−1𝐂𝐂T = �
𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑒𝑒

𝑚𝑚𝑒𝑒𝑒𝑒 𝑚𝑚𝑛𝑛𝑛𝑛
� Eq 423 

𝐂𝐂 = diag(1, cos(𝐿𝐿𝐴𝐴))  

8.4.4 Pseudo Range Measurement Systems: Lee’s Method 

Problem Formulation — Systems employing pseudo range measurements of either slant- or 
spherical-ranges, measure a set of ‘ranges’ that include an additive, common unknown offset 
(also called a bias). The common offset is an additional unknown variable, and the number of 
measurements must be at least one more than the number of position variables to be found.  

Pseudo range versions of all of the cases considered in Subsection 8.4.3 have been deployed. For 
these systems, the perturbation vector* is 

𝛅𝛅𝐗𝐗𝑘𝑘 = [𝛅𝛅𝛅𝛅k
𝑇𝑇  𝛿𝛿𝛿𝛿]𝑇𝑇 Eq 424 

Here, as in Subsection 8.4.3, subscript k designates the system type — i.e., k can be c (Cartesian 
coordinates / slant-range measurements, Eq 406), s (spherical coordinates / slant-range measure-
ments, Eq 413) or a (spherical coordinates / spherical-range measurements, Eq 419). Also, 𝛿𝛿𝛿𝛿 

                                                 
* For homogeneous range-type measurement systems involving a common time/range bias, the vector of all 
unknown variables is denoted using a capital X and the vector of unknown position variables by a lower case x.  
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denotes the unknown range offset/bias in distance units. If there are n pseudo range measure-
ments, the Jacobian matrix is n x 3 or n x 4, depending upon the framework of the analysis. Thus,  

Jk,PR = [𝐔𝐔k  𝟏𝟏] 
𝟏𝟏 = [1  1  ⋯   1]𝑇𝑇 

Eq 425 

Analysis of this situation is similar to analysis of the ‘with intercept’ problem in linear regression 
theory. The estimation problem is: find the value of 𝛅𝛅𝐗𝐗𝑘𝑘 that best satisfies 

Jk,PR   𝛅𝛅𝐗𝐗𝑘𝑘 ≈ 𝛅𝛅𝛅𝛅 Eq 426 

The errors in 𝛅𝛅𝛅𝛅 are assumed to be independent and identically distributed, with zero mean and 
variance 𝜎𝜎RngMeas

2 . 

Estimation of the Common Bias — In analyzing pseudo range systems, it is possible to utilize 
both a whole value bias 𝑏𝑏 and a bias perturbation 𝛿𝛿𝛿𝛿, and to update 𝑏𝑏 from 𝛿𝛿𝛿𝛿 at each iteration 
(as is done for position variables). Thus, during the estimation process, 𝛿𝛿𝛿𝛿 is driven to zero. 
However, since the common bias appears linearly in the measurement equations — 𝑏𝑏 (equivalent 
to 𝑡𝑡𝑋𝑋) would be an additive term in each 𝑓𝑓𝑖𝑖(𝐿𝐿𝐴𝐴,𝜆𝜆𝐴𝐴,ℎ𝐴𝐴, 𝑡𝑡𝑋𝑋) of Eq 350 — it is not necessary to 
utilize a whole value bias 𝑏𝑏. Instead, as is done herein, 𝑏𝑏 can be ignored in finding a position 
solution. Then the iteration process drives 𝛿𝛿𝛿𝛿 is to value that is generally not zero. When the 
process has converged, the last estimate for the 𝛿𝛿𝛿𝛿 is taken to be the bias.  

Lee’s (or First Form of) Partitioned Matrix Solution — From the partitioning of Jk,PR in Eq 
425, it follows that  

�Jk,PR�
𝑇𝑇
Jk,PR = �𝐔𝐔k

𝑇𝑇 
𝟏𝟏𝑇𝑇
� [𝐔𝐔k  𝟏𝟏] = �𝐔𝐔k

𝑇𝑇  𝐔𝐔k 𝐔𝐔k
𝑇𝑇  𝟏𝟏

𝟏𝟏𝑇𝑇  𝐔𝐔k 𝑛𝑛
� Eq 427 

In the proof of the Matrix Inversion Lemma (Ref. 62), one form of the inverse of a 2 x 2 parti-
tioned matrix has a simpler expression for the upper left-hand block. Applying that to the right-
hand side of Eq 427 results in 

��Jk,PR�
𝑇𝑇
Jk,PR�

−𝟏𝟏
= �

Mk,PR
1 𝐛𝐛𝑘𝑘1

(𝐛𝐛𝑘𝑘1)𝑇𝑇 mk,PR
1 � Eq 428 

Mk,PR
1 = �𝐔𝐔k

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k�
−1

 

𝐛𝐛𝑘𝑘1 = −
1
𝑛𝑛

Mk,PR
1  𝐔𝐔k

T   𝟏𝟏 

mk,PR
1 =

1
𝑛𝑛
�1 +

1
𝑛𝑛
𝟏𝟏𝑇𝑇  𝐔𝐔k  Mk,PR

1  𝐔𝐔k
𝑇𝑇  𝟏𝟏�

=
1
𝑛𝑛
�1 +

1
𝑛𝑛
𝟏𝟏𝑇𝑇  𝐔𝐔k   �𝐔𝐔k

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k�
−1
 𝐔𝐔k

𝑇𝑇  𝟏𝟏� 

Eq 429 
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Here, Mk,PR
1  is the p x p DoP matrix for the position estimation errors and mk,PR

1  is the scalar DoP 
for the range offset estimation error. (The superscript ‘1’ on the symbols in Eq 428 is a label 
designating the first form of the inverse of �Jk,PR�

𝑇𝑇
Jk,PR). The estimate for 𝛅𝛅𝐗𝐗𝑘𝑘 is 

𝛅𝛅𝐗𝐗�𝑘𝑘 = ��Jk,PR�
𝑇𝑇
Jk,PR�

−𝟏𝟏
�Jk,PR�

𝑇𝑇
𝛅𝛅𝛅𝛅 Eq 430 

The solution for the components of 𝛅𝛅𝐗𝐗�𝑘𝑘, 𝛅𝛅𝐱𝐱�k and 𝛿𝛿𝑏𝑏�, are 

𝛅𝛅𝐱𝐱�k = Mk,PR
1  𝐔𝐔k

T �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� 𝛅𝛅𝛅𝛅

= �𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k�

−1
𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� 𝛅𝛅𝛅𝛅 

𝛿𝛿𝑏𝑏� = �mk,PR
1  𝟏𝟏𝑇𝑇 − 

1
𝑛𝑛
𝟏𝟏𝑇𝑇𝐔𝐔k  Mk,PR

1  𝐔𝐔k
𝑇𝑇� 𝛅𝛅𝛅𝛅  

=
1
𝑛𝑛
�𝟏𝟏𝑇𝑇 − 𝟏𝟏𝑇𝑇  𝐔𝐔k �𝐔𝐔k

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k�
−1
𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇��𝛅𝛅𝛅𝛅 

Eq 431 

The estimation error covariances/variances for the variables 𝛅𝛅𝐱𝐱�k and 𝛿𝛿𝑏𝑏� are  

𝐸𝐸(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)𝑇𝑇 =  Mk,PR
1  𝜎𝜎RngMeas

2

= �𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k�

−1
𝜎𝜎RngMeas
2  

𝐸𝐸�𝛿𝛿𝑏𝑏� − 𝛿𝛿𝛿𝛿�
2

= mk,PR
1  𝜎𝜎RngMeas

2

=
1
𝑛𝑛
�1 +

1
𝑛𝑛
𝟏𝟏𝑇𝑇  𝐔𝐔k �𝐔𝐔k

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k�
−1
𝐔𝐔𝑘𝑘𝑇𝑇  𝟏𝟏� 𝜎𝜎RngMeas

2  

Eq 432 

Second Form of Partitioned Matrix Solution — The proof of the Matrix Inversion Lemma 
involves a second form of the inverse of a 2 x 2 partitioned matrix whereby the inverse has a 
simpler expression for the lower right-hand block. Applying this form to Eq 427 yields: 

��Jk,PR�
𝑇𝑇
Jk,PR�

−𝟏𝟏
= �

Mk,PR
2 𝐛𝐛𝑘𝑘2

(𝐛𝐛𝑘𝑘2)𝑇𝑇 mk,PR
2 � Eq 433 

Mk,PR
2 =  (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1 + mk,PR
2   (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k
𝑇𝑇𝟏𝟏𝟏𝟏𝑇𝑇𝐔𝐔k  (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1

= � (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1 +

 (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇𝟏𝟏𝟏𝟏𝑇𝑇𝐔𝐔k  (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1

𝑛𝑛 −  𝟏𝟏𝑇𝑇  𝐔𝐔k(𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇  𝟏𝟏   
� 

𝐛𝐛𝑘𝑘2 = –  mk,PR
2   (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k
𝑇𝑇𝟏𝟏 

mk,PR
2 =

1
𝑛𝑛 − 𝟏𝟏𝑇𝑇  𝐔𝐔k    (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1 𝐔𝐔k
𝑇𝑇  𝟏𝟏

 

Eq 434 

The superscript ‘2’ on symbols in Eq 433 designates the second form of the inverse of 
�Jk,PR�

𝑇𝑇
Jk,PR. Mk,PR

2  is a second form of the DoP matrix for the position estimation errors and 
mk,PR

2  is a second form for the scalar DoP for the range offset estimation error.  
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The solution for the components of 𝛅𝛅𝐗𝐗�𝑘𝑘, 𝛅𝛅𝐱𝐱�k and 𝛿𝛿𝑏𝑏�, are 

𝛅𝛅𝐱𝐱�k = �Mk,PR
2  𝐔𝐔k

𝑇𝑇 + 𝐛𝐛𝑘𝑘2 𝟏𝟏𝑇𝑇�δz

= � (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇 −
 (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k
𝑇𝑇𝟏𝟏𝟏𝟏𝑇𝑇

𝑛𝑛 −  𝟏𝟏𝑇𝑇  𝐔𝐔k(𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇  𝟏𝟏   
[𝐈𝐈 − 𝐔𝐔k  (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k
𝑇𝑇]� 𝛅𝛅𝛅𝛅 

𝛿𝛿𝑏𝑏� = �(𝐛𝐛𝑘𝑘2)𝑇𝑇𝐔𝐔k
𝑇𝑇 + mk,PR

2 𝟏𝟏𝑇𝑇�𝛅𝛅𝛅𝛅

= �
1

𝑛𝑛 − 𝟏𝟏𝑇𝑇  𝐔𝐔k    (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1 𝐔𝐔k

𝑇𝑇  𝟏𝟏
𝟏𝟏𝑇𝑇[𝐈𝐈 − 𝐔𝐔k  (𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k
𝑇𝑇]� 𝛅𝛅𝛅𝛅 

Eq 435 

The estimation error covariances/variances for the variables 𝛅𝛅𝐱𝐱�k and 𝛿𝛿𝑏𝑏� are  

𝐸𝐸(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)𝑇𝑇 =  Mk,PR
2  𝜎𝜎RngMeas

2

= � (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1 +

 (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇𝟏𝟏𝟏𝟏𝑇𝑇𝐔𝐔k  (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1

𝑛𝑛 −  𝟏𝟏𝑇𝑇  𝐔𝐔k(𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇  𝟏𝟏   
� 𝜎𝜎RngMeas

2  

𝐸𝐸�𝛿𝛿𝑏𝑏� − 𝛿𝛿𝛿𝛿�
2

= mk,PR
2  𝜎𝜎RngMeas

2

=
1

𝑛𝑛 − 𝟏𝟏𝑇𝑇  𝐔𝐔k    (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1 𝐔𝐔k

𝑇𝑇  𝟏𝟏
𝜎𝜎RngMeas
2  

Eq 436 

The first form of the solution yields a simpler expression for the position DoP matrix (Mk,PR
1  in 

Eq 429) while the second form yields a simpler expression for the bias DoP (mk,PR
2  in Eq 434). 

Chain Solution for the Bias — When 𝛅𝛅𝐱𝐱�k has been found, a solution for 𝛿𝛿𝑏𝑏� can be found from 
the Normal Equations (Eq 359 with W the identity matrix) when J is given by Eq 425  

𝟏𝟏𝑇𝑇  𝐔𝐔k 𝛅𝛅𝐱𝐱�k + 𝑛𝑛 𝛿𝛿𝑏𝑏� = 𝟏𝟏𝑇𝑇𝛅𝛅𝛅𝛅  

𝛿𝛿𝑏𝑏� =
1
𝑛𝑛

 𝟏𝟏𝑇𝑇 ( 𝛅𝛅𝛅𝛅 −   𝐔𝐔k 𝛅𝛅𝐱𝐱�k ) 
Eq 437 

Alternative Derivation for the Estimator — From Eq 426 it follows that 

�𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� J𝑘𝑘,𝑃𝑃𝑃𝑃  𝛅𝛅𝐗𝐗𝑘𝑘 ≈ �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� 𝛅𝛅𝛅𝛅 

�𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k   𝛅𝛅𝐱𝐱𝑘𝑘 ≈ �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� 𝛅𝛅𝛅𝛅 

Jk,PR
′  𝛅𝛅𝐱𝐱𝑘𝑘 ≈ 𝛅𝛅𝐳𝐳′ 

Jk,PR
′ = �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k 

𝛅𝛅𝐳𝐳′ = �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� 𝛅𝛅𝛅𝛅 

𝐑𝐑′ = 𝐸𝐸 [𝛅𝛅𝐳𝐳′(𝛅𝛅𝐳𝐳′)𝑇𝑇] = �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�  𝜎𝜎RngMeas
2  

Eq 438 

Pre-multiplying the left-hand side of Eq 426 by �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� eliminates the common bias as an 
unknown variable. Pre-multiplying the right-hand side by �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� eliminates the common 

bias from the measurements 𝛅𝛅𝐳𝐳′. From Jk,PR
′  𝛅𝛅𝐱𝐱𝑘𝑘 ≈ 𝛅𝛅𝐳𝐳′, an estimate 𝛅𝛅𝐱𝐱�k of the first line Eq 431 
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can be found using Eq 360 with the weight matrix W set to the identity matrix 𝐈𝐈.  

𝛅𝛅𝐱𝐱�k = ��J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

𝑇𝑇
J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

−1
�J𝑘𝑘,𝑃𝑃𝑃𝑃

′ �
𝑇𝑇
𝛅𝛅𝐳𝐳′ 

𝐸𝐸(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)𝑇𝑇 = ��J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

𝑇𝑇
J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

−1
�J𝑘𝑘,𝑃𝑃𝑃𝑃

′ �
𝑇𝑇
  𝐑𝐑′   J𝑘𝑘,𝑃𝑃𝑃𝑃

′ ��J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

𝑇𝑇
J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

−1

= ��J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

𝑇𝑇
J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

−1
 𝜎𝜎RngMeas
2  

Eq 439 

Since the errors for 𝛅𝛅𝐳𝐳′ are correlated, the estimator of first line in Eq 439 may appear to be 
suboptimal. However, its error covariance, as found from Eq 365 and shown on the second line, 
is identical to the first line of Eq 432. 

Role of Matrix �𝐈𝐈 − 𝟏𝟏
𝒏𝒏𝟏𝟏 𝟏𝟏

𝑻𝑻� — The preceding equations demonstrate that the matrix �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇� 
is central to Lee’s method. It is a factor in both the Jacobian matrix Jk,PR

′  and in the measurement 
vector 𝛅𝛅𝐳𝐳′. Matrix �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� is idempotent, and like all idempotent matrices (except for the 

identity matrix), it cannot be inverted. It is, however, its own pseudoinverse. 

Newton Estimator — For Lee’s Method, when the number of measurements n and unknown 
variables p (including the time/range bias) are equal, there is no ‘pure Newton’ estimator for the 

position variables that does not involve the common bias.* That is, ��J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

𝑇𝑇
J𝑘𝑘,𝑃𝑃𝑃𝑃
′ �

−1
�J𝑘𝑘,𝑃𝑃𝑃𝑃

′ �
𝑇𝑇
 

does not reduce to a simpler form (as do Eq 360 and Eq 361), because J𝑘𝑘,𝑃𝑃𝑃𝑃
′  is not square. In 

such situations, there are three options: (1) employ the general Newton estimator of Eq 362, with 
Jacobian matrix given by Eq 425; (2) utilize the Gauss-Newton pseudo range system position-
only estimators of the first lines of Eq 431 and Eq 435 (which apply to any number of 
measurements); and (3) use the station-difference position-only Newton estimator of Eq 451.  

Condition for Singularities — Considering the second solution form, the denominators of both 
lines in Eq 435 involve the same difference of two positive numbers — the number of measure-
ments n minus the sum of the elements of the projection matrix 𝐏𝐏k =  𝐔𝐔k(𝐔𝐔k

𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k
𝑇𝑇   for the 

associated true range measurement system (Eq 369). Since 𝐏𝐏k is symmetric and a projection 
(therefore idempotent), the following bound is true. 

 𝟏𝟏𝑇𝑇  𝐔𝐔k(𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1𝐔𝐔k

𝑇𝑇  𝟏𝟏 = 𝟏𝟏𝑇𝑇𝐏𝐏k𝟏𝟏 = (𝐏𝐏k𝟏𝟏)𝑇𝑇(𝐏𝐏k𝟏𝟏) = ‖ 𝐏𝐏k𝟏𝟏‖2 ≤ ‖𝟏𝟏‖2 = 𝑛𝑛 Eq 440 

The equality in Eq 440 only holds when 𝟏𝟏 is in the column space of 𝐔𝐔k. That is, for a specific 
aircraft-station geometry, a solution only exists when 𝟏𝟏 is not in the column space of 𝐔𝐔k. 

Considering the first solution form, 𝛅𝛅𝐱𝐱�k and 𝛿𝛿𝑏𝑏� can only be found when 𝐔𝐔k
𝑇𝑇�𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k is 

invertible, which is equivalent to �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k being full column rank. That is, when 𝟏𝟏 is not in 

                                                 
* When n = p and pseudo slant-ranges are involved, Bancroft’s algorithm (Chapter 7) provides non-iterative 
solutions for the unknown variables. 
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the column space of 𝐔𝐔k. This is the same requirement as that for the second form.  

When 𝟏𝟏 is in the column space of 𝐔𝐔k, then Jk,PR (Eq 425) is not full column rank. When this 
occurs, errors in a combination of pseudo range measurements are indistinguishable from the 
common range bias. One familiar such situation is, for a three-station system in a plane, when 
the aircraft is on a baseline extension (Figure 31). From the expression for Mk,PR

′  in Eq 434, a 
pseudo range system will inherit the singularities for the associated true range measurement 
system as well as have those caused by the use of pseudo range measurements.  

DoP Matrix — DoPs for the position variables for a pseudo range system can be computed 
using the first line of Eq 429. This calculation is almost the same as is done range measurement 
systems — see Subsection 8.4.3 (Eq 412, Eq 418 and Eq 423) — except that 𝐔𝐔k

𝑇𝑇  𝐔𝐔k replaced by 
𝐔𝐔k
𝑇𝑇�𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k. Upon comparing Mk,PR

2  of the first line of Eq 434 to  (𝐔𝐔k
𝑇𝑇  𝐔𝐔k)−1, which applies 

to true ranging systems, it is clear that — for an equal number of measurements and equal 
measurement errors — a system that utilizes true ranges will have smaller position errors. Thus, 
possibly after scaling 𝐔𝐔𝑘𝑘 by the inverse of 𝐂𝐂, the first line of Eq 434 is equivalent to  

Mk,PR =  Mk,Rng +
Mk,Rng𝐂𝐂−𝑇𝑇𝐔𝐔k

𝑇𝑇 𝟏𝟏𝟏𝟏𝑇𝑇𝐔𝐔k𝐂𝐂−1Mk,Rng

𝑛𝑛  − 𝟏𝟏𝑇𝑇𝐔𝐔k 𝐂𝐂−1 Mk,Rng 𝐂𝐂
−𝑇𝑇 𝐔𝐔k

𝑇𝑇𝟏𝟏  
 Eq 441 

Here, M𝑘𝑘,𝑃𝑃𝑃𝑃 is the DoP matrix for pseudo range measurements and Mk,Rng is the DoP matrix for 
the same set of ground stations when they provide true range measurements. The second term on 
the right-hand side of Eq 441 can be considered to be the ‘penalty DoP’ incurred for using 
pseudo ranges in lieu of true ranges. It is proportional to the range bias DoP.  

Measurement Geometry Interpretation — It follows from Eq 438 that an n-station pseudo 
range system is equivalent to a fictitious n-station system with the characteristic that each station 
measures the difference between the aircraft range and the average of the ranges from all 
stations. The Jacobian matrix for this fictitious system is given by Jk,PR

′ , which can be contrasted 
that for Jk,PR in Eq 425. Matrix 1𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇 projects the rows of any matrix onto the vector 𝟏𝟏; matrix 
�𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� projects any matrix onto the space orthogonal to the vector 𝟏𝟏. Therefore, Jk,PR

′  is the 
projection of 𝐔𝐔k onto the space which is orthogonal to vector 𝟏𝟏. Computationally, each row of 
Jk,PR
′  is equal to the difference between the corresponding row of 𝐔𝐔k and mean of all rows of 𝐔𝐔k. 

For a true slant-range system, each row of the Jacobian matrix can be thought of as a unit vector 
along the line-of-sight between the aircraft and a station’s location that terminates on (and points 
toward) the aircraft. For the equivalent fictitious system, the rows of Jk,PR

′  correspond to vectors 
connecting (a) the tails of the unit vectors for the true range systems with (b) the mean of all unit 
vector tail locations. This mean location has some characteristics of as a virtual aircraft location. 
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However, the rows of Jk,PR
′  do not lie along the lines connecting the virtual aircraft location and 

stations and are generally not unit vectors (they may have magnitudes greater or less than one). 
An example is presented in Subsection 8.5.2. 

Situations where the actual aircraft location and the virtual aircraft location are close (much less 
than a unit vector) corresponds to favorable measurement geometry. If the aircraft is within the 
polygonal surface formed by the perimeter stations, the mean of the tail locations will generally 
be small, because the individual unit vectors point in many directions and tend to cancel. 
However, if the aircraft is outside the polygonal surface, the unit vectors will all point in the 
same general direction and tend to add, indicating unfavorable measurement geometry. 

Projection Matrix — It follows from Eq 370 and Eq 438 that the projection matrix Pk,PR
'  for 

Jk,PR
′  is given by 

Pk,PR
'    =    �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k   �𝐔𝐔k

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔k  �
−1
𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� Eq 442 

Matrix Pk,PR
'  projects from ℜn into a subspace of ℜn orthogonal to 𝟏𝟏 with dimension at most p –  1  

(the number of position variables). When n  >  p, it is not possible that Pk,PR
'  = 𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇, because 

 𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇 projects into a subspace of ℜn that is orthogonal to 𝟏𝟏 with dimension n  –  1. However, 
when n  =  p and Jk,PR is invertible, it follows that Pk,PR

'  = 𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇, because Pk,PR
'  then also 

projects onto the subspace orthogonal to 𝟏𝟏 of dimension n  –  1. Also, �𝐈𝐈 − Pk,PR
' �𝛅𝛅𝛅𝛅 = 1𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇𝛅𝛅𝛅𝛅 =
�1𝑛𝑛 𝟏𝟏

𝑇𝑇𝛅𝛅𝛅𝛅�𝟏𝟏. An example is provided in Subsection 8.5.2 (Eq 467). 

Condition at Convergence — When n  >  p, at convergence (Eq 379),  

�Jk,PR
′ �

𝑇𝑇
𝛅𝛅𝛅𝛅 = 𝐔𝐔k

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝛅𝛅𝛅𝛅 = 𝟎𝟎        ⟹      𝐔𝐔k
𝑇𝑇𝛅𝛅𝛅𝛅 = 𝐔𝐔k

𝑇𝑇𝟏𝟏  �1𝑛𝑛𝟏𝟏
𝑇𝑇𝛅𝛅𝛅𝛅� Eq 443 

The right-hand side of Eq 443 relates the measurements and the aircraft-station geometry. The 
inner product of each column of 𝐔𝐔k with 𝛅𝛅𝛅𝛅 is equal to the inner product of the same column of 
𝐔𝐔k with 𝟏𝟏 when scaled by the average of the measurements. 

8.4.5 Pseudo Range Measurement Systems: Station Difference Method  

Introduction — The traditional/common method of analyzing pseudo range systems (systems 
whereby all range measurements have a common bias/offset) is to group and subtract the pseudo 
range measurements for the n stations in pairs. The unknown offset then cancels, and true range 
differences are formed. The number of differences must be at least equal to the number of 
position variables to be found; thus the number of pseudo ranges must be at least one more than 
the number of unknown position variables. Material in this subsection is based on Ref. 46. 

Difference Matrix — Following Lee, define the (n – 1)  x  n matrix of station measurement 
differences D is taken to be 
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𝐃𝐃 =

⎣
⎢
⎢
⎢
⎡

1 −1 0 0 ⋯ 0 0
0 1 −1 0 ⋯ 0 0
0 0 1 −1 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 ⋯ 1 −1⎦

⎥
⎥
⎥
⎤
  Eq 444 

An alternative form for D, commonly used in terrestrial radio navigation systems (e.g., Loran-C 
and Decca) is 

𝐃𝐃 =

⎣
⎢
⎢
⎢
⎡

1 −1 0 0 ⋯ 0 0
1 0 −1 0 ⋯ 0 0
1 0 0 −1 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 0 0 0 ⋯ 0 −1⎦

⎥
⎥
⎥
⎤
  Eq 445 

The expressions developed below apply to both forms of D. Matrix D plays the same role for 
Station Difference Method that matrix �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� plays for Lee’s Method. 

Optimal Estimator — The estimation problem to be solved follows from Eq 409: find the value 
of 𝛅𝛅𝐱𝐱k that best satisfies  

𝐃𝐃 𝐔𝐔k   𝛅𝛅𝐱𝐱k ≈ 𝐃𝐃  𝛅𝛅𝛅𝛅 Eq 446 

The right-hand side of Eq 446 constitutes the measurements for this estimation problem. The 
vector 𝐃𝐃  𝛅𝛅𝛅𝛅 has covariance matrix (𝐃𝐃 𝐃𝐃𝑇𝑇)𝜎𝜎RngMeas

2 . Thus the optimal estimator (Eq 361) of 𝛅𝛅𝐱𝐱k 
utilizes the weight matrix (𝐃𝐃 𝐃𝐃𝑇𝑇)−1 and is  

𝛅𝛅𝐱𝐱�k = [𝐔𝐔k
𝑇𝑇𝐃𝐃𝑇𝑇(𝐃𝐃 𝐃𝐃𝑇𝑇)−1𝐃𝐃 𝐔𝐔k]−1  𝐔𝐔𝑘𝑘𝑇𝑇𝐃𝐃𝑇𝑇(𝐃𝐃 𝐃𝐃𝑇𝑇)−1𝐃𝐃  𝛅𝛅𝛅𝛅 Eq 447 

Straightforward manipulation shows that  

𝐃𝐃𝑇𝑇(𝐃𝐃 𝐃𝐃𝑇𝑇)−1𝐃𝐃 = 𝐈𝐈𝑛𝑛 −
1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇 Eq 448 

Consequently, the optimal estimator (Eq 447) can be written 

𝛅𝛅𝐱𝐱�k = �𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k�

−1
𝐔𝐔k
𝑇𝑇 �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇� 𝛅𝛅𝛅𝛅 Eq 449 

The optimal position estimators for the Station Difference Method (Eq 449) and for Lee’s 
Method (first line of Eq 431) are identical, as they must be. If follows that the estimation error 
for a range-difference system is given by the first line of Eq 432, and can also be written 

𝐸𝐸(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)𝑇𝑇 = [(𝐃𝐃𝐔𝐔k)𝑇𝑇(𝐃𝐃𝐃𝐃𝑇𝑇)−1(𝐃𝐃𝐔𝐔k)]−1𝜎𝜎RngMeas
2  Eq 450 

After the position estimate 𝛅𝛅𝐱𝐱�k is found, the common measurement bias can be computed from 
Eq 437. 
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Newton Estimator — For the special (but commonly occurring) case where the minimum 
number of measurement differences are available, 𝐃𝐃 𝐔𝐔𝑘𝑘 is a square, invertible matrix. For this 
situation Eq 447 becomes 

𝛅𝛅𝐱𝐱�k = [𝐃𝐃𝐔𝐔k]−1(𝐃𝐃 𝛅𝛅𝛅𝛅)               dim(𝐱𝐱k) = dim(𝐳𝐳) − 1 Eq 451 

The associated estimation error covariance is given by Eq 450. Eq 451 has the form of a Newton 
estimator (Eq 362), with Jacobian matrix 𝐃𝐃 𝐔𝐔k and measurement vector 𝐃𝐃  𝛅𝛅𝛅𝛅. 

General Estimator — A less accurate estimate for 𝛅𝛅𝐱𝐱k can be generated by using a general 
weight W matrix in Eq 447, in lieu of (𝐃𝐃𝐃𝐃𝑇𝑇)−1  

𝛅𝛅𝐱𝐱�k = [(𝐃𝐃 𝐔𝐔k)𝑇𝑇W(𝐃𝐃 𝐔𝐔k)]−𝟏𝟏  (𝐃𝐃 𝐔𝐔k)𝑇𝑇W (𝐃𝐃  𝛅𝛅𝛅𝛅) Eq 452 

The associated estimation error is (from Eq 365) 

 𝐸𝐸(𝛅𝛅𝐱𝐱�k − 𝛅𝛅𝐱𝐱k)(𝛅𝛅𝐱𝐱�𝑘𝑘 − 𝛅𝛅𝐱𝐱k)𝑇𝑇

= [(𝐃𝐃 𝐔𝐔k)𝑇𝑇W(𝐃𝐃 𝐔𝐔k)]−𝟏𝟏(𝐃𝐃  𝐔𝐔k)𝑇𝑇W(𝐃𝐃𝐃𝐃𝑇𝑇)W(𝐃𝐃  𝐔𝐔k)[(𝐃𝐃 𝐔𝐔k)𝑇𝑇W(𝐃𝐃 𝐔𝐔k)]−𝟏𝟏𝜎𝜎RngMeas
2  

Eq 453 

For the case where the minimum number of measurement differences are available (n = p) 𝐃𝐃 𝐔𝐔k is 
a square, invertible matrix (n – 1 x n – 1 ) and Eq 452 reduces to the Newton estimator. A special 
case of the general estimator is W = I. 

8.5 Example Applications and Interpretations 

8.5.1 Example 8 Continued:  Slant-Range Measurement Systems in Flatland 

Introduction — This subsection continues the analysis, begun in Subsection 7.12.1, of surveil-
lance or navigation systems in two dimensions (‘Flatland’). The systems employ ground stations 
that are used to measure slant-ranges to an ‘aircraft’. This subsection considers true slant-range 
measurements for two- and three-station configurations, with the stations being separated by one 
BLU.  

The first topic addressed is a numerical Horizontal Dilution of Precision (HDoP) analysis using 
the methodology described in Subsections 8.4.2 and 8.4.3. Upon carrying out straightforward 
calculations (particularly involving Eq 412 with 𝐂𝐂 equal to the identity matrix), HDoP contours 
are shown in Figure 42. The left-hand panel pertains to a two-station configuration and the right-
hand panel to three stations. The calculations assume that each station’s signal can be received 
up to 3.5 BLUs in range. For these figures, HDoPs for both configurations are symmetrical about 
a ‘vertical’ axis, and thus are truncated ‘to the left’. 
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 (a) Two Stations (b) Three Stations 

Figure 42  HDoP Contours for True Slant-Range Measurement Systems in Flatland 

Two Ground Stations  

DoP Equations — In Figure 42(a), the HDoP pattern exhibits strong directionality. Coverage is 
best perpendicular to the baseline and is poor to non-existent along the station baseline and its 
extensions. A two-station configuration can be readily analyzed along the station bisector — see 
Figure 43, which has the station baseline turned 90 degrees from that in Figure 42(a).  
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Figure 43  Aircraft on the Perpendicular Bisector of Two Stations in Flatland 

From Figure 43, it is straightforward to calculate DoP values along the perpendicular bisector of 
the station baseline. For any point, the Jacobian matrix 𝐔𝐔c,Rng-2 (Eq 407 and Eq 408) is 

𝐔𝐔c,Rng-2 = �
cos(12 𝜓𝜓) −sin(12 𝜓𝜓)

cos(12 𝜓𝜓) sin(12 𝜓𝜓)
� Eq 454 

In Eq 454, the first coordinate is down range (𝐷𝐷𝐷𝐷), the second is cross range (𝐶𝐶𝐶𝐶), and 𝜓𝜓 is the 
angle at the aircraft subtended by vectors pointing toward the stations. Thus the DoP matrix is 

Mc,Rng-2 =  �𝐔𝐔c,Rng-2
𝑇𝑇   𝐔𝐔c,Rng-2�

−1
=

⎣
⎢
⎢
⎢
⎡

1
2  cos2(12𝜓𝜓)

0

0
1

2  sin2(12𝜓𝜓)⎦
⎥
⎥
⎥
⎤

= diag( DRDoPc,Rng-2
2 , CRDoPc,Rng-2

2  ) 

Eq 455 

From Eq 455, the aircraft location estimation errors for the two axes are uncorrelated (for 
locations on the bisector). HDoP along the perpendicular bisector is 

HDoPc,Rng-2 = �DRDoPc,Rng-2
2   +  CRDoPc,Rng-2

2  =
√2

|sin( 𝜓𝜓)| Eq 456 

The minimum value of HDoPc,Rng-2 is √2  ≈  1.414. This occurs when the aircraft is one-half a 
baseline length from the baseline along the perpendicular bisector, where 𝜓𝜓 = 𝜋𝜋/2. From that 
point, HDoPc,Rng-2 increases in both directions. Due to the down range component’s behavior, 
HDoPc,Rng-2 is infinite at the baseline (where 𝜓𝜓 = 𝜋𝜋). However, it has usable values close to the 
baseline — e.g., along the baseline perpendicular bisector, HDoPc,Rng-2 is less than 5 within one-
tenth of the baseline length. Due to the cross range component’s behavior, HDoPc,Rng-2 also 
grows with distance (as 𝜓𝜓 approaches zero and 2𝜋𝜋). However, along a baseline bisector, 
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HDoPc,Rng-2 is less than 5 within 3.46 times the baseline length.   

It’s instructive to consider HDoP components separately. Both are symmetric about the baseline, 
(𝜓𝜓 = 𝜋𝜋). From Eq 455, it’s evident that DRDoP improves with distance from the stations and 
approaches 1/√2  ≈  0.707, because the two range measurements are effectively averaged. 
Asymptotically, CRDoP~ √2 𝐷𝐷𝐷𝐷

𝐵𝐵
= 1.4 𝐷𝐷𝐷𝐷

𝐵𝐵
 where B is the length of the baseline. Thus CRDoP 

degrades linearly with range, the same behavior as an angle measurement system. 

Using HDoP equal to five as a criterion, the two-station service area may be approximated by a 
7 BLU x 1 BLU rectangle which includes the baseline as a bisector, bordered by four right 
triangles with sides of 3 BLU and 1 BLU. Thus, except for a small set of locations adjacent to 
the baseline, the service area is roughly: (7 x 1) + 4 x (½ x 3 x 1) = 13 BLU2.  

Iteration Process Convergence — When a closed-form solution is available, there is no need to 
use an iterative method such as NLLS. However, a system involving two ranging ground stations 
illustrates the NLLS convergence issues raised in Subsection 8.1.7. As shown in Subsec-
tion 7.12.1, this measurement system imposes constraints on the measurement values (e.g., Eq 
341); thus, when measurement errors occur, a solution may not exist. Also shown in Subsection 
7.12.1 is that for every potential aircraft location, there is a second location on the opposite side 
of (and equal distance from) the station baseline that also satisfies the measurement equations. 
Thus, solution uniqueness can be an issue as well. 

To illustrate NLLS convergence behavior, a Monte Carlo experiment was conducted for the 
station configuration shown in Figure 43. Using (𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶) coordinates and Base Line Units 
(BLUs) for distances, the station locations are (0, ±0.5) while the true aircraft locations form a 
grid of all combinations of 𝐷𝐷𝐷𝐷 = 0,1,2,3,4 and 𝐶𝐶𝐶𝐶 = 0,1,2,3. The aircraft location estimates 
used to initialize the NLLS iteration process are the true locations plus a Gaussian random 
variable (in each axis) with zero-mean. The standard deviation of the initial estimate is either 
0.2 BLU or 2 BLU. The former value characterizes continuous operation of a system (for a 
surveillance system, aircraft is being tracked); the latter value, 2 BLUs, is representative of a 
situation with poor initialization (for a surveillance system, aircraft is being acquired). The result 
of the iterative process are grouped into three categories: (a) converged to the correct aircraft 
location, (b) converged to the ambiguous aircraft location, or (c) failed to converge. The results 
of the experiment, using 1,000 trials for each aircraft location and each initialization error 
standard deviation are shown in Table 14 and Table 15. 
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Table 14  Convergence ‘during Acquisition’ (2 Ranging Stations) 

 Result DR=0 DR=1 DR=2 DR=3 DR=4 
 Correct Converge 59.8% 68.4% 83.3% 92.3% 96.3% 

CR=3 False Converge 0.0% 30.2% 13.6% 4.8% 2.3% 
 Diverge 40.2% 1.4% 3.1% 2.9% 1.4% 
 Correct Converge 66.4% 67.8% 83.4% 91.1% 97.3% 

CR=2 False Converge 0.0% 26.7% 12.4% 5.8% 1.7% 
 Diverge 33.6% 5.5% 4.2% 3.1% 1.0% 
 Correct Converge 75.6% 59.7% 81.6% 92.8% 96.3% 

CR=1 False Converge 0.0% 26.4% 11.5% 5.4% 3.1% 
 Diverge 24.4% 13.9% 6.9% 1.8% 0.6% 
 Correct Converge 2.5% 67.6% 84.9% 93.8% 98.2% 

CR=0 False Converge 0.0% 27.3% 15.1% 6.2% 1.8% 
 Diverge 97.5% 5.1% 0.0% 0.0% 0.0% 

Table 15  Convergence ‘while Tracking’ (2 Ranging Stations) 

 Result DR=0 DR=1 DR=2 DR=3 DR=4 
 Correct Converge 100.0% 100.0% 100.0% 100.0% 100.0% 

CR=3 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Correct Converge 99.9% 100.0% 100.0% 100.0% 100.0% 

CR=2 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 0.1% 0% 0% 0% 0% 
 Correct Converge 96.7% 100.0% 100.0% 100.0% 100.0% 

CR=1 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 3.3% 0.0% 0.0% 0.0% 0.0% 
 Correct Converge 92.1% 100.0% 100.0% 100.0% 100.0% 

CR=0 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 7.9% 0.0% 0.0% 0.0% 0.0% 

Table 14 and Table 15 demonstrate that initialization accuracy can strongly influence the iter-
ation process’s performance. For the ‘acquisition’ initialization, overall performance is: correct 
convergence, 78.0%; false convergence, 9.7%; divergence, 12.3%. Moreover, performance is 
poorer for locations closer to the baseline. For example, for aircraft 1 BLU from the baseline in 
the 𝐷𝐷𝐷𝐷 direction, the convergence rate for the true aircraft location averaged 65.9% and the false 
convergence rate is over 26% for all four locations. For many applications, this performance 
would be unacceptable. In contrast, for the ‘tracking’ initialization, overall performance is: 
correct convergence, 99.4%; false convergence, 0.0%; divergence, 0.6%. Only along the baseline 
connecting the stations, or its extensions, is the iteration process success rate less than 100%. 

Three Ground Stations  

DoP Equations — A similar DoP analysis can be performed for a three-station configuration. For 
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an arbitrary point along a baseline bisector 

𝐔𝐔c,Rng-3 = �
cos(12 𝜓𝜓) −sin(12 𝜓𝜓)

cos(12 𝜓𝜓) sin(12 𝜓𝜓)
±1 0

� Eq 457 

In Eq 457, in the (3,2)-element, the upper sign pertains when the aircraft is ‘to the right’ of 
Station 3 in Figure 43, and the lower sign pertains when the aircraft is ‘to the left’ of Station 3. 
For either case, the DoP matrix is 

𝐌𝐌c,Rng-3 =  �𝐔𝐔c,Rng-3
𝑇𝑇   𝐔𝐔c,Rng-3�

−1
=

⎣
⎢
⎢
⎢
⎡

1
1 + 2  cos2(12𝜓𝜓)

0

0
1

2  sin2(12𝜓𝜓)⎦
⎥
⎥
⎥
⎤

= diag( DRDoPc,Rng-3
2  , CRDoPc,Rng-3

2  ) 

Eq 458 

Again, the aircraft location estimation errors for the two axes are uncorrelated, and are 
symmetric about the baseline. Another point of interest is that DRDoPc,Rng-3  is continuous when 
an aircraft passes over Station 3. From Eq 458, it follows that HDoP for points on the bisector is 

HDoPc,Rng-3 = �DRDoPc,Rng-3
2   +  CRDoPc,Rng-3

2 =
√3

�sin2( 𝜓𝜓) + 2  sin2(12𝜓𝜓)
 Eq 459 

The minimum value for HDoPc,Rng-3 is 2/√3  ≈  1.155, which occurs at the center of the triangle 
formed by the stations (𝜓𝜓 = 4𝜋𝜋/3), where DRDoPc,Rng-3 = CRDoPc,Rng-3. At the midpoint of the 
baseline between Stations 1 and 2 (𝜓𝜓 = 𝜋𝜋), HDoPc,Rng-3 is �3/2  ≈  1.225. At Station 3 (𝜓𝜓 =
5𝜋𝜋/3), HDoPc,Rng-3 is 2�3/5   ≈  1.549. Along a baseline bisector, there is no advantage to being 
within the perimeter of the triangle joining the stations. 

The DoP matrices in Eq 458 and Eq 455 are quite similar; the primary difference is that the 
(1,1)-term for the three-station configuration does not have unbounded solutions along the 
baseline which occur in the two-station case. For three stations, DoP along the bisector down-
range axis approaches 1/√3  ≈  0.577 with distance in either direction, because three range 
measurements are effectively being averaged. CRDoP is identical to that for two stations. 

The estimator matrix for this system is shown in Eq 460. It reflects the geometry and statistics of 
the measurement scenario. The cross range estimate is not affected by the Station 3 measurement 
— which is expected, since CRDoPc,Rng-3 = CRDoPc,Rng-2. The associated projection matrix is 
shown in Eq 461. 
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 �𝐔𝐔c,Rng-3
𝑇𝑇   𝐔𝐔c,Rng-3�

−1
𝐔𝐔c,Rng-3
𝑇𝑇 =

⎣
⎢
⎢
⎢
⎡ cos(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

cos(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

±1
1 + 2  cos2(12𝜓𝜓)

−1
2  sin(12𝜓𝜓)

1
2  sin(12𝜓𝜓)

0
⎦
⎥
⎥
⎥
⎤

 Eq 460 

𝐏𝐏c,Rng-3 = 𝐔𝐔c,Rng-3  �𝐔𝐔c,Rng-3
𝑇𝑇   𝐔𝐔c,Rng-3�

−1
𝐔𝐔c,Rng-3
𝑇𝑇

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ cos2(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

+
1
2

cos2(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

−
1
2

±cos(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

cos2(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

−
1
2

cos2(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

+
1
2

±cos(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

±cos(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

±cos(12 𝜓𝜓)
1 + 2  cos2(12𝜓𝜓)

1
1 + 2  cos2(12𝜓𝜓)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
Eq 461 

For three stations there are six bisector radials extending outward from the station cluster (rather 
than two radials for the two-station case). As a result, the service area is roughly circular. The 
service area (for maximum HDoP equal to five) is approximately π 3.5 BLU x 3.5 BLU ≈ 
36 BLU2, or 12 BLU2 per station (roughly twice the value for a two-station configuration).   

Iteration Process Convergence — The Monte Carlo experiment performed for two ranging 
stations was repeated for three stations, using an initialization error standard deviation of 2 BLU 
that’s characteristic of an ‘acquisition’ situation. Comparing Table 16 with Table 14 shows the 
dramatic improvement that a redundant station can provide. Here the overall performance is: 
correct convergence, 99.0%; false convergence, 0.0%; divergence, 1.0%. This performance is 
comparable to that of the two-station configuration with ‘tracking’ initialization. (Partly because 
NLLS initialization accuracy is significantly poorer during acquisition than tracking, some 
systems require use of a redundant sensor during acquisition.) 

Table 16  Convergence ‘during Acquisition’ (3 Ranging Stations) 

 Result DR=0 DR=1 DR=2 DR=3 DR=4 
 Correct Converge 99.2% 99.9% 99.9% 100.0% 100.0% 

CR=3 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 0.8% 0.1% 0.1% 0.0% 0.0% 
 Correct Converge 98.6% 100.0% 100.0% 100.0% 99.8% 

CR=2 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 1.4% 0.0% 0.0% 0.0% 0.2% 
 Correct Converge 93.2% 99.9% 99.2% 99.5% 99.7% 

CR=1 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 6.8% 0.1% 0.8% 0.5% 0.3% 
 Correct Converge 100.0% 99.9% 95.6% 97.4% 99.1% 

CR=0 False Converge 0.0% 0.0% 0.0% 0.0% 0.0% 
 Diverge 0.0% 0.1% 4.4% 2.6% 0.9% 
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8.5.2 Example 9 Continued:  Pseudo Slant-Range Measurement Systems in Flatland 

Introduction — This subsection continues analysis, begun in Subsection 7.12.2, of surveil-
lance/navigation systems operating in Flatland. The systems employ ground stations that are 
used to measure the pseudo slant-range to an aircraft, and the stations are separated by one BLU. 
Similar to Subsection 8.5.1, this subsection emphasizes DoP behavior. The methodology 
employed is described in Subsection 8.4.4, but without the vertical component.  

Three Stations’ HDoP on a Baseline Extension — Subsection 7.7.3 contains a taxonomy of the 
solutions for a situation involving three pseudo range stations in Flatland. On a baseline exten-
sion, the governing equation (e.g., Eq 279) has a double root — i.e., an ambiguous or extraneous 
solution does not exist. Referring to Figure 43, for an aircraft along the CR axis with 𝐶𝐶𝐶𝐶 > 1

2
𝐵𝐵   

𝐔𝐔c,Rng-3 = �
0 1
0 1

cos( 𝛼𝛼) sin(𝛼𝛼)
� Eq 462 

Here, 𝛼𝛼 is the angle between the unit vector from Station 3 to the aircraft and the DR axis. Eq 
462 does not contain any of the sides or angles of stations in Figure 43. Thus an equation similar 
to Eq 462 applies to any three-station configuration when the stations are not collinear.  

It follows from Eq 429 that the inverse of the HDoP matrix is  

�Mc,PR-3
1 �

−1
= 𝐔𝐔c,Rng-3

𝑇𝑇 �𝐈𝐈 − 1
𝑛𝑛𝟏𝟏 𝟏𝟏

𝑇𝑇�𝐔𝐔c,Rng-3

=
2
3
�

cos2(𝛼𝛼) − cos(𝛼𝛼)[1 − sin(𝛼𝛼)]
− cos(𝛼𝛼)[1 − sin(𝛼𝛼)] [1 − sin(𝛼𝛼)]2 � 

Eq 463 

The matrix on the second line of Eq 463 is singular; thus, its inverse, the HDoP matrix, does not 
exist. It follows that, when an aircraft approaches any baseline extension (not including the 
nearest station), HDoP grows unboundedly large.  

Three Stations’ HDoP at a Station — When the aircraft location is the same as a station 
location, the governing equation also has a double root. However the situation is qualitatively 
different from that for a baseline extension, as the elements of 𝐔𝐔c,Rng-3 for the station involved 
have the indeterminate form 0/0. Thus matrix 𝐔𝐔c,Rng-3 is not defined. As is seen below, when an 
aircraft approaches a station (except along a baseline extension), HDoP approaches a finite limit; 
the limit value varies with the aircraft’s direction.  

Three Stations’ DoP Along the Axis of Symmetry — As is done in Subsection 8.5.1, HDoP 
and its down-range and cross-range components are examined along the perpendicular bisector 
of the baseline joining Stations 1 and 2 in Figure 43. Substituting 𝐔𝐔c,Rng-3 from Eq 457 into 
Jk,PR
′ = �𝐈𝐈 − 1

𝑛𝑛𝟏𝟏 𝟏𝟏
𝑇𝑇�𝐔𝐔k yields the Jacobian matrix Jc,PR-3

′  (Eq 464) for an equivalent system 
having measurements involving the same stations. The DoP matrix Mc,PR-3 and estimator matrix 
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then follow using Eq 439. Concerning the ambiguous signs in Eq 464 and Eq 465, the upper sign 
applies when the aircraft is ‘to the right’ of Station 3 in Figure 43, and the lower sign applies 
when the aircraft is ‘to the left’ of Station 3. 

Jc,PR-3
′ =

⎣
⎢
⎢
⎢
⎡∓ 

1
3�1∓ cos(12 𝜓𝜓)� −sin(12 𝜓𝜓)

∓ 13�1∓ cos(12 𝜓𝜓)� sin(12 𝜓𝜓)

 ±2
3�1 ∓ cos(12 𝜓𝜓)� 0 ⎦

⎥
⎥
⎥
⎤
 Eq 464 

𝐌𝐌c,PR-3 =  �� Jc,PR-3
′ �

𝑇𝑇
  Jc,PR-3
′ �

−1
= diag( DRDoPc,PR-3

2 , CRDoPc,PR-3
2  ) Eq 465 

DRDoPc,PR-3 =
�3/2

1 ∓ cos(12 𝜓𝜓)
              CRDoPc,PR-3 =

�1/2
  sin(12𝜓𝜓)

  

Along the perpendicular bisector of the baseline joining Stations 1 and 2 in Figure 43, 
CRDoPc,PR-3 is identical to the cross-range DoPs for two and three true slant-range stations.  

However, the behavior of DRDoPc,PR-3 is different from that for true ranging systems in several 
ways. Notably, DRDoPc,PR-3 is discontinuous at Station 3 (where 𝜓𝜓 = 5𝜋𝜋/3). When Station 3 is 
approached from inside the three station perimeter (‘from the right’ in Figure 43), DRDoPc,PR-3 
approaches 0.656; when Station 3 is approached ‘from the left’, DRDoPc,PR-3 approaches 9.142 
— a discontinuity of 8.486. Outside the perimeter enclosing the stations, DRDoPc,PR-3 increases 

very rapidly. When |𝐷𝐷𝐷𝐷| > �√3
2
� 𝐵𝐵, where B is the baseline length, DRDoPc,PR-3 is symmetric and 

is asymptotically equal to 9.8 �𝐷𝐷𝐷𝐷
𝐵𝐵
�
2
. Thus DRDoPc,PR-3 increases quadraticly with range from the 

Station 1-2 baseline, whereas cross-range DoP increases linearly as 1.4 �𝐷𝐷𝐷𝐷
𝐵𝐵
�. Noting that 

HDoPc,PR-3 is infinite along any baseline extension, the HDoPc,PR-3 value of   9.250 when Station 3 
is approached ‘from the left’ is the minimum HDoPc,PR-3 in the V-shaped region bounded by two 
baseline extensions. This is part of the rationale for aircraft not operating in the regions bounded 
by the baseline extensions. 

The minimum HDoPc,PR-3 occurs at the center of the triangle formed by the stations (𝜓𝜓 = 4𝜋𝜋/3). 
At that location, DRDoPc,PR-3 and CRDoPc,PR-3 have the same value, 1/√3 ≈  0.577 (and thus 
HDoPc,PR-3 = 2/√3 ≈  1.155). These are the same values that a three-station true range system 
would have. At the midpoint of the baseline joining Stations 1 and 2 (𝜓𝜓 = 𝜋𝜋), DRDoPc,PR-3 =
�3/2 ≈  1.225 and CRDoPc,PR-3 = 1/√2  ≈  0.707 (and thus HDoPc,PR-3 = √2 ≈  1.414). The faster 
growth rate of DRDoPc,PR-3 relative to CRDoPc,PR-3 is evident. Continuing ‘to the right’ beyond 
the baseline joining Stations 1 and 2, HDoPc,PR-3 is equal to 2 at approximately 18% of a baseline 
length outside the perimeter, and is equal to 5 at approximately 56% of a baseline length. HDoP 
is greater than 10 before the down-range distance equals 90% of a baseline. 
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Figure 44 shows down range and cross range DoPs along a baseline bisector for systems 
employing two and three-station true ranges and three-station pseudo ranges. DoP values are 
shown as a function of distance along the DR axis from the Station 1-2 baseline. 

 

Figure 44  DoPs Along a Symmetry Axis for True and Pseudo Range Systems 

Three Stations’ Measurement Geometry Along the Axis of Symmetry — The estimator 
matrix for locations on the perpendicular bisector is shown in Eq 466. As expected, the estimator 
implicitly forms two differences from the three pseudo range measurements. The associated 
projection matrix (Eq 467) is equal to the idempotent matrix 𝐈𝐈 − 1

3𝟏𝟏 𝟏𝟏
𝑇𝑇, which can occur when 

n  =  p (Eq 442).  

�� Jc,PR-3
′ �

𝑇𝑇
  Jc,PR-3
′ �

−1
� Jc,PR-3

′ �
𝑇𝑇

=

⎣
⎢
⎢
⎢
⎡ 

∓1
2�1 ∓ cos(12 𝜓𝜓)�

 
∓1

2�1 ∓ cos(12 𝜓𝜓)�
 

±1
1 ∓ cos(12 𝜓𝜓)

−1
 2  sin(12𝜓𝜓)

1
 2  sin(12𝜓𝜓)

0
⎦
⎥
⎥
⎥
⎤
 Eq 466 

Pc,PR-3
' = Jc,PR-3

′  �� Jc,PR-3
′ �

𝑇𝑇
  Jc,PR-3
′ �

−1
� Jc,PR-3

′ �
𝑇𝑇

=

⎣
⎢
⎢
⎢
⎡
2
3
  − 1

3
− 1

3

− 1
3

2
3

− 1
3

− 1
3

− 1
3

2
3 ⎦
⎥
⎥
⎥
⎤
  Eq 467 
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Figure 45 provides a geometric interpretation of Lee’s Method for the three-station pseudo range 
system shown in Figure 43. The solid blue lines are unit vectors along the lines-of-sight from the 
three stations to the aircraft. These unit vectors form the rows of the Jacobian matrix for true 
range system, and can be considered to terminate at the aircraft. The solid red lines are vectors 
from the tails of the blue unit vectors to the mean of the three unit vector tail locations. (The red 
lines for Station 3 vectors partially overlay the blue lines.) This mean location can be thought of 
as the virtual aircraft location for the pseudo range system employing the same stations. 

  
 (a) Favorable Measurement Geometry (b) Unfavorable Measurement Geometry 

Figure 45  Geometric Interpretation of Lee’s Method for Three Stations 

When the aircraft is within the perimeter formed by the stations, the locations of the tails of the 
blue unit vectors tend to cancel when forming their mean. Thus, the virtual aircraft location is 
close to the true aircraft location, and the pseudo range system vectors are similar in length and 
orientation to the unit vectors for the true ranging system — i.e., the measurement geometry is 
favorable.  

In contrast, when the aircraft is outside the perimeter of the stations, the unit vectors point to 
only half the plane or volume involved; thus the mean of the vector tails reflects reinforcement as 
well as cancellation. Then the pseudo range system vectors are shorter (and have different orien-
tations) than the unit vectors for the true ranging system — i.e., the measurement geometry is 
unfavorable. In particular, in Figure 45(b), the pseudo range system vector for Station 3 is much 
shorter than the Station-3 vector in Figure 45(a) — graphically indicating the inability of a 
pseudo range system to determine distance from the station cluster. 

Three Stations’ HDoP Along a Baseline — Consider a side of the triangle formed by the 
stations in Figure 43 — specifically, the CR axis. DoPs do not exist at a station and are infinite 
along a baseline extension, so attention is limited to |𝐶𝐶𝐶𝐶| < 1

2
𝐵𝐵. Along this side, CRDoPc,PR-3 =
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1/√2  ≈  0.707 at every point. (This can be shown using geometric analysis similar to that in 
Figure 45.) Also, along this side, DRDoPc,PR-3 has a minimum value of 1.225 at the center and 
approaches a maximum value of 1.472 as a station is approached. Thus, within the perimeter of 
the stations, including the baselines but not the stations themselves, the maximum value of 
HDoPc,PR-3 is 1.633.  

Three Stations’ HDoP for Concentric Circles — For the three-station configuration in Figure 
43, HDoPc,PR-3 is computed for concentric circles centered on the stations’ centroid — see Figure 
46. Here, the angle is measured clockwise from the negative DR axis. Thus 0 deg corresponds to 
the direction of Station 3, 60 deg corresponds to the direction of the mid-point of the baseline 
connection Stations 1 and 3, and 120 deg corresponds to the direction of Station 1. 

 
Figure 46  HDoPs for Three-Station Pseudo Range System on Concentric Circles 

The circles used for Figure 46 are described in Table 17, listed from the smallest to largest radii. 
Radii and maximum perimeter penetrations are in BLUs. 

Table 17  Concentric Circles Used to Characterize HDoP 

Line Color Circle 
Radius Radius Description Max. Perimeter 

Penetration* 
HDoP at 

Max. Pen.* 
Blue 0.289 Inscribed circle radius 0 1.414 

Magenta 0.389 Inscribed circle radius + 10% of BLU 0.100 1.686 
Cyan 0.505 Extraneous solution detectable† 0.217 2.174 
Black 0.577 Circumscribed circle radius 0.289 2.582 
Green 0.635 110% of Circumscribed circle radius 0.346 2.972 

Red 0.693 120% of Circumscribed circle radius 0.401 3.421 
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Line Color Circle 
Radius Radius Description Max. Perimeter 

Penetration* 
HDoP at 

Max. Pen.* 
Blue 0.751 130% of Circumscribed circle radius 0.462 3.930 

* Along a radial from the centroid that is perpendicular to a baseline at its midpoint 
† See Figure 31 

Three Stations’ HDoP Contours — Figure 47 shows HDoPc,PR-3 contours for the station 
configuration shown in Figure 43. Because HDoP is infinite along the baseline extensions, 
contours for HDoPc,PR-3 ≥ 1.633 (the maximum HDoP with the station perimeter) terminate at 
stations. 

 
Figure 47  HDoP Contours for Three Pseudo Range Measurements in Flatland 

Simple GPS Model — A three-station pseudo slant-range system provides a simple but useful 
model for GPS behavior. Thus, consider the situation shown in Figure 48, which assumes a 
spherical earth and circular satellite orbits. For these reasonable simplifications, the GPS 
satellites orbital radius is slightly greater than four Earth Radius Units (ERUs); the user and three 
satellites are in the same vertical plane; Satellites 1 and 2 have the same elevation angle 𝛼𝛼, while 
Satellite 3 is directly above the user. The constellation cross-range axis is the user’s horizontal 
axis, and the constellation down-range axis is the user’s vertical axis. 

In Figure 48(a), the representative earth-based user is outside the perimeter of the satellite 
locations. However, the user is close, horizontally and vertically, to the center of the baseline 
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between Satellites 1 and 2. For 𝛼𝛼  = 5 deg (approximately the minimum usable value), the user’s 
vertical distance to the baseline is 4.4% of the baseline. For 𝛼𝛼  = 10 deg (as in Figure 48(a)), the 
user-baseline distance is 8.9% of the baseline.  

  
 (a) Satellite-User Geometry (b) User HDoP and VDoP 

Figure 48  Three-Satellite Vertical-Plane Model for GPS-User Geometry 

The down-range distances involved can be related to Figure 44. Near a baseline, CRDoP (blue 
curve) is relatively flat, while DRDoPc,PR-3 (orange curve) is rapidly increasing. HDoP and VDoP 
curves for the GPS model of Figure 48(a), shown in Figure 48(b), are consistent with Figure 44. 
They illustrate behavior that is contrary to that for true range systems — i.e., low-elevation GPS 
satellites are more important to VDoP than to HDoP. 

Four Stations — Figure 49 shows HDoPc,PR-4 contours for two four station pseudo range 
configurations. As is the case for true slant-range systems (Subsection 8.5.1), utilizing a 
redundant station eliminates the occurrence of infinite solutions — e.g., the infinite HDoPs along 
the baseline extensions of a three-station pseudo range configuration are eliminated. Evidence is 
that the HDoPc,PR-4 = 20 contour encircles the station cluster, whereas the HDoPc,PR-3 = 20 
contours are blocked by the baseline extensions and terminate on stations. A redundant station 
also provides an increase in the service area. But the quadratic increase in HDoPc,PR-4 with 
distance from the station cluster still limits the coverage area.  

A square or rectangular station arrangement provides effective coverage within the perimeter of 
an area such as an airport (Figure 49(a)). However, other four-station configurations provide 
larger service areas. An alternative that is better suited to maximizing coverage is the four-station 
Wye configuration (Figure 49(b)). For this configuration, a BLU is defined as the distance from 
the center station to each of the three outlying stations.  
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(a) Square Configuration (b) Wye Configuration 

Figure 49  HDoP Contours for Two Four-Station Configurations 

8.5.3 Interpretation:  Pseudo vs. True Slant-Range Systems 

Service Area Comparison — Figure 50 is a comparison of the service areas in which a given 
HDoP is achieved for the five system configurations addressed in Subsections 8.5.1 and 8.5.2, 
assuming a common baseline length. Since HDoP is used as a surrogate for accuracy, common 
range measurement error variances are implicitly assumed as well. Figure 50 indicates that, for 
HDoP = 5, a navigation or surveillance system utilizing true slant-range measurements can have 
a service area that is 10 times that of a system utilizing pseudo slant-range measurements with 
the same number of ground stations. For HDoP = 2, the coverage ratio is smaller, approxi-
mately 5. However, while convenient for analysis purposes, having equal or comparable 
baselines for different types of systems is not necessarily required for actual systems. 

Siting Flexibility — A more useful conclusion that can be drawn is that true slant-range systems 
have greater station siting flexibility. Pseudo slant-range systems must have station locations that 
almost surround the service area, while true slant-range systems do not. Stated informally, true 
range systems can look outward from the station cluster, while pseudo range systems must look 
inward from the stations’ perimeter or to locations a fraction of a baseline length outside the 
perimeter and near the center of a baseline. To address this limitation, pseudo slant-range 
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systems have been deployed with extremely long baselines. The ultimate in this regard are 
satellite navigation systems, which employ satellites as stations and thus have baseline lengths 
approaching eight earth radii.  

LOPs for True and Pseudo Range Measurements — Figure 51 provides another explanation 
of why HDoPs for pseudo slant-range systems degrade much more rapidly with distance from 
the stations than do HDoPs for true slant-range systems.  

 

Figure 51  LOPs for True Slant-Range and Pseudo Slant-Range Systems 

The figure shows two stations and the circular LOPs they would generate if the stations were 
used for true slant-range measurements. The circular LOP crossing angles starts at zero on the 
baseline, where the solution is unstable. Moving ‘outward’ along the baseline perpendicular 

 
Figure 50  Coverage Area vs. HDoP for Five System Concepts 
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bisector, the crossing angle becomes useful within about one-tenth of the baseline length, and 
remains useful to about 3.5 baseline lengths (outside of the limits of the figure) where the 
crossing angle becomes too shallow. An important aspect in this system is that the separation 
between circular LOPs for each station remains constant with distance from the station — only 
the crossing angles cause degraded accuracy.  

Figure 51 also shows a family of hyperbolic LOPs for the same pair of pseudo slant-range 
stations. If there were two pairs of stations, degradation in their crossing angles with distance 
from the stations would be evident (e.g., Figure 30). However, a second source of accuracy 
degradation is involved: for pseudo slant-range systems, the LOPs become further apart with 
distance from the stations (much as the LOPs for an angle measurement system do). The 
combination of divergence of the LOPs and degraded LOP crossing angles limits the service area 
of a pseudo slant-range system to, roughly, the region enclosed by the stations’ perimeter. 

8.5.4 Example 10 Continued:  Three Pseudo Spherical-Range Stations 

Introduction — This subsection continues the example, begun in Subsection 7.12.3, of an 
aircraft that utilizes three stations in the U.S. Northeast Loran-C chain (M Seneca, NY; W 
Caribou, ME; and X Nantucket, MA). Two topics are addressed that are relevant to material in 
this chapter: (1) Horizontal Dilution of Precision (HDoP), and (2) accounting for the earth’s 
ellipticity. 

HDoP Contours — While more frequently used in a rectangular framework, Horizontal Dilu-
tion of Precision (HDoP) is also applicable to spherical geometries — see Subsections 8.4.2 and 
8.4.3. The approach here is based on the range-difference technique of Subsection 8.4.5 — 
specifically Eq 421-Eq 423 and Eq 450. Assuming that the stations are ordered as M, W, X, 
HDoP is given by  

Ma,PR-3 = 𝐂𝐂[(𝐃𝐃𝐔𝐔a)𝑇𝑇(𝐃𝐃𝐃𝐃𝑇𝑇)−1(𝐃𝐃𝐔𝐔a)]−1𝐂𝐂𝑇𝑇 Eq 468 

𝐃𝐃 = �1 −1 0
1 0 −1�   

𝐂𝐂 = diag( 1,  cos(𝐿𝐿𝐴𝐴)  )  

The elements of the matrix 𝐔𝐔a (the Jacobian matrix for the position variables) are given in Eq 
420. Then HDoPa,PR-3 is found from the diagonal elements of 𝐌𝐌a,PR-3  

HDoPa,PR-3 = �LatDoPa,PR-3
2   +  LonDoPa,PR-3

2  Eq 469 

Eq 468 and Eq 469 are evaluated for a grid of points, and HDoPa,PR-3 contours are draws — see 
Figure 52. Also shown is a potential flight path involving airports in/near the coverage area.  
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Figure 52  HDoP Contours for a Triad of Stations (Loran NE Chain) 

Figure 52 is qualitatively similar to Figure 47(a), which applies to a two-dimensional Cartesian 
setting and pseudo slant-range measurements. For example: (a)  the HDoP values are similar at 
comparable locations, both inside and outside the station perimeter; (b) HDoP is infinite along 
the baseline extensions, causing exterior contours to terminate at stations; and (c) HDoP is 
discontinuous when transitioning between the interior of the station perimeter and the interior of 
the adjacent region between two baselines. Material in Subsection 7.7.3 concerning extraneous 
and ambiguous solutions is relevant here as well. The area where HDoPa,PR-3 ≤ 5 is 
approximately 233 thousand square nautical miles. 

Accounting for Ellipsoidal Earth —If the earth were a sphere, Razin’s algorithm, as described 
in Section 7.10, could be used without modification. However, the earth is better modeled as an 
ellipsoid of revolution (Section 2.2). Since ellipticity errors resulting from modeling the earth as 
a sphere tend to increase with distance, they can become important for accurate, long-range 
systems. For example, consider four airport locations: LaGuardia, NY (LGA); Boston, MA 
(BOS); Portland, ME (PWM); and Bangor, ME (BGR). The path lengths between the three 
ground stations and these airports vary from 81.0 NM (X and BOS) to 444.3 NM (W and LGA); 
the average is 233.5 NM. Based on (a) the distances involved, (b) the ‘rule of thumb’ for the 
spherical earth approximation that the distance error is roughly 0.3% of the distance, and (c) the 
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Coast Guard’s Loran-C accuracy goal of 0.25 NM, the effect of mis-modeling the earth’s shape 
should be addressed for some applications.  

Table 18 shows the position error resulting from applying Razin’s algorithm to range-differences 
generated using Vincenty’s algorithm (Subsection 2.2.3), rather than those for a spherical earth 
(as assumed by the algorithm). The ellipticity error values, between 0.38 NM and 1.13 NM, are 
consistent with the 0.3% of distance ‘rule of thumb’; all are greater than the goal of 0.25 NM. 

Table 18  Example Ellipticity Errors for Razin’s Algorithm 

Airport True Lati-
tude (deg) 

Lat Error* 
(deg) 

True Longi-
tude (deg) 

Lon Error* 
(deg) 

Distance 
Error (NM) 

LGA 40.7772500 -0.0062000 -73.8726111 0.0011000 0.38 
BOS 42.3629418 -0.0006300 -71.0063931 -0.0102000 0.45 

PWM 43.6456435 0.0036400 -70.3086164 -0.0148100 0.68 
BGR 44.8074444 0.0061100 -68.8281389 -0.0250500 1.13 

* True minus estimated coordinate value 

NLLS Methodology — The NLLS technique is used to improve the solution accuracy of 
Razin’s algorithm. Specifically, the Newton form of the estimator for range differences is 
employed (Eq 451). Following Subsection 2.2.3, each true/measured spherical-range is computed 
using Vincenty’s algorithm* for the distance s(S,A) along the surface of the ellipsoid between a 
station S at (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) and aircraft A at (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴). The simulated measurement (Eq 350) is 

𝐳𝐳� = �
𝑧̃𝑧1
𝑧̃𝑧2
𝑧̃𝑧3
� = �

𝑠𝑠(M,A)
𝑠𝑠(W, A)
𝑠𝑠(X, A)

� Eq 470 

The equation for each calculated spherical-range also employs Vincenty’s algorithm. Here, the 
aircraft location replaced by its current estimate Ā. Thus, in Eq 350  

𝐟𝐟 = �
𝑓𝑓1(M,A�)
𝑓𝑓2(W,A�)
𝑓𝑓3(X,A�)

� = �
𝑠𝑠(M,A�)
𝑠𝑠(W,A�)
𝑠𝑠(X,A�)

� Eq 471 

The measurement difference residual vector therefore is 

𝐃𝐃 𝛅𝛅𝛅𝛅 = �1 −1 0
1 0 −1� �

𝑧̃𝑧1 − 𝑓𝑓1
𝑧̃𝑧2 − 𝑓𝑓2
𝑧̃𝑧3 − 𝑓𝑓3

� = �1 −1 0
1 0 −1� �

𝑠𝑠(M,A) − 𝑠𝑠(M,A�)
𝑠𝑠(W, A) − 𝑠𝑠(W,A�)
𝑠𝑠(X, A) − 𝑠𝑠(X,A�)

� Eq 472 

The Jacobian matrix is composed of partial derivatives of the measurements with respect to the 
unknown position variables 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴. The elements of the Jacobian used in computations need 
                                                 
* Vincenty’s algorithm is seleced based on the availability of validated computer code. Other methods can be used. 
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not be exact derivatives of the measurement equation (Subsection 8.1.6). This is fortuitous, 
because Vincenty’s technique is not an equation in the analytic sense, but a recursive procedure; 
expressions for its derivatives cannot be computed easily.  

In place of the derivatives with respect to 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 of the distance along the surface of an 
ellipse for Vincenty’s algorithm, scaled derivatives of the geocentric angle 𝜃𝜃𝑆𝑆𝑆𝑆 are used. Thus, 
the Jacobian is computed using Eq 420 

𝜕𝜕𝜕𝜕(S,A)
𝜕𝜕𝐿𝐿𝐴𝐴

= 𝑅𝑅𝑒𝑒
𝜕𝜕𝜃𝜃𝑆𝑆𝑆𝑆
𝜕𝜕𝐿𝐿𝐴𝐴

�
A=Ā

                          
𝜕𝜕𝜕𝜕(S,A)
𝜕𝜕𝜆𝜆𝐴𝐴

= 𝑅𝑅𝑒𝑒
𝜕𝜕𝜃𝜃𝑆𝑆𝑆𝑆
𝜕𝜕𝜆𝜆𝐴𝐴

�
A=Ā

 Eq 473 

In Eq 473, a reasonable value for 𝑅𝑅𝑒𝑒 should be used, as a 1,000 ft change in 𝑅𝑅𝑒𝑒 is equivalent to a 
5x10-5 change in 𝜕𝜕𝜃𝜃𝑆𝑆𝑆𝑆

𝜕𝜕𝐿𝐿𝐴𝐴
 or 𝜕𝜕𝜃𝜃𝑆𝑆𝑆𝑆

𝜕𝜕𝜆𝜆𝐴𝐴
. For calculations, the value for 𝑅𝑅𝑒𝑒 following Eq 30 is employed 

here. The NLLS process is initialized using values for 𝐿𝐿�𝐴𝐴 and 𝜆̅𝜆𝐴𝐴 found using Razin’s algorithm 
for a spherical earth. The perturbation corrections 𝛿𝛿𝐿𝐿�𝐴𝐴 and 𝛿𝛿𝜆̂𝜆𝐴𝐴 are found using Eq 451.  

Jacobian Matrix Considerations — There are two differences in the Jacobian matrix used for 
computing DoP values and the matrix used for computing unknown variables. First, the Jacobian 
used for DoPs is taken from Eq 420 (for spherical-ranges), then scaled by the 𝐂𝐂 matrix with the 
result that the elements of the product 𝐔𝐔a  𝐂𝐂−1 are dimensionless and the associated DoP variables 
are commensurate. In contrast, the Jacobian matrix used for computing an updated estimate of 
the unknown variables must be scaled so that Eq 357 is consistent. In this situation, where the 
measurement residual 𝛅𝛅𝛅𝛅 has units of linear distance, derivatives with respect to the geocentric 
angle found from Eq 420 must be scaled by the radius of the earth (e.g., Eq 473). Second, 
Jacobian matrices used for computing DoPs are evalued on a grid of assumed aircraft locations. 
In contrast, Jacobian matrices used to compute an update to the perturbation variables are 
evaluated at the current estimate of the aircraft location.  

Calculation Results — Carrying out the NLLS process using Eq 451 yields a sequence of 
increasingly accurate position estimates for four airport locations. The associated residual errors 
are shown in Table 19. Convergence of the NLLS technique is rapid in this situation. Each of the 
first four iterations reduces the error by a minimum factor of 76; the average latitude or longitude 
error reduction by one iteration is a factor of 539. The fifth iteration appears to approach the 
limits of machine precision (calculations were done in double precision). 

Table 19  NLLS Residual Error for Spherical-Range Differences (Stations M,W,X) 

Iter-
ation 

LaGuardia (LGA) Boston (BOS) 

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg) 
0 -0.006,204,297,044,61 0.001,098,559,038,59 -0.000,627,450,377,91 -0.010,195,811,988,10 
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1 -0.000,020,505,170,77 -0.000,001,816,926,14 -0.000,008,177,955,56 0.000,045,180,746,10 
2 -0.000,000,027,423,43 0.000,000,018,116,62 -0.000,000,014,339,68 -0.000,000,157,274,01 
3 -0.000,000,000,083,93 -0.000,000,000,062,20 -0.000,000,000,032,53 0.000,000,000,565,15 
4 0.000,000,000,000,01 0.000,000,000,000,29 -0.000,000,000,000,04 -0.000,000,000,002,02 
5 0.000,000,000,000,01 -0.000,000,000,000,01 0.000,000,000,000,01 0.000,000,000,000,03 

Iter-
ation 

Portland (PWM) Bangor (BGR) 

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg) 
0 0.003,642,517,508,14 -0.014,811,819,575,26 0.006,109,544,331,55 -0.025,054,253,476,51 
1 0.000,001,297,312,66 0.000,072,399,332,72 0.000,018,565,242,40 0.000,160,340,474,51 
2 -0.000,000,016,162,69 -0.000,000,244,802,54 -0.000,000,084,834,17 -0.000,000,437,980,97 
3 0.000,000,000,041,82 0.000,000,000,817,39 0.000,000,000,213,29 0.000,000,001,148,99 
4 -0.000,000,000,000,15 -0.000,000,000,002,72 -0.000,000,000,000,57 -0.000,000,000,003,05 
5 0.000,000,000,000,01 0.000,000,000,000,04 -0.000,000,000,000,01 0.000,000,000,000,00 

* True minus estimated coordinate value 

Solution Precision — Aside from demonstrations such as this of the NLLS technique, in 
practice, when applied to Loran-C measurements, one or two iterations would generally be 
sufficient. Even with error-free measurements (as can be assumed during system analyses), there 
usually is no point in computing an aircraft’s position to greater precision than that to which the 
ground stations are known. Loran-C station locations are published to 0.001 arc second, or 
approximately 0.1 ft, or 0.000,000,3 deg (Ref. 53), which is achieved with two iterations in the 
calculations employed here. For real-time operational use, if one optimistically takes the Loran-C 
measurement accuracy to be 10 ft (it has been quoted as “100 ft or better”), then computing the 
aircraft location to a precision of 0.000,03 deg would be sufficient. 

Related Work — Razin’s paper (Ref. 45) recognizes the need to modify the solution based on 
its derivation for an assumed spherical earth, and contains a technique to do so. References 52 
and 53 do as well. The solution herein is closest to that in Ref. 52. 

8.5.5 Example 11 Continued:  Two Pairs of Pseudo Spherical-Range Stations 

This subsection continues the example, begun in Subsection 7.12.4, concerning two distinct pairs 
of pseudo spherical-range navigation stations. For such a configuration, the solution algorithm 
for a spherical earth is described in Section 7.11. HDoP is utilized to obtain insight into this 
configuration’s performance, both a distinct station pairs, and with ‘cross chaining’ as an 
additional capability. The methodology is similar to that employed in Subsection 8.5.4. The 
ellipticity error inherent in a solution that assumes a spherical earth can be corrected by the 
Gauss-Jordan NLLS technique. However, that topic is not pursued here. 

For this situation, the Jacobian matrix and HDoP expressions follow directly from Subsection 
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8.5.4 — specifically, Eq 468 and Eq 469. The elements of matrix 𝐔𝐔a (Jacobian matrix for 
angular-formulation position variables) are given in Eq 420. Matrix 𝐔𝐔a has four rows, since there 
are four stations. Assuming that the order of the rows corresponds to stations at Seneca, 
Nantucket, Dana and Malone, the measurement difference matrix 𝐃𝐃 is 

𝐃𝐃 = �1 −1 0 0
0 0 1 −1�  Eq 474 

Figure 53 depicts HDoP contours for the four stations and seven airport shown in Figure 39. As 
expected, the solution becomes unstable along the extensions for the baselines connecting a 
same-chain station pair (Seneca-Nantucket and Dana-Malone). However, the solution is not 
unstable along the extensions for the paths connecting stations from different chains. For this 
example, there is a region where HDoP exceeds 50 close to the Dana-Seneca path, as the 
hyperbolic LOPs for the two chains are nearly parallel in this area. 

 
Figure 53  HDoP Contours for Two Pairs of Pseudo Spherical-Range Stations 

As noted earlier, navigation and surveillance systems are developed/deployed to provide service 
in a defined area. In the case of the U.S. East Coast Loran-C Chain, the station at Carolina 
Beach, NC, was intended to support service in much of the U.S.Southeast. However, stations are 
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occasionally out-of-service. In such a circumstance, cross-chaining was an advanced capability 
that enabled operations to continue during a station outage (for appropriately equipped users).  

A second advanced capability (relative to traditional Loran-C) was utilization of redundant 
stations to improve measurement geometry. The Dana station was in fact dual-rated: it was the 
master for the Great Lakes Chain and a secondary for the East Coast Chain. To determine the 
effect on HDoP of including the Seneca-Dana spherical-range difference, the analysis can be 
repeated with the 𝐃𝐃 matrix modified to account for the additional range-difference measurement. 

𝐃𝐃 = �
1 −1 0 0
0 0 1 −1
1 0 −1 0

�  Eq 475 

Figure 54 depicts HDoP contours when measurements by the Seneca-Dana pair are included. 
HDoPs adjacent to the Seneca-Dana baseline are improved markedly (e.g., HDoPs less than 1.5 
for six of the seven airports). HDoPs for the area further to the southeast are less improved. 

 
Figure 54  HDoP Contours for Three Pairs of Pseudo Spherical-Range Stations 

The geographic size of service areas involved in Figure 53 and Figure 54 are large. For the two 
figures, HDoP is 5 or less for approximately 590 (Figure 53) and 1,050 (Figure 54) thousand 
square nautical miles, respectively. An important factor in achieving large coverage areas is use 
of long baselines — e.g., for Dana-Malone, approximately 544 NM; and for Seneca-Dana, 
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approximately 510 NM. 

8.5.6 Example 12 Continued:  Wide Area Multilateration (WAM) 

Introduction — This subsection continues the example, begun in Subsection 7.12.5, of a WAM 
system that utilizes aircraft altitude reports and pseudo slant-range measurements from stations at 
three airports: Boston, MA (BOS); Manchester, NH (MHT); and Hartford, CT (BDL). The 
analysis in Subsection 7.12.5 assumes a spherical earth. This subsection accounts for the earth’s 
ellipticity using the Gauss-Newton NLLS technique specialized to range difference systems 
(Subsection 8.4.5). 

NLLS Methodology — Each slant-range difference measurement is computed using Appendix 
Section 9.3 (particularly Eq 500) for the slant-range 𝑑𝑑  (S, A) between a station S at coordinates 
(𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆, ℎ𝑆𝑆) and aircraft A at coordinates (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴,ℎ𝐴𝐴). The simulated measurement (Eq 350) thus 
becomes  

𝐳𝐳� = �
𝑧̃𝑧1
𝑧̃𝑧2
𝑧̃𝑧3
� = �

𝑑𝑑(BOS, A)
𝑑𝑑(MHT, A)
𝑑𝑑(BDL, A)

� Eq 476 

In the measurement equation for each slant-range difference the aircraft location replaced by its 
current estimate Ā. Thus, in Eq 350  

𝐟𝐟 = �
𝑓𝑓1(BOS,A�)
𝑓𝑓2(MHT, A�)
𝑓𝑓3(BDL, A�)

� = �
𝑑𝑑(BOS,A�)
𝑑𝑑(MHT, A�)
𝑑𝑑(BDL, A�)

� Eq 477 

The measurement residual vector is 𝛅𝛅𝛅𝛅 = 𝐳𝐳� − 𝐟𝐟 and the measurement difference matrix is  

𝐃𝐃  = �1 −1 0
0 1 −1� Eq 478 

The Jacobian matrix is composed of the partial derivatives of the measurements with respect to 
the unknown variables. In this case, only the position variables 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 are relevant, since 
forming range differences eliminates the time variable. Because the NLLS technique is recursive, 
approximations of the derivatives of 𝑑𝑑  (S, A) are sufficient. Thus, the derivatives of slant-range 
with respect to 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 are computed using the corresponding expressions for a spherical earth 
model (𝐮𝐮𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴 found from Eq 414) and the current estimate of the aircraft location 

𝐔𝐔s = �

𝑢𝑢s,Ā-BOS,L 𝑢𝑢s,Ā-BOS,λ

𝑢𝑢s,Ā-MHT,L 𝑢𝑢s,Ā-MHT,𝜆𝜆

𝑢𝑢s,Ā-BDL,L 𝑢𝑢s,Ā-BDL,𝜆𝜆

� Eq 479 

The NLLS process is initialized using values for 𝐿𝐿�𝐴𝐴 and 𝜆̅𝜆𝐴𝐴 found using the spherical earth model 
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(Section 7.5 and Subsection 7.12.5). The perturbation corrections 𝛿𝛿𝐿𝐿�𝐴𝐴 and 𝛿𝛿𝜆̂𝜆𝐴𝐴 are found using 
the Newton estimator of Eq 451.  

Calculation Results — Carrying out the NLLS process for five iterations for four airport 
locations yields a sequence of increasingly accurate position estimates. Their residual errors are 
shown in Table 20. ‘Iteration 0’ corresponds to the solution based on a spherical-earth model, 
which is used to initialize the iteration. For these four locations, the average ellipticity error is 
1,204 ft; the maximum is 2,122 ft. 

Table 20  NLLS Residual Error for WAM Slant-Range Difference Measurements 

Iter-
ation 

Westfield-Barnes Regional (BAF) Dillant-Hopkins, Keene (EEN) 

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg) 
0 -0.001,301,968,265,58 0.007,647,699,521,99 -0.001,104,331,349,71 0.003,587,102,019,89 
1 -0.000,023,346,121,51 -0.000,083,388,490,38 0.000,003,508,767,16 -0.000,020,825,500,81 
2 0.000,000,023,629,92 0.000,000,077,274,69 -0.000,000,013,518,20 0.000,000,091,899,49 
3 -0.000,000,000,019,79 -0.000,000,000,082,41 0.000,000,000,068,21 -0.000,000,000,412,05 
4 0.000,000,000,000,03 0.000,000,000,000,08 -0.000,000,000,000,27 0.000,000,000,001,82 
5 0.000,000,000,000,01 0.000,000,000,000,00 0.000,000,000,000,00 -0.000,000,000,000,01 

Iter-
ation 

Lawrence Municipal (LWM) Hanscom Field, Bedford (BED) 

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg) 
0 -0.001,215,745,248,65 -0.003,554,998,523,51 -0.001,341,677,997,11 -0.001,310,031,212,80 
1 0.000,003,288,339,05 0.000,029,318,295,92 -0.000,003,587,543,95 0.000,008,337,514,17 
2 0.000,000,018,603,13 -0.000,000,113,464,86 -0.000,000,004,694,52 -0.000,000,028,663,83 
3 0.000,000,000,023,39 0.000,000,000,519,98 -0.000,000,000,019,15 0.000,000,000,097,83 
4 0.000,000,000,000,22 -0.000,000,000,002,11 -0.000,000,000,000,02 -0.000,000,000,000,33 
5 0.000,000,000,000,00 0.000,000,000,000,01 -0.000,000,000,000,01 0.000,000,000,000,00 

* True minus estimated coordinate value 

In this example, convergence of the NLLS (actually, the Newton-Raphson) technique is rapid. 
Each of the first four iteration steps reduces the error by a minimum factor of 50; the average 
latitude or longitude error reduction by one iteration is a factor of 426. The fifth iteration appears 
to approach the limits of machine precision. This performance is consistent with that for pseudo 
spherical-range measurements addressed in Subsection 8.5.4.  

Two iterations would be sufficient for virtually all real-world applications, as the survey error of 
most locations, including those of airports, exceeds 10-7 deg. 

8.5.7 Example 13:  Five Pseudo Spherical-Range Stations 

Introduction — This subsection addresses an over-determined (Gauss-type) situation involving 
five stations in the U.S. Northeast Loran-C chain: M Seneca, NY; W Caribou, ME; X Nantucket, 
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MA; Y Carolina Beach, NC; and Z Dana, IN. Station coordinates are given in Ref. 53. Stations 
M, W and X are utilized in Example 10, which involves a fully-determined (Newton-type) 
situation. As was done previously, perfect measurements are assumed.  

It’s stated in Subsection 8.1.5 that, when a Gauss-type NLLS estimator converges, the derivative 
of the cost function with respect to the unknown variables 𝐱𝐱 is zero (Eq 379). Equivalently, the 
the matrix product J𝑇𝑇  W  𝛅𝛅𝛅𝛅 = �W½J�

𝑇𝑇
�W½𝛅𝛅𝛅𝛅�   results in the zero vector. Consequently, if an 

approximation is employed for the Jacobian matrix J, the accuracy of the estimator 𝐱𝐱� may be 
affected. This example quantifies the effect of using spherical-earth Jacobian elements with 
ellipsoidal earth measurements.  

NLLS Methodology — The methodology is similar to that used in Subsection 8.5.4. Each 
true/measured spherical-range is calculated using Vincenty’s algorithm for the distance s(S,A) 
along the surface of the ellipsoid between a station S at (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆) and aircraft A at (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴).  

𝐳𝐳� =

⎣
⎢
⎢
⎢
⎡
𝑧̃𝑧1
𝑧̃𝑧2
𝑧̃𝑧3
𝑧̃𝑧4
𝑧̃𝑧5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑠𝑠(M,A)
𝑠𝑠(W, A)
𝑠𝑠(X, A)
𝑠𝑠(Y, A)
𝑠𝑠(Z, A) ⎦

⎥
⎥
⎥
⎤

 Eq 480 

Similarly, each estimated spherical-range is calculated using Vincenty’s algorithm; however, the 
current estimated aircraft location A�  is employed. 

𝐟𝐟 =

⎣
⎢
⎢
⎢
⎢
⎡𝑓𝑓1(M,A�)
𝑓𝑓2(W,A�)
𝑓𝑓3(X,A�)
𝑓𝑓4(Y,A�)
𝑓𝑓5(Z,A�) ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡𝑠𝑠

(M,A�)
𝑠𝑠(W,A�)
𝑠𝑠(X,A�)
𝑠𝑠(Y,A�)
𝑠𝑠(Z,A�) ⎦

⎥
⎥
⎥
⎥
⎤

 Eq 481 

The measurement difference residual vector is 

𝐃𝐃 𝛅𝛅𝛅𝛅 = �

1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

�

⎣
⎢
⎢
⎢
⎡
𝑧̃𝑧1 − 𝑓𝑓1
𝑧̃𝑧2 − 𝑓𝑓2
𝑧̃𝑧3 − 𝑓𝑓3
𝑧̃𝑧4 − 𝑓𝑓4
𝑧̃𝑧5 − 𝑓𝑓5⎦

⎥
⎥
⎥
⎤

 Eq 482 

In computing the Jacobian matrix, in place of the derivatives with respect to 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴 of the 
distance along the surface of an ellipse, scaled derivatives of the geocentric angle 𝜃𝜃𝑆𝑆𝑆𝑆 are used. 
Thus, the Jacobian is computed using (Eq 420) 

𝜕𝜕𝜕𝜕(S,A)
𝜕𝜕𝐿𝐿𝐴𝐴

= 𝑅𝑅𝑒𝑒
𝜕𝜕𝜃𝜃𝑆𝑆𝑆𝑆
𝜕𝜕𝐿𝐿𝐴𝐴

�
A=Ā

                          
𝜕𝜕𝜕𝜕(S,A)
𝜕𝜕𝜆𝜆𝐴𝐴

= 𝑅𝑅𝑒𝑒
𝜕𝜕𝜃𝜃𝑆𝑆𝑆𝑆
𝜕𝜕𝜆𝜆𝐴𝐴

�
A=Ā

 Eq 483 
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The value of 𝑅𝑅𝑒𝑒 given in Eq 31 is employed here. The NLLS process is initialized using values 
for 𝐿𝐿�𝐴𝐴 and 𝜆̅𝜆𝐴𝐴 found using Razin’s algorithm for a spherical earth and stations W, Y and Z. The 
perturbation corrections 𝛿𝛿𝐿𝐿�𝐴𝐴 and 𝛿𝛿𝜆̂𝜆𝐴𝐴 are found using Eq 447.  

Calculation Results — The NLLS process was carried out for ten airports within the perimeter 
enclosing the five Loran stations. Table 21 displays the residual errors for four airport locations, 
which are representative of those for all ten airports. Convergence of is rapid, and similar to that 
in Table 19. Two iterations reduce the position solution error to less than the Loran measurement 
error. Three iterations reduce the position solution error to less than the survey accuracy of the 
Loran stations. The solution error for the fifth iteration approaches the limits of machine pre-
cision. It’s evident that use of a Jacobian matrix based on the spherical earth approximation does 
not significantly degrade solution accuracy or convergence rate. 

Table 21  NLLS Residual Error for Spherical-Range Differences (Stations M,W,X,Y,Z) 

Iter-
ation 

Washington Reagan (DCA) Boston (BOS) 

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg) 
0 0.014,537,257,252,70 -0.018,604,127,029,66 0.026,547,737,503,24 -0.054,681,743,113,03 
1 0.000,029,424,578,53 0.000,073,330,085,09 0.000,101,495,715,06 0.000,291,281,533,06 
2 0.000,000,022,067,27 -0.000,000,198,214,65 0.000,000,077,282,17 -0.000,001,082,517,14 
3 0.000,000,000,126,40 0.000,000,000,596,01 0.000,000,000,610,34 0.000,000,004,060,44 
4 -0.000,000,000,000,03 -0.000,000,000,001,68 -0.000,000,000,000,46 -0.000,000,000,015,23 
5 0.000,000,000,000,01 0.000,000,000,000,01 0.000,000,000,000,01 0.000,000,000,000,05 

Iter-
ation 

Pittsburgh (PIT) Indianapolis (IND) 

Lat Error* (deg) Lon Error* (deg) Lat Error* (deg) Lon Error* (deg) 
0 0.018,908,798,526,81 -0.007,753,505,965,38 0.020,256,990,728,48 0.013,247,536,503,45 
1 0.000,064,254,937,99 0.000,020,482,996,50 0.000,078,069,938,33 -0.000,204,926,202,17 
2 0.000,000,145,432,17 -0.000,000,019,728,66 0.000,000,226,449,34 0.000,000,575,804,13 
3 0.000,000,000,326,01 0.000,000,000,148,19 0.000,000,001,186,27 -0.000,000,001,696,70 
4 0.000,000,000,000,74 -0.000,000,000,000,23 0.000,000,000,004,08 0.000,000,000,004,67 
5 -0.000,000,000,000,01 -0.000,000,000,000,03 0.000,000,000,000,03 -0.000,000,000,000,03 

* True minus estimated coordinate value 

8.5.8 Example 14:  Direction Finding From Aircraft 

Introduction — This is a completely contrived example, intended to show how direction finding 
from an aircraft might be a useful emergency backup capability when other navigation systems 
are not available. It does not reflect current aircraft direction-finding capabilities. Currently, 
direction finding is done in conjunction with a single transmitter, in order to find the direction 
toward a location of interest, typically an airport. Currently the aircraft does not compute its 
latitude/longitude; for the application addressed herein, it would.  
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Here it is assumed that aircraft A, at an unknown location, measures the azimuth angles relative 
to geodetic north, 𝜓𝜓1/𝐴𝐴 and 𝜓𝜓2/𝐴𝐴, of known transmitters 1 and 2. Typically, this requires that the 
aircraft have: (1) an antenna array that can measure the angle of arrival of a signal relative to the 
airframe; (2) a device, such as an Inertial Navigation System (INS), that measures the aircraft 
centerline azimuth relative to geodetic (true) north; and (3) the capability to compute the 
aircraft’s location from these measurements.  

Purposes — The functional purpose of this hypothetical system is to exhibit the analysis process 
for determining the latitude and longitude of aircraft A (𝐿𝐿𝐴𝐴, 𝜆𝜆𝐴𝐴) from knowledge of the latitude/ 
longitude of transmitters 1 (𝐿𝐿1, 𝜆𝜆1) and 2 (𝐿𝐿2, 𝜆𝜆2) and azimuth measurements 𝜓𝜓1/𝐴𝐴 and 𝜓𝜓2/𝐴𝐴.  

A secondary purpose of this example is to illustrate the ability of the Gauss-Newton NLLS 
technique to address situations where a closed-form solution does not exist for the spherical-
earth assumption. Azimuth measurements from an aircraft 𝜓𝜓𝑖𝑖/𝐴𝐴 appear to be equivalent to 
azimuth measurements from ground sites 𝜓𝜓𝐴𝐴/𝑖𝑖, which is addressed in Section 6.3; moreover their 
measurement equation is well-known (e.g., Eq 86 or Eq 87).  

However, there is an analytic difference between ground-based and aircraft-based measurements 
of azimuth angles of two transmitters. For ground-based measurements, the aircraft location can 
be found by applying spherical trigonometry to triangle A12 (as described in Section 6.3). For 
aircraft-based measurements, only two parts of triangle A12 are known while three are needed. 
One can consider additional spherical triangles involving the north pole and derive two equations 
in two unknown variables. But closed-form solutions for those equations are not known. 

NLLS Initialization — The initial estimate for the aircraft location is found using expressions 
for rhumb line navigation (Eq 505 and Eq 506), which are repeated here in current notation  

tan�𝜓𝜓𝑖𝑖/𝐴𝐴� =
𝜆𝜆𝑖𝑖 − 𝜆̅𝜆𝐴𝐴
𝐿𝐿𝑖𝑖′ − 𝐿𝐿�𝐴𝐴′

          𝑖𝑖 = 1,2 Eq 484 

Here, 𝐿𝐿′ denotes the ‘stretched latitude’ corresponding to actual latitude 𝐿𝐿. The expressions for 
converting between the two are: 

𝐿𝐿′ ≡ log �tan �12𝐿𝐿 + 1
4𝜋𝜋��           𝐿𝐿 ≡ 2  arctan�𝑒𝑒𝐿𝐿′� − 1

2𝜋𝜋 Eq 485 

Upon simultaneously solving Eq 484 for 𝑖𝑖 = 1,2, the initial estimated aircraft location is: 

𝐿𝐿�𝐴𝐴′ =
(𝜆𝜆2 − 𝜆𝜆1) + 𝐿𝐿1′ tan�𝜓𝜓1/𝐴𝐴� − 𝐿𝐿2′ tan�𝜓𝜓2/𝐴𝐴�

tan�𝜓𝜓1/𝐴𝐴� − tan�𝜓𝜓2/𝐴𝐴�
 

𝜆̅𝜆𝐴𝐴 =
(𝐿𝐿2′ − 𝐿𝐿1′ ) tan�𝜓𝜓1/𝐴𝐴� tan�𝜓𝜓2/𝐴𝐴� + 𝜆𝜆1 tan�𝜓𝜓2/𝐴𝐴� − 𝜆𝜆2 tan�𝜓𝜓1/𝐴𝐴�

tan�𝜓𝜓2/𝐴𝐴� − tan�𝜓𝜓1/𝐴𝐴�
 

Eq 486 
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In Eq 486, for either/both expressions, the dependency on tan�𝜓𝜓𝑖𝑖/𝐴𝐴� can be converted to a 
dependency on cot�𝜓𝜓𝑖𝑖/𝐴𝐴� by multiplying the numerator and denominator by cot�𝜓𝜓𝑖𝑖/𝐴𝐴�. When 
using Eq 486 in conjunction with Eq 485, no constraints are placed on the computed values of 𝐿𝐿�𝐴𝐴 
or 𝜆̅𝜆𝐴𝐴. It is possible for infeasible values to be found, particularly when the aircraft and stations 
are separated by large distances (e.g., thousands of miles).  

Measurement Equation — The error-free measured azimuth angles 𝜓𝜓1/𝐴𝐴 and 𝜓𝜓2/𝐴𝐴 along the 
surface of the ellipsoid between stations 1 and 2 and aircraft A at its actual location are simu-
lated using Vincenty’s algorithm (Subsection 2.2.3). The measurement corresponding to Eq 350 
is: 

𝐳𝐳� = �𝑧̃𝑧1𝑧̃𝑧2
� = �

𝜓𝜓1/𝐴𝐴(1,A)
𝜓𝜓2/𝐴𝐴(2, A)� Eq 487 

The equation for each calculated azimuth angle also employs Vincenty’s algorithm. However, 
the actual aircraft location replaced by the current estimated location A� . Thus,  

𝐟𝐟 = �𝑓𝑓1
(1, A�)

𝑓𝑓2(2, A�)� = �
𝜓𝜓1/𝐴𝐴(1, A�)
𝜓𝜓2/𝐴𝐴(2, A�)� Eq 488 

The measurement residual vector corresponding to Eq 353 therefore is 

𝛅𝛅𝛅𝛅 = �𝑧̃𝑧1 − 𝑓𝑓1
𝑧̃𝑧2 − 𝑓𝑓2

� = �
𝜓𝜓1/𝐴𝐴(1,A) − 𝜓𝜓1/𝐴𝐴(1, A�)
𝜓𝜓2/𝐴𝐴(2, A) − 𝜓𝜓2/𝐴𝐴(2, A�)� Eq 489 

Jacobian — The Jacobian matrix is composed of approximate partial derivatives of the 
measurements with respect to the unknown position variables 𝐿𝐿𝐴𝐴 and 𝜆𝜆𝐴𝐴. Here, the partial 
derivatives for azimuth measurements on a spherical earth are used (Eq 402); these are repeated 
here in current notation 

𝜕𝜕𝜕𝜕𝑖𝑖/𝐴𝐴
𝜕𝜕𝐿𝐿𝐴𝐴

=
Num𝑖𝑖   [sin(𝐿𝐿𝐴𝐴)  sin(𝐿𝐿𝑖𝑖) + cos(𝐿𝐿𝐴𝐴)  cos(𝐿𝐿𝑖𝑖)  cos(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝐴𝐴)]

(Num𝑖𝑖)2 + (Den𝑖𝑖)2
 Eq 490 

𝜕𝜕𝜕𝜕𝑖𝑖/𝐴𝐴
𝜕𝜕𝜆𝜆𝐴𝐴

=
−Den𝑖𝑖   [cos(𝐿𝐿𝑖𝑖)  cos(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝐴𝐴)] + Num𝑖𝑖   [cos(𝐿𝐿𝑖𝑖)  sin(𝐿𝐿𝐴𝐴)  sin(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝐴𝐴)]

(Num𝑖𝑖)2 + (Den𝑖𝑖)2
  

Num𝑖𝑖 = cos(𝐿𝐿𝑖𝑖)  sin(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝐴𝐴) 
Den𝑖𝑖 = sin(𝐿𝐿𝑖𝑖)  cos(𝐿𝐿𝐴𝐴) − cos(𝐿𝐿𝑖𝑖)  sin(𝐿𝐿𝐴𝐴)  cos(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝐴𝐴) 

 

Numerical Examples — Two numerical examples are provided (Table 22). The first involves 
aircraft-transmitter ranges of dozens of miles, and demonstrates the capability to find an airport 
that does not have a radio beacon. The second example involves aircraft-transmitter ranges of 
hundreds of miles, showing that this method is not limited to short ranges. (In the second 
example, Lorsta is a Coast Guard term used for Loran Station; the Seneca, NY, and Caribou, 
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ME, stations were part of the U.S. East Coast Loran Chain.) 

Table 22  Aircraft-Based Direction Finding Examples 

 Short Range Medium Range 
Aircraft Location Norwood Airport (OWD) Logan Airport (BOS) 
Transmitter Station 1 Logan Aiport VOR (BOS) Lorsta Seneca 
Aircraft-Station 1 Range 12.9 NM 258.9 NM 
Transmitter Station 2 Gardner VOR (GDM) Lorsta Caribou 
Aircraft-Station 2 Range 44.8 NM 297.5 NM 
Initial Position Error 1,025.160 ft 55,753.080 ft 
Iteration 1 Position Error 1.450 ft 904.724 ft 
Iteration 2 Position Error 0.002 ft 4.065 ft 
Iteration 3 Position Error 0.000 ft 0.011 ft 
Iteration 4 Position Error ——— 0.000 ft 

In Table 22, the initial position error is the error resulting from use of the rhumb line equations 
(Eq 486 in conjunction with Eq 485). The subsequent errors are for the Gauss-Newton NLLS 
algorithm. For these examples, convergence is rapid; sub-foot computational errors are achieved 
in two or three iterations. 

Remark — The ability to compute a position solution from aircraft-based azimuth measure-
ments is straightforward. However, the challenge of measuring the angle-of-arrival of a signal 
from a moving platform using a size-restricted antenna limits the accuracy of the measurements, 
and consequently the resulting position solution. Generally, the solution is is only useful as an 
emergency backup. 
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9. APPENDIX:  RELATED SPECIALIZED TOPICS 

9.1 Aircraft Altitude and Air Data Systems 

9.1.1 Meanings of Altitude 

This document is primarily mathematical, and — in Chapters 1-7 — the equations involve only 
one notion of altitude: geometric height above an assumed perfectly spherical earth, measured 
along a radial from the earth’s center. However, when interpreting the results of calculations for 
applications, the analyst must be aware that there are multiple meanings of altitude. The differing 
meanings are of concern, because aircraft (a) utilize barometric altimeters, but (b) must also main 
a vertical geometric distance above terrain. Figure 55 illustrates several notions of vertical 
distance above the earth, or ‘altitude’: 

 
Figure 55  Different Notions of Altitude 

 Height — or, better, Height Above Terrain (HAT) — is the vertical distance between 
an aircraft (or the top of a structure on the ground) and the terrain beneath it 

 Altitude — or, better, Altitude MSL (above Mean Sea Level) — is the vertical 
distance between an aircraft and mean sea level. Generally, aircraft use altitude MSL 
in terminal areas/at low altitudes. To do so, the aircraft’s altimeter is adjusted for the 
current local MSL pressure by applying the ‘QNH’ correction*, which is broadcast 
by a local airport. 

 Flight Level — Vertical distance between an aircraft and the point below where the 
sea-level standard day pressure occurs (29.92 inches of mercury). In the U.S., flight 

                                                 
* QNH is not an acronym. It is one of a collection of standardized three-letter message encodings, all of which start 
with the letter "Q". They were initially developed for commercial radiotelegraph communication, and were later 
adopted by other radio services, especially amateur radio. Although created when radio used Morse code exclu-
sively, Q-codes continued to be employed after the introduction of voice transmissions. 



DOT Volpe Center   

 9-2 

levels are used above the transition altitude of 18,000 ft.* 
 Elevation — Height of the terrain above MSL. 

These definitions are reasonably standard, but are not universally used. Documents related to 
aircraft procedures are particularly carefully to adhere to these definitions. 

9.1.2 Aircraft Pitot-Static System 

Aircraft certified under Federal Aviation Regulations† Parts 91, 121 and 135 are required to be 
equipped with a pitot-static system. A pitot-static system utilizes the static air pressure (collected 
at the static port), and the dynamic pressure due to the motion of the aircraft through the air 
(collected by the pitot tube) — illustrated in Figure 56, from Ref. 63. These combined pressures 
are utilized to provide the pilot with three indicators critical to operation of the aircraft: 
 Airspeed indicator (ASI) 
 Altimeter 
 Vertical speed indicator (VSI). 

 
Figure 56  Basic Aircraft Pitot-Static System 

                                                 
* The figure, from Wikipedia, was drawn from a European perspective. It has (a) a lower transition altitude, and 
(b) the QNH quantified in hectopascals (hPa) rather than inches of mercury.  
† The Federal Aviation Regulations, or FARs, are rules governing all aviation activities in the United States. The 
FARs are part of Title 14 of the Code of Federal Regulations (CFR). 
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9.1.3 Barometric Altimeter Temperature Sensitivity 

The basic design of aircraft barometric altimeters does not provide a means for compensating for 
deviations from the assumed standard day sea level temperature of 15 °C (59 °F)*. Such a 
deviation results in an uncompensated altitude error that: (a) is the same for all aircraft at the 
same altitude, and (b) does not fluctuate. Temperatures that are less than the standard 15 °C 
cause the altimetry system to report a higher altitude than is true. Conversely, temperatures that 
are greater than the standard cause the altimetry system to report a lower altitude than is true 
(Figure 57).  

 

Figure 57  Effect of Non-Standard MSL Temperature on Barometric Altimeter Indication 

Altitude errors due to uncompensated temperature deviations from the standard value are a 
particular concern for low-altitude operations. The amount is quantified by the ICAO Cold 
Temperature Error Table, which is reproduced in Ref. 64. 

9.1.4 Vertical Speed Indicator Temperature Sensitivity 

The Vertical Speed Indicator is subject to the same temperature sensitivity as the barometric 
altimeter. Most pertinent to VNAV approaches: Ref. 39 cautions: “Because of the pronounced 
effect of nonstandard temperature on baro-VNAV operations, VNAV approaches will contain a 
temperature restriction below which use of the approach is not authorized.” For example, the 
RNAV (GPS) approach plate for Logan International Airport (BOS) runway 04R that was valid 
for 07 Feb 2013 to 07 March 2013 had this statement: “Uncompensated Baro-VNAV systems, 
LNAV/VNAV NA [Not Available] below -13 °C (9 °F) or above 43 °C (109 °F)”.†  

                                                 
* The correction applied by a pilot in a terminal area, utilizing Automatic Terminal Information Service (ATIS) or 
Automated Weather Observation System (AWOS) information, only accounts for atmospheric deviations from the 
standard day pressure at sea level.  
† The low-temperature restriction ensures that the actual vertical path flown is obstacle-free. The high-temperature 
restriction reduces the likelihood that at Decision Height, the aircraft will be above the minimum ceiling and/or have 
to execute a significant vertical flight correction. 
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The International Civil Aviation Organization (ICAO) has estimated the impact of temperature 
on VNAV approaches, and developed the following table (Ref. 65): 

Table 23  Effect of Uncompensated Airport Temperature on VNAV Glide Path Angle  
Airport 

Temperature 
Actual Glide 
Path Angle 

+30 ⁰C (+86 ⁰F) 3.2 deg 
+15 ⁰C (+59 ⁰F) 3.0 deg 

0 ⁰C (+32 ⁰F) 2.8 deg 
-15 ⁰C (+5 ⁰F) 2.7 deg 
-31 ⁰C (-24 ⁰F) 2.5 deg 

For airport at MSL and a charted 3 deg glide path angle 

Temperature compensation of the VNAV system is offered on many full-sized transport aircraft 
and some smaller aircraft, but is not often found in aircraft currently operating. 

9.2 VNAV Constant Descent Angle Trajectory 

9.2.1 Derivation of Equations 

Barometric Vertical NAVigation (Baro VNAV) creates a descent path that is, absent instru-
mentation errors and incorrect assumptions concerning the atmosphere, similar to, but slightly 
different from, an ILS glide slope. Whereas ILS navigation involves flying a constant vertical 
angle 𝛼𝛼 with respect to the plane of the runway, VNAV involves flying a constant vertical angle 
𝛼𝛼′ with respect to the horizontal plane at the current aircraft location, and is defined by 

tan(𝛼𝛼′) =
vertical speed
ground speed

 Eq 491 

Generally, vertical speed is derived from the aircraft’s pitot-static system, and ground speed is 
found from one of (a) the combination of airspeed and headwind, (b) a GPS receiver, or (c) range 
measurements to a DME ground station on the airport. 

Employing the notation of Chapters 1-3, the differential equation governing a vertical trajectory 
involving a constant vertical descent angle 𝛼𝛼′ with respect to the local horizontal plane is  

𝑑𝑑ℎ = tan(𝛼𝛼′) (𝑅𝑅𝑒𝑒 + ℎ) 𝑑𝑑𝜃𝜃 
𝑑𝑑ℎ

𝑅𝑅𝑒𝑒 + ℎ
= tan(𝛼𝛼′) 𝑑𝑑𝜃𝜃 

Eq 492 

Integrating both sides of Eq 492 from altitude ℎ𝑈𝑈 (the threshold crossing) to altitude ℎ𝑆𝑆 (the 
current aircraft location) yields the expression for the geocentric angle 𝜃𝜃 
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𝜃𝜃 =
log �𝑅𝑅𝑒𝑒 + ℎ𝑆𝑆

𝑅𝑅𝑒𝑒 + ℎ𝑈𝑈
�

tan(𝛼𝛼′)
 Eq 493 

The natural logarithm is employed in Eq 493. This equation can be manipulated to find the 
altitude and descent angle as a function of the other two variables. 

ℎ = 𝑅𝑅𝑒𝑒�𝑒𝑒𝜃𝜃 tan�𝛼𝛼
′� − 1�

= 𝑅𝑅𝑒𝑒 𝜃𝜃 tan(𝛼𝛼′)  +  
1
2
𝑅𝑅𝑒𝑒 𝜃𝜃2  tan2(𝛼𝛼′)  + ⋯ 

Eq 494 

tan(𝛼𝛼′) =
log �𝑅𝑅𝑒𝑒 + ℎ

𝑅𝑅𝑒𝑒
�

𝜃𝜃

=
ℎ
𝜃𝜃𝑅𝑅𝑒𝑒

−
ℎ2

2 𝜃𝜃(𝑅𝑅𝑒𝑒)2
+

ℎ3

3 𝜃𝜃(𝑅𝑅𝑒𝑒)3
± ⋯ 

Eq 495 

The correspondence between the preceding three equations for VNAV approaches and those for 
an ILS glide slope approaches are: geocentric angle 𝜃𝜃, Eq 493 ↔ Eq 40; altitude ℎ, Eq 494 ↔ 
Eq 66; and vertical angles 𝛼𝛼′ and 𝛼𝛼, Eq 495 ↔ Eq 48. 

9.2.2 Typical Vertical Profiles 

Figure 58 is a plot of aircraft altitude above MSL versus distance along the curved earth’s 
surface from the runway threshold for (a) baro-VNAV guidance with a descent angle of 
3.00 deg, (b) ILS guidance with a glide path angle of 3.00 deg, and (c) ILS guidance with a glide 
path angle of 2.90 deg. At the threshold, the baro-VNAV and ILS 3.00 deg curves coincide; at 5-
7 NM from the threshold, the baro-VNAV curve is about halfway between the two curves for 
ILS guidance; at 14 NM, the baro-VNAV and ILS 2.90 deg curves essentially over lay each 
other. 

9.2.3 Remarks 
 References 2 and 3 specify the use of Eq 493 to Eq 495 in the design of VNAV 

approach procedures. 
 Requirements for aircraft implementation of VNAV are found in FAA Advisory 

Circulars AC 90-105 (Ref. 39) and AC 20-138C (Ref. 40). These documents require 
the use of a flight director and vertical deviation indicator (VDI) and assume the use 
of a flight management system.  



DOT Volpe Center   

 9-6 

 
Figure 58  Aircraft Elevation vs. Distance along Ground, for Three Guidance Schemes 

9.3 Ellipsoidal Earth Model and ECEF Coordinate Frame 

This section presents coordinate frames and transformations associated with an ellipsoidal model 
for the earth. It draws on Section 2.2 (concerning ellipsoidal earth parameters) and Section 5.1 
(concerning coordinate frames and transformations associated with a spherical earth model). In 
this document, the primary use of a model for an ellipsoidal relates to Chapter 8 — formulating 
analytic models for slant-range and slant-range difference measurements. 

As in Section 5.1, the ellipsoidal earth-centered earth-fixed (ECEF) frame e is defined by: 
 xe-axis:  lies in the plane of the equator and points toward the Greenwich meridian 
 ye-axis:  completes the right-hand orthogonal system 
 ze-axis:  lies along the earth's spin axis. 

For these axis, the ellipsoid model for the earth’s surface is  

(𝑥𝑥𝑒𝑒)2

𝑎𝑎2
+

(𝑦𝑦𝑒𝑒)2

𝑎𝑎2
+

(𝑧𝑧𝑒𝑒)2

𝑏𝑏2
= 1 Eq 496 

As in Section 2.2, in this section, 𝑎𝑎 denotes the earth’s equatorial radius and 𝑏𝑏 its polar radius. 
The WGS-84 values for 𝑎𝑎 and 𝑏𝑏 are given in Section 2.2. Figure 25, depicting a spherical earth 
— with slight flattening at the poles — is relevant here, as well.  

Figure 59 is depicts an ellipsoidal model of the earth, employing a plane passing through the spin 
axis. The coordinate quantities of greatest interest are: 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0 1 2 3 4 5 6 7 8 9 10 11 12

Aircraft Ground Distance from Threshold (NM)

A
irc

ra
ft 

El
ev

at
io

n 
(ft

, M
SL

)

Baro-VNAV 3.00 deg
ILS GS 3.00 deg
ILS GS 2.90 deg



DOT Volpe Center   

 9-7 

 
Figure 59  Ellipsoidal Earth Model for a Plane through the Spin Axis 

 Geodetic latitude 𝐿𝐿 (denoted by ϕ in Figure 59) — the angle that a normal to the 
ellipsoid surface makes with the plane of the equator. Geodetic latitude is generally 
used for navigation and surveying; other measures of latitude are used in 
mathematical analyses. 

 Ellipsoid longitude 𝜆𝜆 — sometimes termed terrestrial longitude. Longitude for an 
ellipsoid earth model is conceptually the same as longitude for a spherical model.  

 Several definitions of altitude are used. Height above the geoid, an equipotential 
gravitational surface that approximates mean sea level, is useful for some aspects of 
navigation. Height above the reference ellipsoid is more convenient for analysis. The 
two heights are related by the undulation of the geoid, which is published in the form 
of tables and/or formulas. 

A user’s height above the ellipsoid ℎ𝑈𝑈,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, height above the geoid ℎ𝑈𝑈,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and undulation of the 
geoid at the user’s location 𝛥𝛥ℎ𝑒𝑒−𝑔𝑔(𝐿𝐿𝑈𝑈,𝜆𝜆𝑈𝑈) are related by 

ℎ𝑈𝑈,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ℎ𝑈𝑈,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝛥𝛥ℎ𝑒𝑒−𝑔𝑔(𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) Eq 497 

Undulation of the geoid is usually computed as a harmonic expansion in latitude and longitude 
that’s fit to measurements. Reference 66 is a source of data concerning undulation of the geoid 
relative to the WGS-84 reference ellipsoid. The order of the expansion used in Ref. 66 exceeds 
2,000, which results in a resolution of 1 arc min. For the CONUS, the geoid is generally below 
the surface of the WGS-84 ellipsoid — more in the East and less in the West. For locations of 
interest — e.g., navigation and surveillance ground stations, runways, monuments, etc. — 
coordinates are generally provided in geodetic latitude and terrestrial longitude relative to the 
WGS-84 ellipsoid; their elevation is usually stated in relative to mean sea level.  

To approximate an ellipsoidal earth at a location on its surface by a sphere, two radii of curvature 
(RoCs) are commonly defined —the RoC in the meridian (north-south orientation), 𝑅𝑅𝑛𝑛𝑛𝑛, and the 
RoC in the prime vertical (east-west orientation), 𝑅𝑅𝑒𝑒𝑒𝑒. These are given in Subsection 2.2.2 (Eq 
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27). The value for 𝑅𝑅𝑒𝑒𝑒𝑒 is repeated here, as it is needed below; again, 𝑒𝑒2 denotes the earth’s 
eccentricity.  

𝑅𝑅𝑒𝑒𝑒𝑒 =
𝑎𝑎

[1 − 𝑒𝑒2 sin2(𝐿𝐿)]1/2 
=

𝑎𝑎2 
[𝑎𝑎2 cos2(𝐿𝐿) + 𝑏𝑏2 sin2(𝐿𝐿)]1/2 

 Eq 498 

Given a user’s geodetic latitude 𝐿𝐿𝑈𝑈, terrestrial longitude 𝜆𝜆𝑈𝑈 and height above the ellipsoid ℎ𝑈𝑈, 
the location of the user U relative to the earth’s center O in the e-frame is 

𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 = �
rOU,𝑥𝑥
e

rOU,𝑦𝑦
e

rOU,𝑧𝑧
e

� = �
(𝑅𝑅𝑒𝑒𝑒𝑒 + ℎ𝑈𝑈) cos(𝐿𝐿𝑈𝑈) cos(𝜆𝜆𝑈𝑈)
(𝑅𝑅𝑒𝑒𝑒𝑒 + ℎ𝑈𝑈)  cos(𝐿𝐿𝑈𝑈) sin(𝜆𝜆𝑈𝑈)
[𝑅𝑅𝑒𝑒𝑒𝑒(1− 𝑒𝑒2) + ℎ𝑈𝑈]  sin(𝐿𝐿𝑈𝑈)

� Eq 499 

It is evident from Eq 499 that 𝑅𝑅𝑒𝑒𝑒𝑒 is the distance along the normal between the ellipsoid surface 
and the earth’s spin axis, while 𝑅𝑅𝑒𝑒𝑒𝑒(1– 𝑒𝑒2) is the distance between the ellipsoid surface and the 
equatorial plane.  

Given the components of 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞  and those of ground station 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 , the slant-range between the user 
and station is 

𝑑𝑑𝑈𝑈𝑈𝑈 = ��rOU,𝑥𝑥
e − rOS,𝑥𝑥

e �
2

+ �rOU,𝑦𝑦
e − rOS,𝑦𝑦

e �
2

+ �rOU,𝑧𝑧
e − rOS,𝑧𝑧

e �
2
 Eq 500 

Conversely, given the components of 𝐫𝐫𝐎𝐎𝐎𝐎𝐞𝐞 , the user’s latitude, longitude and altitude can be 
found. User longitude is given by 

𝜆𝜆𝑈𝑈 = arctan�rOU,𝑦𝑦
e  , rOU,𝑥𝑥

e � Eq 501 

The expressions for user latitude 𝐿𝐿𝑈𝑈 and elevation above the ellipsoid ℎ𝑈𝑈 in Eq 499 are not 
analytically invertible due to the dependence of 𝑅𝑅𝑒𝑒𝑒𝑒 on 𝐿𝐿𝑈𝑈. Thus a numerical solution is 
required. The three components of Eq 499 can be combined to eliminate elevation ℎ𝑈𝑈, yielding 

��rOU,𝑥𝑥
e �

2
+ �rOU,𝑦𝑦

e �
2

cos(𝐿𝐿𝑈𝑈) =
rOU,𝑧𝑧
e

sin(𝐿𝐿𝑈𝑈) + 𝑒𝑒2𝑅𝑅𝑒𝑒𝑒𝑒(𝐿𝐿𝑈𝑈) 
Eq 502 

The geodetic latitude 𝐿𝐿𝑈𝑈 can be found from Eq 502 by an iterative root-finding technique 
(Subsection 2.1.8), using the geocentric latitude as the initial value 

𝐿𝐿𝑈𝑈,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = arctan

⎝

⎛ rOU,𝑧𝑧
e

��rOU,𝑥𝑥
e �

2
+ �rOU,𝑦𝑦

e �
2
⎠

⎞ Eq 503 

Then ℎ𝑈𝑈  can be found from 
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ℎ𝑈𝑈 =
rOU,𝑧𝑧
e

sin(𝐿𝐿𝑈𝑈) −
(1 − 𝑒𝑒2)𝑅𝑅𝑒𝑒𝑒𝑒(𝐿𝐿𝑈𝑈) Eq 504 

Note that Eq 501 - Eq 504 are not needed when an ellipsoid earth model is employed in 
determining aircraft latitude, longitude and altitude by an iterative solution of the measurement 
equations.  

9.4 Rhumb Line Navigation 

9.4.1 Background 

The defining characteristic of rhumb* line navigation is that the intended track over the ground 
has the same azimuth angle with respect to North at each location along the track. That is,  

𝜓𝜓 = arctan�
cos(𝐿𝐿)𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� = constant 

tan(𝜓𝜓)�
𝑑𝑑𝑑𝑑

cos(𝐿𝐿) = �𝑑𝑑𝑑𝑑 
Eq 505 

An example rhumb line course is shown to the right. Mathematically, 
such courses are loxodromes; they spiral toward, but do not reach, a 
pole. (The exception is a constant-latitude course; these are often 
treated separately.) 

Rhumb line navigation has been used by mariners for hundreds of 
years.† The primary advantage of rhumb lines was that they simpli-
fied the helmsman’s task in an era when only rudimentary tools were 
available. Even when a great circle route was being implemented, the path was approximated by 
a series of waypoints and rhumb line navigation was employed between waypoints.  

Another important advantage of rhumb line navigation is that, for a Mercator projection, a rhumb 
line course is a straight line on a chart. This greatly simplifies the planning process, and likely 
contributed to the popularity of the Mercator projection. 

Today, great circle navigation has largely replace rhumb line navigation, particularly for 
aviation, since it provides shorter paths and air routes are less restricted than marine routes. 
Rhumb line navigation is still in use for applications lacking a navigation computer.. 

Three factors cause great circle and rhumb line routes to be dissimilar:  

                                                 
* The word ‘rhumb’ apparently comes from Spanish/Portuguese rumbo/rumo, meaning course or direction 
(Wikipedia). An alternative term to rhumb line is ‘loxodrome’. 
† Rhumb lines were first discussed by the Portuguese mathematician Pedro Nunes in 1537, in (translated) Treatise in 
Defense of the Marine Chart (Wikipedia). 
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 Path length: The origin and destination (or end points of a navigation leg) are far 
apart (e.g., thousands of miles) 

 Starting location: Route leg starts at mid- and/or high-latitude, and 
 End location/route direction: The end point is at mid- and/or high-latitude on the 

same side of the equator.  

Numerical examples illustrating the importance of these points are presented in Subsection 4.8.4. 

Consistent with the intent of this document, the equations presented below are for rhumb line 
navigation with respect to a spherical earth (Refs. 28 and 67). More accurate equations applic-
able to an ellipsoidal earth may be found in Ref. 68. 

9.4.2 Solution of the Indirect Problem 

The Indirect problem of geodesy / navigation is defined in Section 1.2.2 and its solution for great 
circle navigation is given in Section 4.2. The known quantities are the latitude/longitude of the 
starting point U (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈) and end point S (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆). The quantities to be found are the distance D 
between U and S; and the azimuth angles 𝜓𝜓𝑆𝑆/𝑈𝑈 at U and 𝜓𝜓𝑈𝑈/𝑆𝑆 at S of the trajectory connecting U 
and S. 

After integrating the second line of Eq 505 from U to S, the result is 

tan�𝜓𝜓𝑆𝑆/𝑈𝑈� =
𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈

log �
tan�12𝐿𝐿𝑆𝑆 + 1

4𝜋𝜋�
tan�12𝐿𝐿𝑈𝑈 + 1

4𝜋𝜋�
�

=
𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈
𝐿𝐿𝑆𝑆′ − 𝐿𝐿𝑈𝑈′

 
Eq 506 

The natural logarithm is used in Eq 506 and throughout this section. The quantity 𝐿𝐿′, introduced 
in Eq 506 and defined in Eq 507, is sometimes termed the ‘stretched latitude’. It’s central to 
rhumb line navigation, and is plotted in Figure 60.   

𝐿𝐿′ ≡ log �tan �12𝐿𝐿 + 1
4𝜋𝜋�� 

𝐿𝐿 = 2  arctan�𝑒𝑒𝐿𝐿′� − 1
2𝜋𝜋 

Eq 507 

Since a constant azimuth angle is involved, it follows that 

𝜓𝜓𝑈𝑈/𝑆𝑆 = 𝜓𝜓𝑆𝑆/𝑈𝑈 ± 𝜋𝜋 Eq 508 

Once the azimuth angle 𝜓𝜓𝑆𝑆/𝑈𝑈 is known, the rhumb line distance along the earth’s surface, 𝐷𝐷, 
between U and S can be found using  

𝐷𝐷 =
𝑅𝑅𝑒𝑒

cos�𝜓𝜓𝑆𝑆/𝑈𝑈�
� 𝑑𝑑𝑑𝑑
𝐿𝐿𝑆𝑆

𝐿𝐿𝑈𝑈
=
𝑅𝑅𝑒𝑒 (𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)

cos�𝜓𝜓𝑆𝑆/𝑈𝑈�
          when          𝐿𝐿𝑆𝑆 ≠ 𝐿𝐿𝑈𝑈 Eq 509 
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Figure 60  Comparision of Stretched and True Latitudes 

This equation is correct when 𝐿𝐿𝑆𝑆 is either larger or smaller than 𝐿𝐿𝑈𝑈, but fails when the angles are 
equal (i.e., for constant latitude paths). Then Eq 509 must be replaced by 

𝐷𝐷 = 𝑅𝑅𝑒𝑒 cos(𝐿𝐿𝑆𝑆) |𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈| = 𝑅𝑅𝑒𝑒 cos(𝐿𝐿𝑈𝑈) |𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈|         when          𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈 Eq 510 

An equation for the distance 𝐷𝐷 between U and S that does not depend on the solution for 𝜓𝜓𝑆𝑆/𝑈𝑈 
can be developed. For convenience, let 

Δ𝐿𝐿𝑈𝑈𝑈𝑈 = 𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈      ,     Δ𝐿𝐿𝑈𝑈𝑈𝑈′ = 𝐿𝐿𝑆𝑆′ − 𝐿𝐿𝑈𝑈′      ,     Δ𝜆𝜆𝑈𝑈𝑈𝑈 = 𝜆𝜆𝑆𝑆 − 𝜆𝜆𝑈𝑈 Eq 511 

From Eq 509 and Eq 506, it follows that 

𝐷𝐷 sin�𝜓𝜓𝑆𝑆/𝑈𝑈� = 𝐷𝐷 cos�𝜓𝜓𝑆𝑆/𝑈𝑈� tan�𝜓𝜓𝑆𝑆/𝑈𝑈� = 𝑅𝑅𝑒𝑒   Δ𝐿𝐿𝑈𝑈𝑈𝑈  
Δ𝜆𝜆𝑈𝑈𝑈𝑈
Δ𝐿𝐿𝑈𝑈𝑈𝑈′

 Eq 512 

Then, from Eq 509 and Eq 512, the rhumb line distance 𝐷𝐷 is given by 

𝐷𝐷 = 𝑅𝑅𝑒𝑒�(Δ𝐿𝐿𝑈𝑈𝑈𝑈)2 +
(Δ𝐿𝐿𝑈𝑈𝑈𝑈)2

(Δ𝐿𝐿𝑈𝑈𝑈𝑈′ )2
(Δ𝜆𝜆𝑈𝑈𝑈𝑈)2         when          𝐿𝐿𝑆𝑆 ≠ 𝐿𝐿𝑈𝑈 Eq 513 
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9.4.3 Solution of the Direct Problem 

The Direct problem of geodesy is defined in Section 1.2.2 and its solution for great circle 
navigation is given in Section 4.3. Here the known quantities are: the latitude/longitude, (𝐿𝐿𝑈𝑈, 𝜆𝜆𝑈𝑈), 
of the starting point U; the distance, D, between U and S; and the azimuth angle at U, 𝜓𝜓𝑆𝑆/𝑈𝑈, of 
the trajectory connecting U and S. The quantities to be found are the latitude/longitude (𝐿𝐿𝑆𝑆, 𝜆𝜆𝑆𝑆), 
of the end point S. 

From Eq 509 it follows that  

𝐿𝐿𝑆𝑆 = 𝐿𝐿𝑈𝑈 +
𝐷𝐷
𝑅𝑅𝑒𝑒

cos(𝜓𝜓𝑆𝑆/𝑈𝑈) Eq 514 

There does not appear to be a solution for 𝜆𝜆𝑆𝑆 that does not, at least implicitly, utilize the solution 
for 𝐿𝐿𝑆𝑆 and then 𝐿𝐿𝑆𝑆′ . One option is to manipulate Eq 506 to obtain 

𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈 + (𝐿𝐿𝑆𝑆′ − 𝐿𝐿𝑈𝑈′ ) tan�𝜓𝜓𝑆𝑆/𝑈𝑈�         when          �𝜓𝜓𝑆𝑆/𝑈𝑈� ≠
1
2𝜋𝜋 Eq 515 

Alternative expressions for 𝜆𝜆𝑆𝑆 can be derived from Eq 512 and Eq 513   

𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈 +
𝐷𝐷(𝐿𝐿𝑆𝑆′ − 𝐿𝐿𝑈𝑈′ )
𝑅𝑅𝑒𝑒 (𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈) sin�𝜓𝜓𝑆𝑆/𝑈𝑈�

= 𝜆𝜆𝑈𝑈 +
𝐿𝐿𝑆𝑆′ − 𝐿𝐿𝑈𝑈′

𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈
��

𝐷𝐷
𝑅𝑅𝑒𝑒
�
2

− (𝐿𝐿𝑆𝑆 − 𝐿𝐿𝑈𝑈)2       when        �𝜓𝜓𝑆𝑆/𝑈𝑈� ≠
1
2𝜋𝜋 

Eq 516 

When �𝜓𝜓𝑆𝑆/𝑈𝑈� = 1
2𝜋𝜋, then 

𝜆𝜆𝑆𝑆 = 𝜆𝜆𝑈𝑈 + sgn�𝜓𝜓𝑆𝑆/𝑈𝑈�
 𝐷𝐷

𝑅𝑅𝑒𝑒  cos(𝐿𝐿𝑈𝑈)          when          �𝜓𝜓𝑆𝑆/𝑈𝑈� = 1
2𝜋𝜋 Eq 517 

Finally, 𝜓𝜓𝑈𝑈/𝑆𝑆 is found from Eq 508. 

9.4.4 Remarks 

There are many alternative expressions to Eq 507 for the stretched latitude, all of which can be 
derived by elementary manipulations. Examples include (Ref. 69): 

𝐿𝐿′ =
1
2
 log �

1 + sin(𝐿𝐿)
1 − sin(𝐿𝐿)

� = log �
1 + sin(𝐿𝐿)

cos(𝐿𝐿)
� = log(sec(𝐿𝐿) + tan(𝐿𝐿))

= tanh−1(sin(𝐿𝐿)) = sinh−1(tan(𝐿𝐿)) = cosh−1(sec(𝐿𝐿)) 
Eq 518 

The Mercator map projection is essentially a plot using linear Cartesian coordinates with 𝜆𝜆 as the 
abscissa and 𝐿𝐿′ as the ordinate.  
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9.5 NLLS Solution with a Measurement Constraint 

9.5.1 Problem Formulation 

This section revisits the topic of Section 8.1 — finding a solution to a set of redundant measure-
ments. Here, an additional complication is introduced: there is a constraint on the unknown 
variables, often because it reflects a measurement that’s considered to be error-free (or ‘perfect’). 
It’s assumed that the unconstrained measurement equations of Eq 350 - Eq 354 are applicable.  

𝐳𝐳� = 𝐟𝐟(𝐱𝐱) + 𝐯𝐯            dim(𝐱𝐱) ≤ dim(𝐳𝐳�) Eq 519 

For concreteness, it can be assumed that the  navigation variables are 𝐱𝐱 = [𝐿𝐿𝐴𝐴  𝜆𝜆𝐴𝐴  ℎ𝐴𝐴  𝑡𝑡𝑋𝑋]𝑇𝑇, but 
other sets of unknowns are possible. Vector 𝐯𝐯 represents errors in the unconstrained 
measurements. 

It’s assumed that the constraint (or additional, error-free measurement) is 

𝑦𝑦 = 𝑔𝑔(𝐱𝐱) Eq 520 

A set of nominal values for the unknown variables 𝐱𝐱 are assumed to be known. Thus 𝐟𝐟(𝐱𝐱) and 
𝑔𝑔(𝐱𝐱) can be linearlized about 𝐱𝐱 by setting 𝐱𝐱 = 𝐱𝐱 + 𝛅𝛅𝛅𝛅. Then, to first order 

𝛅𝛅𝛅𝛅 = 𝐳𝐳� − 𝐟𝐟(𝐱𝐱) = J  𝛅𝛅𝛅𝛅 + 𝐯𝐯  𝛿𝛿𝛿𝛿 = 𝑦𝑦 − 𝑔𝑔(𝐱𝐱) = (∇𝑔𝑔)𝑇𝑇   𝛅𝛅𝛅𝛅  Eq 521 

Here, the Jacobian matrix J is given by Eq 356 and the gradient vector ∇𝑔𝑔 by 

(∇𝑔𝑔)𝑇𝑇 = � 𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

⋯�  Eq 522 

The cost function to be minimized is 

min
𝛅𝛅𝛅𝛅,𝜇𝜇

C =   (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝛅𝛅)𝑇𝑇  W (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝛅𝛅) + 2𝜇𝜇(𝛿𝛿𝛿𝛿 − (∇𝑔𝑔)𝑇𝑇   𝛅𝛅𝛅𝛅) Eq 523 

In Eq 523, 𝜇𝜇 is a Largrange multiplier.  

9.5.2 Problem Solution 

General Solution — Taking the derivative of the right-hand side of Eq 523 with respect to 𝛅𝛅𝛅𝛅, 
and setting the result equal to zero yields 

𝛅𝛅𝐱𝐱� = �JT  W  J �
−1
 J𝑇𝑇 W  𝛅𝛅𝛅𝛅 + 𝜇𝜇 ∇𝑔𝑔 = 𝛅𝛅𝐱𝐱� + 𝜇𝜇 ∇𝑔𝑔  Eq 524 

Here, 𝛅𝛅𝐱𝐱� = �JT  W  J �
−1
 J𝑇𝑇 W  𝛅𝛅𝛅𝛅 is the unconstrained general estimator (Eq 360).  

Multiplying both sides of Eq 524 by (∇𝑔𝑔)𝑇𝑇 and utilizing 𝛿𝛿𝛿𝛿 = (∇𝑔𝑔)𝑇𝑇   𝛅𝛅𝛅𝛅 yields 
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𝜇𝜇 =
𝛿𝛿𝛿𝛿 − (∇𝑔𝑔)𝑇𝑇�JT  W  J �

−1
 J𝑇𝑇 W  𝛅𝛅𝛅𝛅

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
=
𝛿𝛿𝛿𝛿 − (∇𝑔𝑔)𝑇𝑇𝛅𝛅𝐱𝐱�

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
 Eq 525 

Substituting Eq 525 into Eq 524 yields 

𝛅𝛅𝐱𝐱� =  �𝐈𝐈 −
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� 𝛅𝛅𝐱𝐱� +

𝛿𝛿𝛿𝛿
(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔

 ∇𝑔𝑔 Eq 526 

Clearly Eq 526 satisfies (∇𝑔𝑔)𝑇𝑇   𝛅𝛅𝐱𝐱� = 𝛿𝛿𝛿𝛿. The estimator of Eq 526 the sum of (a) the projection of 
the unconstrained estimator 𝛅𝛅𝐱𝐱� onto the subspace of the unknown variables 𝐱𝐱 that’s orthogonal 
to the gradient ∇𝑔𝑔, and (b) a Newton-Raphson-type of solution to the constraint equation.  

Optimal Solution — The optimal solution is found by setting W=R−1 in Eq 524 and Eq 525, or 
by using Eq 361 to compute the unconstrained estimator 𝛅𝛅𝐱𝐱� in Eq 526.  

Newton-Type Solution — When J is square, the expressions for 𝜇𝜇 (right-hand side of Eq 525) 
and 𝛅𝛅𝐱𝐱� (Eq 526) in terms of 𝛅𝛅𝐱𝐱� remain valid. The expression for 𝛅𝛅𝐱𝐱� is given by Eq 362. 

Iterative Process — Using Eq 524 and Eq 525 or Eq 526, the updated values for the unknown 
variables are 

𝐱𝐱�  =  𝐱𝐱 + 𝛅𝛅𝐱𝐱� Eq 527 

After completing an iteration step (say, k), the process below is repeated for step k+1: 
1. Compute the nominal values for the unknown variables from the updated values in the 

previous step k — i.e., set 𝐱𝐱 = 𝐱𝐱k+1 = 𝐱𝐱�𝑘𝑘. For first step, the value for 𝐱𝐱0 must be obtained 
by other means. 

2. Evaluate the measurement residuals 𝛅𝛅𝛅𝛅 and 𝛿𝛿𝛿𝛿 using 𝐱𝐱 (Eq 521) 

3. Optional: Evaluate 𝛿𝛿𝛿𝛿 for satisfaction of the constraint 

4. Optional: Examine the components of 𝛅𝛅𝛅𝛅 for the presence of outliers  

5. Optional: Compute the updated cost function C (Eq 523) 

6. Compute the Jacobian matrix J (Eq 356) and gradient vector ∇𝑔𝑔 (Eq 522) 

7. Compute the unconstrained perturbation vector estimate 𝛅𝛅𝐱𝐱� = 𝛅𝛅𝐱𝐱�𝑘𝑘+1 (Eq 360, Eq 361 or 
Eq 362) 

8. Compute the Lagrange multiplier 𝜇𝜇 (right-most expression in Eq 525) 

9. Compute the constrained perturbation estimate 𝛅𝛅𝐱𝐱� (right-most expression in Eq 524)  

10. Compute the updated estimate of the variables sought 𝐱𝐱� = 𝐱𝐱�k+1 (Eq 527) 

A convergence check is performed at the beginning or end of each iteration step. At a minimum, 
this involves comparing the updated value of each element of 𝐱𝐱�k+1 with its previous estimate 𝐱𝐱�k, 
and comparing the value of 𝑔𝑔(𝐱𝐱�k+1) with the constraint 𝑦𝑦.   
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9.5.3 Solution Properties 

Final Lagrange Multiplier — If/when convergence occurs, then the final Lagrange multiplier is 
(for the general case) 

𝜇𝜇 = −
(∇𝑔𝑔)𝑇𝑇 �JT  W  J �

−1
 J𝑇𝑇 W  𝛅𝛅𝛅𝛅

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
= −

(∇𝑔𝑔)𝑇𝑇𝛅𝛅𝐱𝐱�
(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔

 Eq 528 

Thus the final Lagrange multiplier is the negative of the ratio of (a) the projection of the 
unconstrained estimator onto the gradient to the error-free measurement to (b) the square of the 
magnitude of the gradient.  

Estimation Error — If the left-hand side of Eq 521 is substituted into Eq 526, the result is 

𝛅𝛅𝐱𝐱� = �𝐈𝐈 −
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� 𝛅𝛅𝛅𝛅 + �𝐈𝐈 −

∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� �JT  W  J �

−1
 J𝑇𝑇 W  𝐯𝐯 +

𝛿𝛿𝛿𝛿
(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔

 ∇𝑔𝑔 Eq 529 

Thus, when convergence has occurred and 𝛿𝛿𝛿𝛿 = 0, the residual error in 𝛅𝛅𝐱𝐱� is the component of 
𝛅𝛅𝛅𝛅 that’s orthogonal to the constraint gradient due to the associated measurement error. 

General Estimator Error Covariance — Assume that the first and second moments of the 
measurement error 𝐯𝐯  are given by 

𝐸𝐸 (𝐯𝐯)  = 𝟎𝟎             𝐸𝐸( 𝐯𝐯  𝐯𝐯𝑇𝑇)  = R  Eq 530 

Then, from Eq 529, the covariance of the error for the general estimator is 

𝚺𝚺 = 𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇  

= �𝐈𝐈 −
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� �JT  WJ �

−1
JT  W R W J�JT  WJ �

−1
�𝐈𝐈 −

∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� Eq 531 

Optimal Estimator Error Covariance — If W= R−1 then Eq 531 reduces to a modified 
version of the error covariance for the optimal estimator (Eq 366) 

𝚺𝚺 = 𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝐱𝐱)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇  = �𝐈𝐈 −
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� �JT  R−1J �

−1
�𝐈𝐈 −

∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� Eq 532 

For both expressions, the estimation error in the direction of the gradient is zero,  

(∇𝑔𝑔)𝑇𝑇  𝚺𝚺   ∇𝑔𝑔 = 0 Eq 533 

Newton Estimator Error Covariance — From Eq 529, the covariance of the error for the 
Newton estimator is 

𝚺𝚺 = 𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇  = �𝐈𝐈 −
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� J-1  R  J-T �𝐈𝐈 −

∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� Eq 534 
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Eq 533 also holds for this expression for  𝚺𝚺. 

Imperfect Perfect Measurement — While the measurement processing may assume that 𝑦𝑦 =
𝑔𝑔(𝐱𝐱) without error (Eq 520), this may in fact not be true. Thus, assume that what is actually true 
is 

𝑦𝑦� = 𝑦𝑦 + 𝑣𝑣𝑦𝑦 = 𝑔𝑔(𝐱𝐱) + 𝑣𝑣𝑦𝑦 

𝐸𝐸�𝑣𝑣𝑦𝑦� = 0                 𝐸𝐸�𝑣𝑣𝑦𝑦�
2

= 𝜎𝜎𝑦𝑦2                 𝐸𝐸�𝑣𝑣𝑦𝑦𝐯𝐯� = 𝟎𝟎 
Eq 535 

In this situation, the constraint measurement residual actually is 

𝛿𝛿𝛿𝛿 = 𝑦𝑦� − 𝑔𝑔(𝐱𝐱) = (∇𝑔𝑔)𝑇𝑇   𝛅𝛅𝛅𝛅 + 𝑣𝑣𝑦𝑦 Eq 536 

Thus, when 𝛿𝛿𝛿𝛿 = 0, 𝛅𝛅𝛅𝛅 satisfies (∇𝑔𝑔)𝑇𝑇   𝛅𝛅𝛅𝛅 = −𝑣𝑣𝑦𝑦. Then, from Eq 525, the final value for 𝜇𝜇 is 

𝜇𝜇 =
𝑣𝑣𝑦𝑦 − (∇𝑔𝑔)𝑇𝑇�JT  W  J �

−1
 J𝑇𝑇 W 𝐯𝐯

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
 Eq 537 

If this expression is substituted into Eq 524, the result is 

𝛅𝛅𝐱𝐱� = �𝐈𝐈 −
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� 𝛅𝛅𝛅𝛅 + �𝐈𝐈 −

∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔
� �JT  W  J �

−1
 J𝑇𝑇 W  𝐯𝐯 +

𝑣𝑣𝑦𝑦
(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔

∇𝑔𝑔  Eq 538 

Then the foregoing expressions for  𝚺𝚺 can be modified to account for the imperfect ‘perfect’ 
measurement as follows 

𝐸𝐸 (𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)(𝛅𝛅𝐱𝐱� − 𝛅𝛅𝛅𝛅)𝑇𝑇 = 𝚺𝚺  +
∇𝑔𝑔  (∇𝑔𝑔)𝑇𝑇

[(∇𝑔𝑔)𝑇𝑇  ∇𝑔𝑔]2 𝜎𝜎𝑦𝑦
2 Eq 539 

Here, 𝚺𝚺 is given by Eq 531, Eq 532 or Eq 534. 

Approximation Fidelity — In forming the residuals 𝛅𝛅𝛅𝛅 and 𝛿𝛿𝛿𝛿 in Eq 521, the most accurate 
information available is used for functions 𝐟𝐟 and 𝑔𝑔. However, approximations can be used in 
forming their derivatives in Jacobian matrix J and gradient vector ∇𝑔𝑔.  

Multiple Constraints — When there are multiple constraints — say 𝑦𝑦𝑖𝑖 = 𝑔𝑔𝑖𝑖(𝐱𝐱), 𝑖𝑖 = 1,2, … — 
then the cost function of Eq 523 becomes   

min
𝛅𝛅𝛅𝛅,𝜇𝜇

C =   (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝛅𝛅)𝑇𝑇  W (𝛅𝛅𝛅𝛅 − J 𝛅𝛅𝛅𝛅) + 2�𝜇𝜇𝑖𝑖(𝛿𝛿𝑦𝑦𝑖𝑖 − (∇𝑔𝑔𝑖𝑖)𝑇𝑇   𝛅𝛅𝛅𝛅)
𝑖𝑖

 Eq 540 

The solution then proceeds along the same lines as above. 
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