Assessing Wildlife **Responses to Highway Wildlife Crossing Designs**

Patricia Cramer, PhD

TRB 2018 Learning from Natural Experiments: Evidence Based Decisions

Thank You to Research Sponsors

Overview

- Wildlife, Roads, Vehicles Addressing Safety and Ecological Issues
 - The Problem Safety, Wildlife Deaths, and Habitat Fragmentation
 - Why Research was Needed
 - Study Design, Methods
 - Findings and the Value of Results
- What Was Learned About the Process of Researching Wildlife Along Transportation Corridors

New Approaches to Wildlife Movements and Roads Information and Lessons Learned

Wildlife, Roads, Vehicles – Addressing Safety and Ecological Issues

The Problem

Motorists at Risk of Collision

Animals Killed

Habitat Fragmentation

Animals Avoid Road Areas

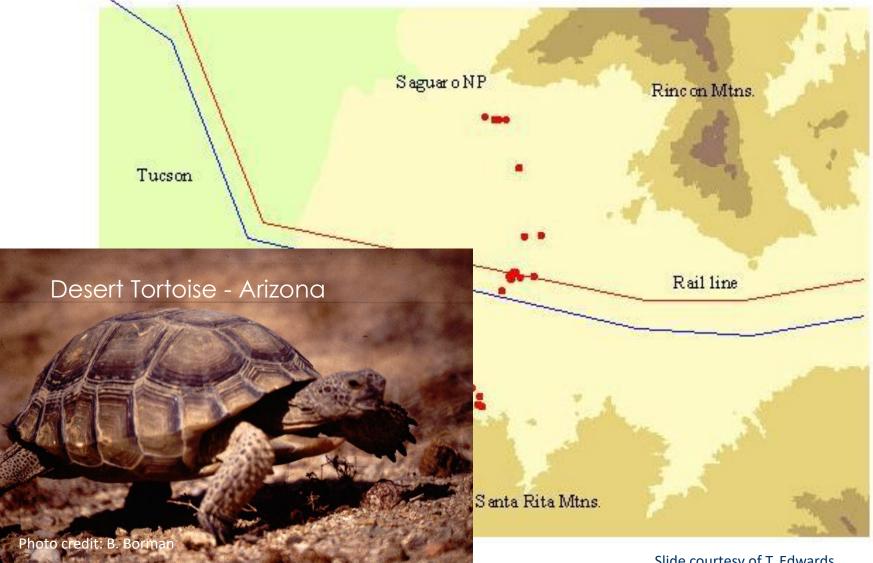
Ecological Effects – De-icing Salts, Air pollution, Sound Pollution Decreased Connectivity

Record Dispersal Movement by South Dakota, Puma

2,897 kilometers

Wildlife Need to Leave Home – Especially Large Carnivores

Map: Path of Connecticut Puma

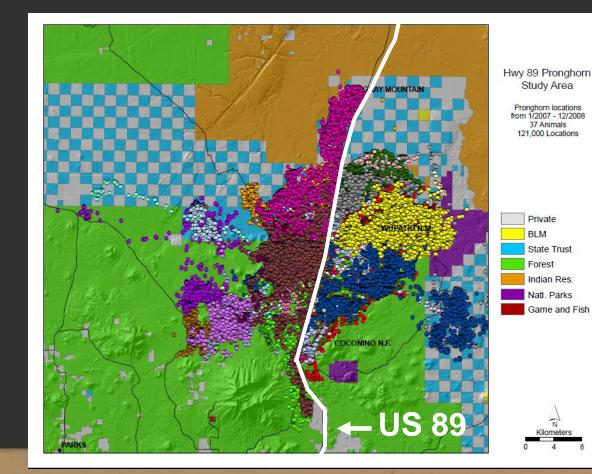


Black Hills, SD Breeding Population North Dakots Notraska Notr

1st Confirmed Sighting – 12/11/09

1,800 Miles from Black Hills, SD Breeding Population to Connecticut

Thelma's Amazing Journey over 30 km each way out and back


Slide courtesy of T. Edwards

Roads & Vehicles Don't Just Kill Wildlife – They Also Form Barriers

We also look at who is prevented from crossing roads

Slide Courtesy of Jeff Gagnon AZGFD

Human Side

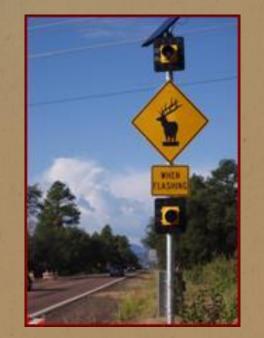
Otter - Florida

Wildlife Side

Transportation Planning

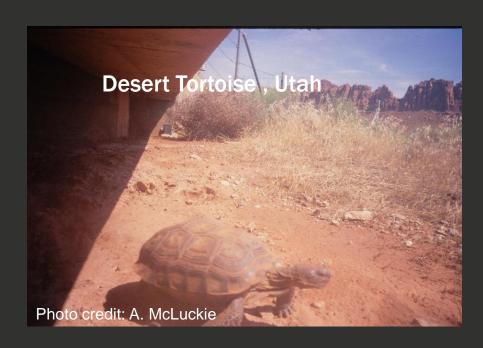
DRAFT Statewide Transportation Improvement Program Fiscal Years 2017 – 2020

March 2016


COLORADO Department of Transportation

Driver Solutions

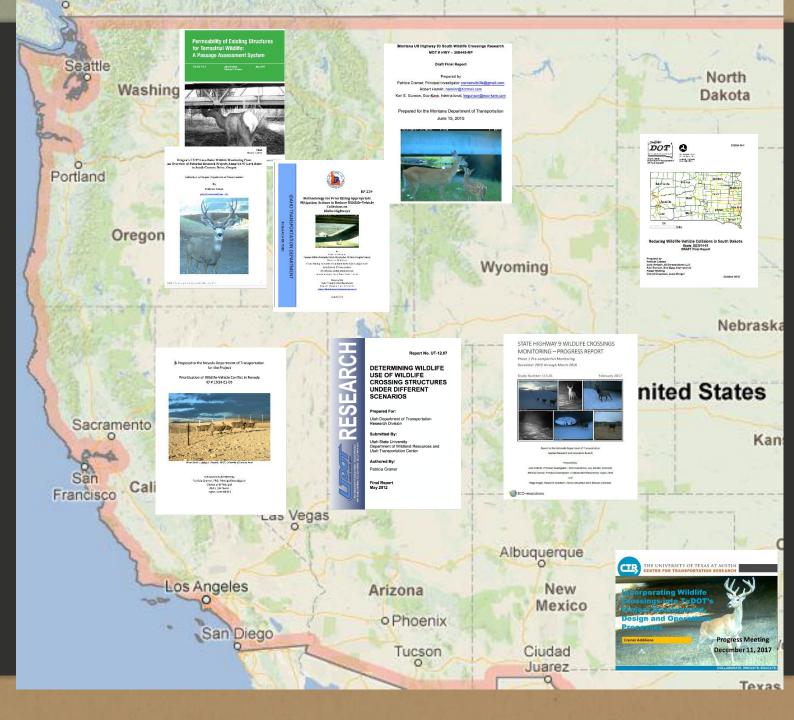
Addressing Human Responses



Wildlife Solutions

Mule Deer on Overpass, Colorado

Connie Marcy, Feb 2016


Wildlife, Roads, Vehicles – Addressing Safety and Ecological Issues

Why Research was Needed

Research Projects

Wildlife Use of Structures

Include Wildlife in Transportation Planning

Wildlife, Roads, Vehicles – Addressing Safety and Ecological Issues

Study Design, Research Methods

2014-08-17 17:48:03 M 2/5

Evaluation of Wildlife Crossing Structures on US 93 in Montana's Bitterroot Valley

EVALUATION OF WILDLIFE CROSSING STRUCTURES ON US 93 IN MONTANA'S BITTERROOT VALLEY

FHWA/MT-17-003/8194

0

94°F

Final Report

prepared for THE STATE OF MONTANA DEPARTMENT OF TRANSPORTATION

in cooperation with THE U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

January 2017

prepared by Patricia Cramer Robert Hamlin

MDTX

Patricia Cramer Robert Hamlin

1. White-tailed deer use of wildlife crossing structures and wildlife crossing sites;

2. White-tailed deer usage rates of wildlife crossing structures including height, width, length, and material;

3. Relationships between usage rates of wildlife crossing structures and landscape variables;

Study Area Bass Creek North MP 71 Bass Creek South MP 70

To Missoula

Hamilton

Victor

Corvalits

Stevensville

Bitterroot Mountains Bass Creek North MP 71
Bass Creek South MP 70
Bass Creek Fishing Access MP 70
Dawns Crossing MP 70

Kootenai Creek MP 66
McCalla Creek North MP 66
McCalla Creek South MP 65
Kootenai Springs Ranch MP 65
Indian Prairie Loop MP 63

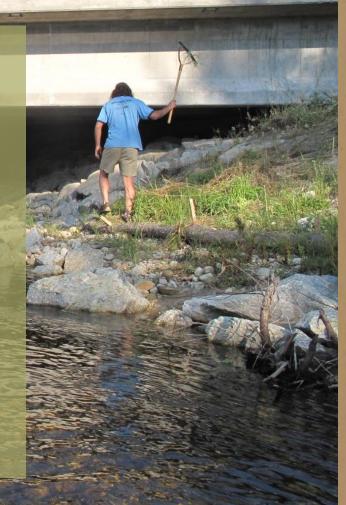
Big Creek MP 61 / Bell Crossing Control Axmen Propane MP 61 Sweathouse Creek MP 60 Bear Creek North MP 58

Bear Creek South MP 57 Lupine MP 56 Mountain Gallery MP 56 Fun Park MP 55 Mill Creek MP 55

Sapphire Mountains

Blodgett Creek MP 50

Methods


19 Structures, 2 Cameras Each Structure Right-of-way Cameras

Pre-Construction Cameras

WVC – Crash and Carcasses

Success Rates Movement-per day

Statistics ANOVA, Linear Regression, Mixed

White-Tailed Deer Use of Structures

Methods - Camera Placement

Pre-Construction Monitoring Original Bridges, Habitat, ROW on 93 and CR 370

Control Cameras ROW on CR 370

Post-Construction Monitoring 19 Structures

Camera Monitoring

Wildlife, Roads, Vehicles – Addressing Safety and Ecological Issues

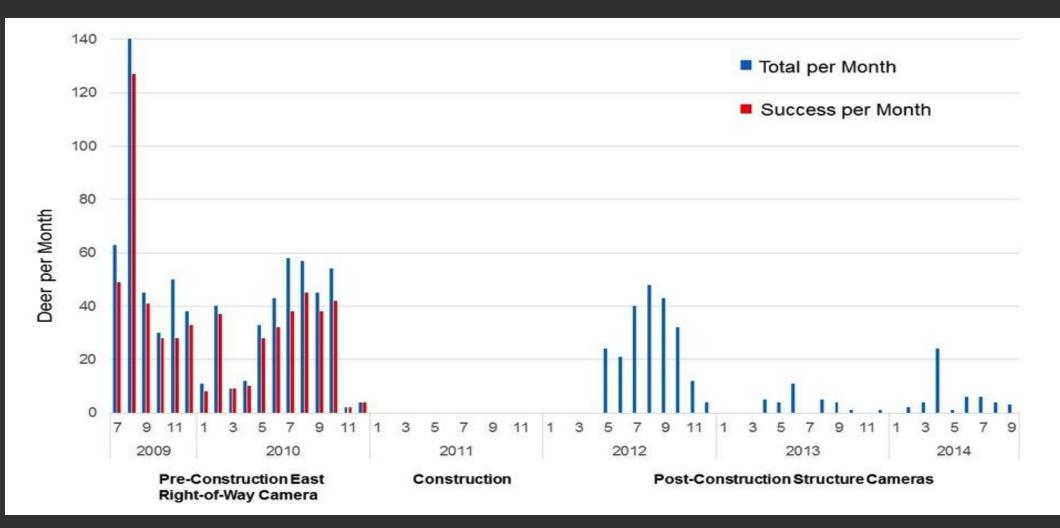
Findings – and the Value of Results

Results – Creating Performance Measures

Pre-construction ROW cameras recorded white-tailed deer With a 64 % success rate for moving over US 93 , repellency = 8% With a 63% success rate for moving over CR 370, repellency = 5%

These values became the performance measures with which we evaluated the subsequent wildlife crossing structures.

Minimum success rate = 60% Repellency rate 10% or less.


Top 9 Most Successful Wildlife Crossing Structures based on white-tailed deer success rate

Wildlife Crossing Structure	Success	Repel- lency	Parallel	Total Movements	Success Rate (%)		Rate of Repel- lency (%)	Parallel Rate (%)
Dawns Crossing Bridge	5204	65	94	5363	97		1	2
Bass Creek Fishing Access Culvert	3257	118	21	3396	96		3	1
Bear Creek South Bridge	2554	30	113	2697	95		1	4
Sweathouse Creek Bridge	2419	61	102	2582	94		2	4
Blodgett Creek Bridge	1037	25	36	1098	94		3	3
Kootenai Creek Bridge	2470	150	97	2717	91		5	4
Big Creek Bridge	2769	237	317	3323	83		7	10
McCalla Creek North Bridge	2058	142	265	2465	83	Γ	6	11
Mill Creek Bridge	1036	117	283	1436	72		8	20

Results – High Performing, Bear Creek South Bridge

Results - No Use, Fun Park Culvert

Study Found: Bridges and Large Culverts work best for White-tailed Deer

Dimensions: Width most important

Results - Relationships Between Usage Rates and Explanatory Variables <u>Explanatory Variables</u>

<u>Usage Rates</u>

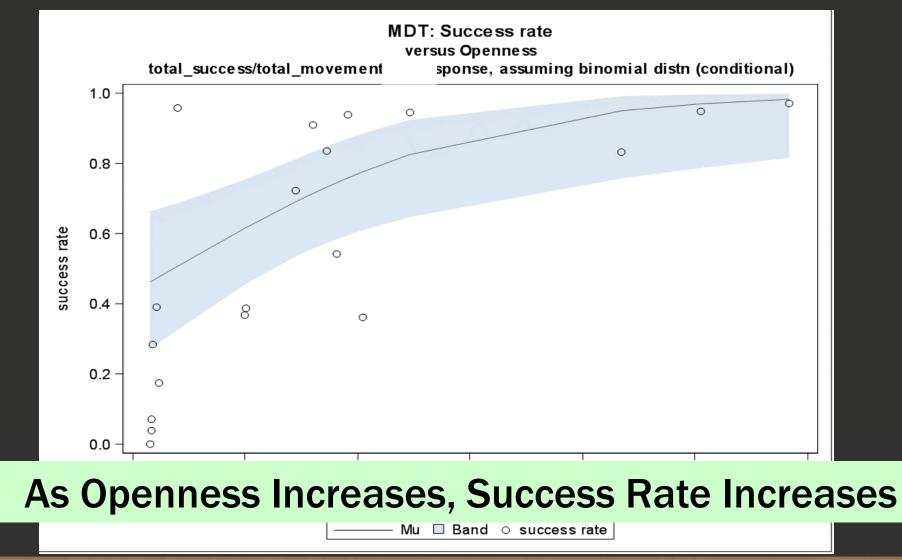
Success Rate Rate of Repellency Parallel Rate Success per Camera day Structure Type **Structure Height** Structure Width **Structure Length Structure Openness** Fence, Guardrail, Humans, Grass, Forbs, Shrubs, Trees, Bare Ground, Water, Fecal Pellets

Results and Methods

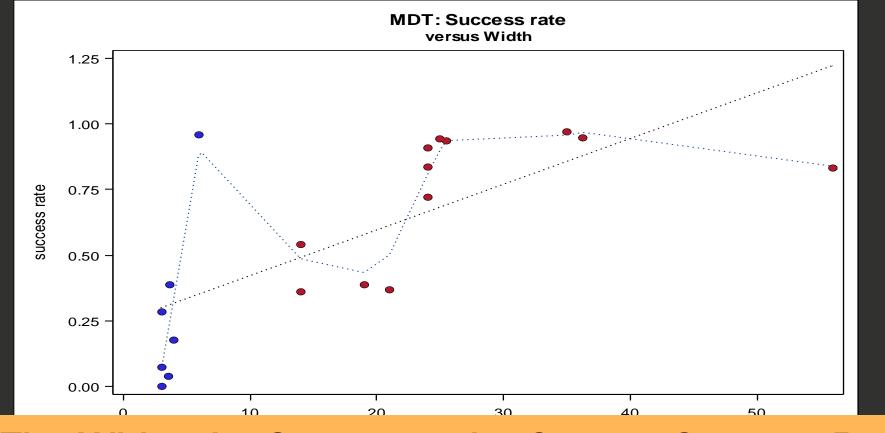
Generalized Linear Models were Used to Analyze Relationships

- Generalized Mix Linear Model with a binomial response for rates related to structure types
- One Way ANOVA was used for success per camera day
- Linear Regression for success rate and explanatory variables
- Two-sample test used for bridges vs culverts and explanatory variables

	Success per	Success Rate	Rate of	Parallel Rate	Type of
	Day	Success Rate	Repellency		Structure
Type of	p = 0.08	p = 0.005	p = 0.19	p = 0.01	
Structure	B: 0.92	B: 81%	1	B: 12%	
B: bridge	C: 0.23	C: 16%		C: 57%	
C: culvert					
Height	p = 0.70	p = 0.20	p = 0.01	p = 0.28	p = 0.26
			Slope = -0.56		
Width	p = 0.0008	p = 0.01	p = 0.10	p = 0.006	p < 0.001
(Slope = 0.03	Slope = 0.08	Slope = -0.02	Slope =	B: 26.8
			0.05	-0.09	C: 3.8
Length	p = 0.09	p = 0.04	p = 0.25	p = 0.03	p < 0.001
	Slope =	Slope = -0.06		Slope = 0.06	B: 26.0
0	-0.02	0.000	0.000		C: 52.0
Openness	p = 0.0007	p = 0.009	p = 0.009	p = 0.009	p < 0.001
	Slope = 0.24	Slope = 0.74	slope= -0.28	Slope = -0.86	B: 2.5
Fence	p = 0.45	p = 0.63	p = 0.98	p = 0.59	c: 0.2 p = 0.56
генсе	p - 0.43	p = 0.03	p = 0.98	p=0.39	p = 0.50
Guard rail	p = 0.21	p = 0.04	p = 0.02	p = 0.04	
0	P 0.21	1	Slope = -0.004	Slope = -0.004	V I
Humans per	p = 0.54	p = 0.80	p = 0.63	p = 0.84	p = 0.10
day	T	1	1	1	B: 0.15
					C: 0.06
Grass	p = 0.37	p = 0.81	p = 0.39	p = 0.68	p = 0.74
Forbs	p = 0.15	p = 0.90	p = 0.95	p = 0.89	p = 0.21
	0.21	0.10	0.04	0.12	0.52
Shrubs	p = 0.21	p = 0.10	p = 0.04	p = 0.12	p = 0.53
Traca	n = 0.00	slope= 0.13	Slope = -0.07	n = 0.24	n = 0.62
Trees	p = 0.99	p = 0.23	p = 0.38	p = 0.24	p = 0.62

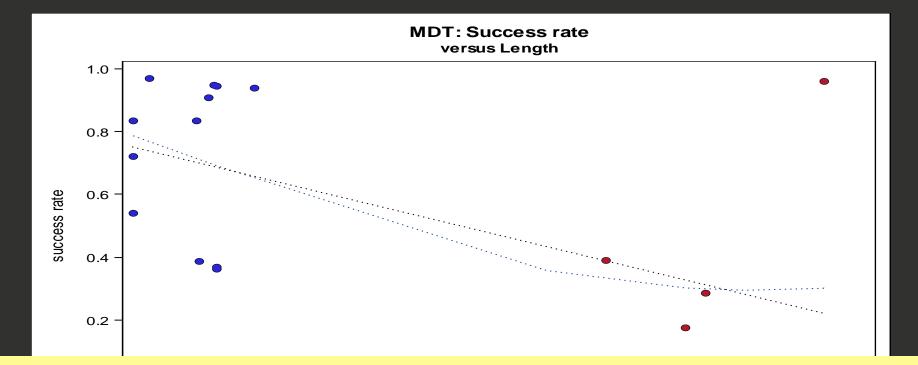

Statistical <u>Test Results</u>

Chapter 3


Green Boxes Show Strong Evidence of Relationship

Light Green Boxes Show Uncertain Evidence

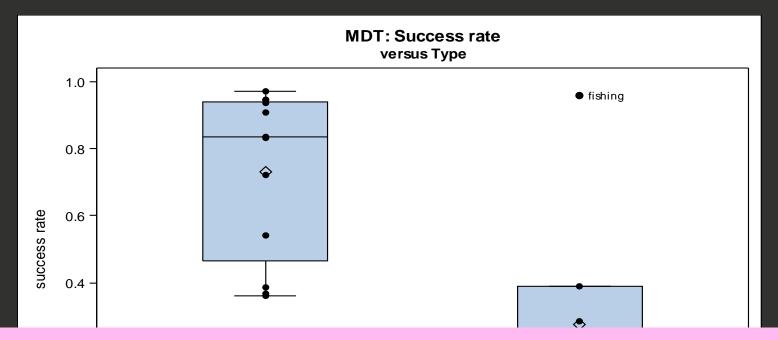
White-Tailed Deer Success Rate with Openness



White-Tailed Deer Success Rate Compared with Structure Width

The Wider the Structure, the Greater Success Rate

White-Tailed Deer Success Rate Compared with Length of Structure



The Longer the Structure, the Lower The Success Rate

length

type • bridge • culvert

White-Tailed Deer Success Rate with Bridges & Culverts

P-value-0.005 Extremely strong relationship that bridges have higher success rates than culverts, except for Largest Culvert -Bridges Worked Better Than Culverts for White-Tailed Deer

□ success rate • success rate

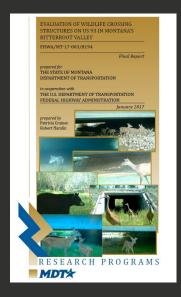
Recommendations

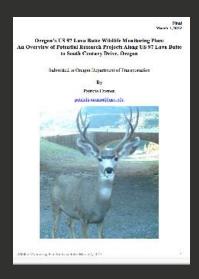
Wildlife crossing structures should be designed with high openness ratios. High openness ratios are easier to achieve with bridges than with culverts.

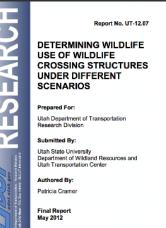
Length should be minimized Width (span) should be maximized and Height should be maximized

These studies help design the most cost effective structures

What Was Learned About the Process of Researching Wildlife Along Transportation Corridors


New Approaches to Wildlife Movements and Roads


The Study helped establish


- That pre-construction monitoring is important to strength of science and recommendations
- Performance measures can be created with control and pre-construction monitoring
- Document pre-condition variables

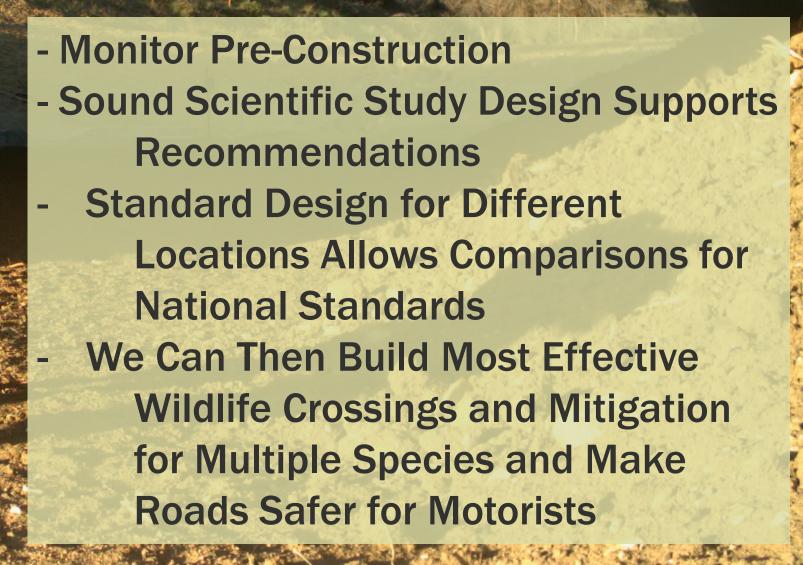
What Was Learned About the Process of **Researching Wildlife Along Transportation** Corridors

Consistent strong scientific methods allow comparisons and application across states

STATE HIGHWAY 9 WILDLIFE CROSSINGS MONITORING - PROGRESS REPORT Phase 1 Pre-completion Monitoring December 2015 through March 2016

Applied Research and Innovation Branch Julia Kintsch, Principal Investigator - DCD-resolutions, U.C, Golden, Colorado stricis Cramer, Principal Investigator - Independent Researcher, Logan, Utah and Palas Singer, I rch Assistant - Rocky Mountain Wild, Denver, Colora

ECO-resolutions


Montana

Oregon

Utah

Overall Lessons

Never doubt that a small group of thoughtful committed individuals can change the world. Indeed that is the only thing that ever has.

Margaret Mead

© P. Cramer, UDOT, UDWR, USU