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A machine learning framework has been developed to predict volume swell for 10 non-metallic materials sub-
merged in neat compounds. The non-metallic materials included nitrile rubber, extracted nitrile rubber, fluor-
osilicone, low temp fluorocarbon, lightweight polysulfide, polythioether, epoxy (0.2 mm), epoxy (0.04 mm), 
nylon, and Kapton. Volume swell, a material compatibility concern, serves as a significant impediment for the 
minimization of the greenhouse gas emissions of aviation. Sustainable aviation fuels, the only near and mid-term 
solution to mitigating greenhouse gas emissions, are limited to low blend limits with conventional fuel due to 
material compatibility issues (i.e. O-ring swell). A neural network was trained to predict volume swell for non-
metallic materials submerged in neat compounds. Subsequent blend optimization incorporated nitrile rubber 
volume swell predictions for iso- and cycloalkanes to create a high-performance jet fuel within ‘drop-in’ limits. 

The results of this study are volume swell predictions for 3 of the 10 materials -nitrile rubber, extracted nitrile 
rubber, and polythioether- with holdout errors of 12.4% or better relative to mean volume swell values. 
Optimization considering nitrile rubber volume swell achieved median specific energy [MJ/kg] and energy 
density [MJ/L] increases of 1.9% and 5.1% relative to conventional jet fuel and an average volume swell of 6.2% 
v/v which is within the range of conventional fuels. Optimized solutions were heavily biased toward mono-
cycloalkanes, indicating that they are a suitable replacement for aromatics. This study concludes that cy-
cloalkanes can replace aromatics in jet fuel considering volume swell and other operability requirements while 
significantly reducing soot and particulate matter emissions. 

1. Introduction global anthropogenic CO2 emissions at ~2% [1], air travel is expected 
to double by the year 2037 [2], with associated particulate matter (PM) 

Although aviation currently contributes a relatively small percent of and radiative forcing (RF) emissions nearly doubling the current 
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Fig. 1. Operability and safety constraints that need to be met for SAF approval 
(autumn colormap) and opportunities to improve the value and performance of 
a SAF (green colormap). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

climate impact of aviation transportation. This growth, combined with 
terrestrial electrification and recent International Maritime Organiza-
tion (IMO) regulations [3], could make aviation transportation account 
for a significant fraction of total anthropogenic carbon emissions. 

Sustainable aviation fuel (SAF) is the only near and mid-term op-
portunity for the minimization of aviation greenhouse gas emissions. 
Currently, SAF adaption is limited by both the approval of novel fuels 
and the cost of currently approved fuels. Fig. 1 illustrates operability 
and safety constraints that need to be met for a novel SAF to be ap-
proved in the autumn colormap. Opportunities to improve the value 
and performance of a SAF are illuminated in the green colormap. Of the 
five SAFs currently approved, four are limited to a max blend ratio of 
50% with conventional jet fuel due to material compatibility issues 
(i.e., O-ring swell) [4]. Specifically, aircraft have been found to leak 
significant quantities of fuel over the timescale of hours when volume 
swell is not sufficient [5]. 

Aromatics provide the majority of volume swell character to con-
ventional jet fuel but are generally undesirable due to their low specific 
energy (SE) and tendency to form soot. Prior work [6] has illuminated a 
novel path for the approval of SAFs beyond 50% materials compat-
ibility. This study indicated that blends of 30% cycloalkanes in syn-
thetic paraffinic kerosene (SPK) exhibit volume swell properties similar 
to conventional jet fuel despite the lack of aromatic content, as can be 
seen in Fig. 2. The dashed lines in the figure represent the lower volume 
swell limits of 12 conventional fuels. Many cycloalkanes are close to or 
exceed the lower limits, indicating that they can confer similar volume 
swell to a low-aromatic Jet A. It is expected that higher concentrations 
of cycloalkanes would confer further volume swell benefits as can be 
seen in Fig. 8. Moreover, these cycloalkane compounds have been 
found to increase the value of SAFs via aircraft operation improvements 
by increasing the fuel energy content [7]. 

Here, it is proposed that cycloalkanes be used in SAFs to (1) over-
come the blend limit of SAFs, (2) minimize PM and RF of aviation 
emissions, and (3) add to the value proposition of SAFs. A machine 
learning framework has been developed to achieve equivalent volume 
swell by replacing aromatics with cycloalkanes. Volume swell was first 
predicted for 10 non-metallic materials submerged in neat compounds 
via a neural network. Volume swell predictions for nitrile rubber were 
subsequently implemented into the optimization of high-performance 
fuels (HPFs) via ant colony optimization. The result was a HPF, which 
represents a subset of SAFs that improves the performance of aircraft 
while remaining within ‘drop-in’ limits. This optimization illuminates a 
path for maximizing the value of SAFs by minimizing PM emissions, 
maximizing energy content, meeting previously reported SAF oper-
ability and safety constraints, and satisfying novel swell requirements. 

Fig. 2. Volume swell of four O-ring materials in cycloalkanes blended at 30% v/ 
v with zero-aromatic SPK. Dashed lines represent conventional jet fuel lower 
limits, which many cycloalkanes exceed. 

Combined, these results will guide current and ongoing research and 
development efforts of HPFs towards eclipsing the cost-benefit 
threshold of SAFs. 

To date, volume swell predictions remain fairly scarce in literature. 
They generally fall into two categories: statistical approaches, such as 
that of Graham et al. [8], and ab initio calculations to determine fuel-
polymer interaction energies [9–11]. Graham et al. developed a method 
of statistically comparing the swell behavior of alternative jet fuels 
(AJFs) to a reference set of JP-8 fuels. Specifically, the overlap in the 
volume swell 90% prediction intervals between the AJFs and the JP-8s 
served as an indicator of the compatibility between the fuels. This work 
extends that done by Graham et al. to neat compounds and allows for 
the determination of explicit volume swell values which can be used for 
HPF optimization, surrogate generation, and AJF prescreening. 

2. Material and methods 

2.1. Material 

Volume swell measurements used for this work consist of a single 
set of optical dilatometry measurements from literature [6]. Volume 
swell was measured for 10 non-metallic materials submerged in com-
pounds from seven groups. The non-metallic materials, which are all 
common in commercial aircraft fuel systems, included nitrile rubber, 
extracted nitrile rubber, fluorosilicone, low temp fluorocarbon, light-
weight polysulfide, polythioether, epoxy (0.2 mm), epoxy (0.04 mm), 
nylon, and Kapton. Each material had volume swell measurements for 
one iso-alkane, 10 monocycloalkanes, one dicycloalkane, six alkyl-
aromatics, one diaromatic, three cycloaromatics, and one diamondoid, 
with a total of 230 observations. The materials were submerged in an 
aromatic-free SPK blended with neat compounds to examine the effect 
of the compounds on volume swell. 

2.2. Methods 

Fig. 3 depicts the methodology used to train a neural network to 
predict volume swell for neat compounds. The volume swell data was 
split into training (blue) and test (green) frames. Principal component 
analysis (PCA) was performed on the training frame, and the resulting 
principal components (PCs) were used to train the neural network. 
10 k-fold cross-validation was used to validate the neural network. 
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Fig. 3. Flowchart for neural network training. 

After the neural network was generated, the PCA model was applied to 
the test frame and volume swell predictions were made to provide 
holdout validation. 

The prediction frame (orange) consisted of 24 iso- and cycloalkanes 
that did not have volume swell data in literature but were of interest for 
HPF optimization. The PCA model was applied to this frame and vo-
lume swell was predicted via the neural network. Compounds that met 
feature importance screening criteria were subsequently incorporated 
into HPF optimization, which can be seen in Fig. 4. Neat compound 
properties used for HPF optimization can be seen in the Supplementary 
Material. 

2.2.1. Data preprocessing 
Volume swell data for blends of SPK and neat compounds was lin-

early extrapolated to a concentration of 100% to estimate the volume 
swell of the neat compounds. This was done to provide a common basis 
to compare volume swell observations with varying ratios of SPK and 
neat compounds. The assumption for extrapolation was that volume 
swell would be consistent with the hydrocarbon concentration within 
the blending limits provided in literature (i.e. 30% v/v) [6]. 

Previous work [6] determined that molar volume was the primary 
factor influencing volume swell in the cycloalkanes, with lower molar 
volume resulting in higher volume swell due to increased ease of ab-
sorption of smaller compounds into non-metallic materials. Additional 
selectivity occurred for some non-metallic materials, including nitrile 
rubber, polysulfide, and polythioether, due to variations in compound 
structure such as substitution position and ring size. It follows that 
molar volume, compound structure, and non-metallic material served 
as training features for the neural network. 

Compound structure descriptors used to train the neural network 
were generated using RDKIT [12], an open-source Python toolkit for 
cheminformatics. A total of 27 features were used for model training, 

Fig. 4. Flowchart for HPF optimization. 

Table 1 
Distribution of select features used to train the neural network. 

Feature Min Value Median Max Standard 
Value Value Deviation 

Molar volume, mL/mol 108.7 140.0 275.9 37.2 
–CH3 (linear) 0 1 5 1.3 
–CH2– (linear) 0 0 7 2.0 
>CH– (linear) 0 0 3 0.6 
–CH2– (cycloalkane 0 4 12 3.6 

ring) 
>CH– (cycloalkane 0 0 4 1.2 

ring) 
=CH– (aromatic ring) 0 0 8 2.4 
=C < (aromatic ring) 0 0 3 1.1 

with the distribution of select features shown in Table 1. The entirety of 
the training features, including material type and additional compound 
structure, can be seen in the Supplementary Material. Features with 
fewer than 10% distinct values were deemed redundant and removed. 
The data was split into training and test frames by randomly down-
selecting four compounds from each material, resulting in a 83/17% 
split. 

2.2.2. Principal component analysis 
Principal component analysis was used to reduce the dimensionality 

of the training data and to weaken correlations between features. PCA 
involves combining potentially correlated features into linearly un-
correlated variables called principal components. The PCA model was 
generated using the open-source machine learning platform H2O Flow 
[13]. Data was standardized prior to performing PCA to avoid biasing 
features with large magnitudes. The GramSVD PCA method was used, 
which computes a Gramian matrix with the data and subsequently 
performs singular value decomposition using the Java Matrix package 
[14]. The result is a matrix containing the eigenvectors associated with 
each PC. 

2.2.3. Neural network training 
The training frame was used to develop a neural network in H2O 

Flow with auto machine learning (AutoML) used to optimize hy-
perparameters. 22 of the 27 principal components were used to train 
the model, encompassing 100% of the variance in the training frame. A 
preset grid of neural networks were trained and scored, followed by 
random generation of neural networks that proceeded to train for five 
hours. During AutoML, weights were initialized by the uniform adap-
tive methodology [15], which optimizes initial weights based on the 
size of the network. An adaptive learning rate was facilitated via the 
AdaDelta algorithm [16]. Backpropagation was performed for cross-
validation models followed by stochastic gradient descent until the 
mean residual deviance of cross-validated predictions did not improve. 
Neural network feature importances were calculated via the Gedeon 
method [17], which considers the magnitude of the weights in the first 
two hidden layers associated with each feature. 

2.2.4. Principal component screening 
Compounds in the prediction frame were screened via neural net-

work feature importances before coupling their predicted volume swell 
values into HPF optimization. The rationale for this screening is that 
neural networks cannot extrapolate outside the range of training fea-
tures due to their black box nature [18]. Maximum and minimum va-
lues for each PC in the training frame bounded the screening. PCs were 
ordered by feature importance and a threshold of 90% cumulative 
feature importance was used. Compounds in the prediction frame that 
had PCs out of range before eclipsing the threshold were not used for 
HPF optimization. 
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Table 2 
Neural network prediction metrics for select materials. 

Material Mean Extrapolated Neat Volume Swell, %v/v Train MAE, % v/v Validate MAE, % v/v Test MAE, % v/v 

Extracted Nitrile Rubber 50.5 3.9 8.8 5.3 
Nitrile Rubber 28.2 2.0 3.8 3.5 
Fluorosilicone 14.1 1.3 11.7 7.4 
Low Temp Flurocarbon 4.5 0.6 3.0 0.9 
Lightweight Polysulfide 10.7 0.8 4.3 2.5 
Polythioether 24.7 1.1 7.2 2.9 

Fig. 5. Neural network train, validate, and test predictions plotted against ex-
trapolated neat volume swell. 

2.2.5. High-Performance Fuel (HPF) optimization 
HPF optimization done in this study leveraged code from previous 

efforts [7,19]. The general approach was to use blending rules from 
literature coupled with ant colony optimization to maximize perfor-
mance and value-added properties -SE and energy density (ED)- for 
blends of compounds in the jet range while remaining within oper-
ability and safety limits, see Fig. 1. Operability and safety limits are 
required to ensure novel fuels have no associated deleterious risks. 
Some examples are viscosity, which is important for fuel flow, and 
derived cetane number (DCN), which is important for lean blowout 
stability [20]. A total of eight operability and safety properties served as 
constraints for optimization: volume swell, DCN, density, kinematic 
viscosity at −20 °C, flash point, freezing point, 10% recovered tem-
perature, and final boiling point. The result of optimization was a 
Pareto front indicating the best performance properties achievable via 
blends of compounds without violating operability limits. 

Nitrile rubber volume swell values were used for optimization be-
cause of the commonality of nitrile rubber in commercial aircraft fuel 
systems and the low MAE achieved for neural network predictions as 
depicted in Table 2. The optimization started with 1000 random initial 
guesses that met operability limits. The totality of these solutions un-
derwent an initial optimization run, with subsequent optimization re-
visions guided by 2σ convergence criteria for ΔSE and ΔED across the 
Pareto front. Solutions that fell outside the 2σ range underwent further 
optimization for 10 consecutive revision rounds, with σ here being the 
physical uncertainty associated with the neat compound SE and ED 
values used for optimization. 

3. Calculation 

Volume swell was predicted for blends of cycloalkanes and iso-al-
kanes under the assumption that their interaction effects would be 
sufficiently weak due to their lack of hydrogen bonding and low po-
larity. It follows that volume swell should vary linearly with the con-
centration of iso- and cycloalkanes within the blending limits provided 
in literature. This assumption may not hold for aromatics because they 

exhibit weak dipole-dipole interactions and hydrogen bonding which 
can affect compound solubility and shift equilibrium concentrations, 
resulting in unpredictable blending behavior. Assuming a linear cor-
relation between volume swell and the concentration of iso- and cy-
cloalkanes allowed for the creation of a blending rule: 

swellblend = Σ(swelli × φi) (1) 

where φi represents the volume fraction of compound i. This blending 
rule was coupled into the optimization framework as a constraint. 

4. Results and discussion 

The result of AutoML hyperparameter optimization and subsequent 
parameter tuning was a deep learning neural network consisting of two 
hidden layers with 500 neurons each. Rectifier activation was used for 
the hidden layers with a hidden dropout ratio of 0.4 for regularization. 
Mean learning rates were 0.143, 0.333, and 0.005 for hidden and 
output layers respectively. An average value of 720 epochs, taken from 
all 10 cross-validation models, was used for the main model. 

4.1. Neural network predictions 

Fig. 5 shows predictions from the train, validation, and test frames, 
with prediction metrics for select materials displayed in Table 2. Pre-
diction metrics for all material groups can be seen in the Supplementary 
Material. The model predicts the training frame well with an R-squared 
of 0.99 and a mean absolute error (MAE) of 1.2% v/v. Cross-validated 
predictions have a R-squared and MAE of 0.87 and 4.5% v/v respec-
tively, suggesting that a degree of overfitting is occurring. Naphthalene 
was a significant outlier that affected the validation prediction metrics. 
This is likely because naphthalene exhibits the highest degree of hy-
drogen bonding of compounds in the training frame, which was not a 
feature used to train the neural network. With the exception of naph-
thalene, compounds with high volume swell values had low relative 
prediction errors. 

Prediction metrics for test predictions are intermediate to training 
and validation prediction metrics, with an R-squared and MAE of 0.96 
and 2.5% v/v respectively. Because the test frame was not seen by the 
model during training, it is likely a better indicator of its general-
izability. It is possible that models trained with only 90% of the training 
frame for 10 k-fold cross-validation resulted in reduced model perfor-
mance and overestimation of the prediction error for the validation 
frame. Regardless, the worst-case MAE of 4.5% v/v is suitable for en-
gineering calculations, especially for materials with higher mean vo-
lume swell such as nitrile rubber and polythioether. 

Material prediction metrics are generally in agreement with ob-
servations from literature [6]. The most accurate predictions - nitrile 
rubber, extracted nitrile rubber, lightweight polysulfide, and poly-
thioether- likely had low error because they exhibit selectivity based on 
compound structure. Specifically, volume swell showed a decreasing 
trend with substitution length for these materials. Additionally, 1,2-
dimethylcyclohexane was the preferred substitution pattern for these 
materials with the exception of lightweight polysulfide. Fluorosilicone, 
which swelled significantly when submerged in the cycloalkanes and 
followed the trend previously described with substitution length, had 
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low prediction accuracy. This is possibly because fluorosilicone did not 
follow the trend of 1,2-dimethylcyclohexane being the preferred sub-
stitution pattern. Low temp fluorocarbon had poor accuracy, possibly 
because it was weakly responsive when submerged in the cycloalkanes 
and only slightly followed the trend with substitution length. The 
epoxies, nylon, and Kapton had poor prediction metrics because they 
were unresponsive in the presence of cycloalkanes. 

4.2. Principal component screening 

A total of 24 compounds comprising the prediction frame were 
screened, consisting of C7-C18 iso-alkanes, C8-C17 monocycloalkanes, 
and C11-C14 dicycloalkanes, with predicted volume swell values and 
cumulative importances for compounds displayed in the Supplementary 
Material. Of the 24 compounds screened, only four -cis-1,2-di-
methylcyclooctane, pentylcyclohexane, hexylcyclohexane, and sec-bu-
tyldecalin- met the 90% feature importance threshold. No iso-alkanes 
met the screening criteria, likely because farnesane was the only iso-
alkane used to train the model. Lighter iso-alkanes generally fell out at 
PC21, while heavier iso-alkanes fell out at PC22. Both PCs are asso-
ciated with cycloalkane and aromatic ring descriptors, indicating that 
training the model on a diverse set of compound groups inhibits pre-
dictions for some compound groups because it necessitates the creation 
of irrelevant features. Many mono- and dicycloalkanes, such as decyl-
and undecylcyclohexane, were also outside the range of PC22 because 
of their high molar volumes. 

4.3. HPF optimization (value and performance) 

Fig. 6 shows the SE vs. ED Pareto front consisting of 7196 solutions 
representing optimized blends of 10 compounds. The red hexagons 
represent conventional jet fuels, which serve as the origin for the plot. 
Symbols with colored outlines represent compounds found in conven-
tional jet fuel, with the gray fill indicating compounds that were used 
for optimization. Compounds with the blue fill were not used because 
volume swell data was not available or because they are not desirable in 
the case of aromatics. The blue line represents the ‘best-case’ conven-
tional fuels, which are fuels from the Petroleum Quality Information 
System [21] with the highest energy values. The dark blue shaded re-
gion to the right of the “best-case” conventional fuels line has been 
deemed the HPF region. This region is bound by the straight blue lines 
which represent density limits. Any fuel that falls within the HPF region 
and meets operability limits is considered a HPF. 

Median SE and ED values across the Pareto front are 43.9 MJ/kg 
and 36.3 MJ/L respectively, representing 1.9% and 5.1% gains relative 
to an average conventional jet fuel [22]. The Pareto front is fairly 

Fig. 6. SE plotted against ED with the HPF Pareto front representing blends of 
iso- and cycloalkanes meeting nitrile rubber volume swell requirements in ad-
dition to other operability limits. 
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Fig. 7. Composition and compound structure of solutions across the HPF Pareto 
front. 

constrained relative to previous optimization efforts which spanned the 
majority of the density region. The Pareto front is limited on the right 
because it cannot achieve a higher SE than the set of compounds used 
for optimization. Specifically, the highest SE was that of cis-1,2-di-
methylcyclooctane and farnesane at 43.95 MJ/kg. The Pareto front is 
constrained on the left because it violates the upper density limit. The 
Pareto front does not appear to reach the upper density limit in Fig. 6 
because reproducibility uncertainty is incorporated into the optimiza-
tion constraints to provide a factor of safety. 

4.4. HPF optimization (composition and compound structure) 

Composition and compound structure for solutions across the Pareto 
front can be seen in Fig. 7, with blue lines representing mean blend 
values. Solutions consisted primarily of monocycloalkanes because of 
their high SE, advantageous volume swell, and position within the 
density range. Monocycloalkanes were blended with either dicy-
cloalkanes or farnesane, with a critical point existing at 43.91 MJ/kg. 
Despite its low volume swell, farnesane appeared in solutions toward 
the right of the Pareto front because of its high SE. If more iso-alkanes 
were used for optimization, such as those represented by squares in 
Fig. 6, it is likely that they would be used to increase the SE of solutions. 
Amongst dicycloalkanes, cis-decalin was favored, likely because of its 
low freezing point and higher DCN than trans-decalin. Amongst 
monocycloalkanes, cis-1,2-dimethylcyclooctane was favored despite 
having a high viscosity and low DCN because of its high SE and ED. 

The H/C ratio and molecular weight of dicycloalkanes increased as 
higher SE solutions were attained, indicating higher concentrations of 
sec-butyldecalin in favor of unsubstituted decalins. The decrease in 
substituent length of monocycloalkanes starting at 43.91 MJ/kg can be 
attributed to increasing concentrations of light monocycloalkanes as the 
optimization algorithm tried to pull the Pareto front toward lower ED 
solutions. 
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Fig. 8. Operability and safety properties of solutions across the HPF Pareto 
front. 

4.5. HPF optimization (operability and safety) 

Operability and safety properties of solutions across the Pareto front 
can be seen in Fig. 8, with dashed lines representing operability limits. 
Volume swell did not serve to constrain optimization, with the lowest 
volume swell solutions occurring where the concentration of farnesane 
was the highest. The minimum volume swell value was 5.5%, well 
above the 3.7% v/v lower limit for nitrile rubber. It is likely that if more 
iso-alkanes were used for optimization, volume swell would serve as a 
limiting factor as higher SE solutions were achieved. The high volume 
swell of solutions attests to the favorable volume swell characteristics of 
cycloalkanes. DCN remained consistent across the Pareto front, with a 
standard deviation of 0.008. Compounds with low DCN values, such as 
methylcyclohexane and trans-decalin, were generally avoided. 

Density served to bound the left of the Pareto front, hindering the 
addition of additional dicycloalkanes. It scaled with volume swell, de-
creasing linearly as dicycloalkanes were removed and as farnesane was 
added. Viscosity varied little with a standard deviation of 0.005 cSt. 
Viscosity remained close to its upper limit, indicating that it was a 
difficult constraint to achieve. This is likely because of the high visc-
osity of cis-1,2-dimethylcycooctane, which was favored across solu-
tions. Viscosity fluctuation increased in magnitude as dicycloalkanes 
were added, likely because of increased sensitivity to composition as 
high viscosity compounds were added. 

Flash point remained well above its limit of 38 °C. Volume swell and 
flash point are in competition with one another because volume swell 
has an inverse relationship with molar volume while flash point has a 
direct relationship with molar volume. If lighter iso-alkanes were used 
to increase SE, it is likely that the flash point of solutions would de-
crease. Freezing point decreased between 43.90 and 43.91 MJ/kg due 
to the addition of light monocycloalkanes and increased as farnesane 
was added from 43.91 to 43.93 MJ/kg. Outside this range, freezing 
point served as a limiting constraint for the optimization. 

The 10% recovered temperature remained well below its limit, in-
creasing as sec-butyldecalin and subsequently farnesane were added. 
The final boiling point also remained well below its limit, following a 
stepwise pattern because it was determined by the highest boiling point 
compound in the solution. Compounds that determined final boiling 
points across the Pareto front were sec-butyldecalin, heptylcyclohexane, 
and farnesane from left to right. High boiling points could serve as an 

impediment to the use of large iso- and cycloalkanes. 

5. Conclusion 

A framework has been developed to predict volume swell of non-
metallic materials submerged in neat compounds. Subsequent optimi-
zation was performed to identify blends of compounds that maximize 
energy while remaining within ‘drop-in’ limits and meeting novel swell 
requirements. Volume swell predictions for 3 materials -nitrile rubber, 
extracted nitrile rubber, and polythioether- had sufficient accuracies for 
first-order optimization. Optimized blends achieved an average nitrile 
rubber volume swell of 6.2% v/v, well within the 3.7–17.4% v/v range 
of conventional jet fuels. Additionally, median SE and ED gains of 1.9% 
and 5.1% were reached, which can increase the payload and range of 
flights in addition to reducing the volume of fuel required. 

This study indicates that cycloalkanes are a suitable replacement for 
aromatics considering volume swell requirements. The emissions re-
duction from replacing aromatics with cycloalkanes would be sig-
nificant: cycloalkanes produce 88% less soot on average compared to 
aromatics [23]. It is estimated that direct radiative forcing from avia-
tion-related soot emissions is 9.5 mW/m2 [24], approximately 12% of 
the total RF associated with aviation [25]. It follows that the replace-
ment of aromatics with cycloalkanes could reduce RF associated with 
aviation by roughly 10.6%. 

Taking additional optical dilatometry measurements to increase the 
isomeric variance of the compounds used to train the neural network 
can improve model accuracy and expand the range of predictions that 
can be made, in addition to validating Eq. (1) used for optimization. In 
general, specific neural network models for each compound group and 
material are preferable because they eliminate unnecessary features 
such as ring descriptors for iso-alkanes and material descriptors, the 
latter of which accounted for 10 of 27 features used for model training 
in this work. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.fuel.2020.117832. 
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