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Congestion Reduction Through Efficient Empty Container 
Movement Under Stochastic Demand 

EXECUTIVE SUMMARY 

In today’s world, there is a significant amount of investigation regarding how to efficiently 
distribute loaded containers from the ports to the consignees. However, to fully maximize the 
process and become more environmentally friendly, one should also study how to allocate the 
empty containers created by these consignees. This is an essential part in the study of container 
movement since it balances out the load flow at each location.  

The problem of coordinating the container movement to reuse empty containers and lower 
truck miles is called the “Empty Container Problem”. In this work, we develop a scheduling 
assignment for loaded and empty containers that builds on earlier models but incorporates 
stochastic (random) future demand. It is worth mentioning that in the previous research [5], 
the empty container problem was divided into two subproblems, including an assignment 
problem and a vehicle routing problem (VRP).  

The previous research only considered the problem as a one-day horizon. But in reality, the 
container movements are not only to fulfill today’s demand at each location but also prepare 
for the next day’s delivery. Thus, incorporating future demand is an essential aspect of the 
problem.  

By considering the future demand, a better solution can be constructed compared to solving 
the problem as a one-day horizon problem. This report shows that the truck miles needed to 
satisfy the demand at all locations is reduced by about 4-7% when considering future stochastic 
demand as opposed to only considering today’s demand, thus, leading to a cleaner and greener 
solution, creating less congestion and lowering the impact of freight movement on the 
environment. 
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1. Introduction 

1.1 Background 

The increasing of international economic activities has caused rapid growth in international 
transportation of commodities. Compared with 2012, in 2013, the total volume of global 
containerized trade increased from 153 million to 160 million Twenty-foot Equivalent Units 
(TEU); and the Ports of Los Angeles and Long Beach, as the largest US marine terminals, had a 
0.2 million TEUs increment in 2015 from 2014 [1]. In the United States, 1.5 trillion dollars were 
spent on goods transportation and services in 2017 [2]. A large portion of the international 
products is shipped by sea because of the low transportation cost and reliability. In 2018, there 
are approximately 9 million TEUs shipped in the Port of Los Angeles, which is 20 percent more 
than in 2010 [3]. 

Currently, there is a container size difference between the cargo ship and the United States 
convention. The cargo ships usually carry 20- and 40-foot containers, while the United States 
mainly uses 52-foot containers. To repack these containers into the corresponding sized 
container, the warehouses near the Ports of Los Angeles and Long Beach are built to satisfy the 
requirement. These repacking locations are called transloading stations. 

As the port is playing an increasingly more important role in cargo transportation, it also raises 
the traffic congestion and environmental pollution problems near the port area. A large portion 
of the trailers are carrying empty containers. A large number of empty containers are 
generated due to the severe trade imbalance. Figure 1 indicates that there is an increasing 
trend of trade imbalance in the next few years at the San Pedro Ports [4]. Additionally, taking 
the Port of Los Angeles as an example, the data shows that in May 2019, about 28% of the 0.83 
million TEU were empty containers [3], indicating a significant amount of unnecessary empty 
container movement. With a modest assumption of 3% annual growth, in 2045, there will be 
nearly 30 million TEUs traffic volume near the Ports of Los Angeles and Long Beach which is 
double its current volume. About 75% of the containers are carried by trucks for at least one 
segment of their trip. Most containerized traffic is using the I-110, I-710, and SR47/SR freeways 
as the primary transportation corridors, which exacerbates traffic congestion in the Los Angeles 
area. 

Presently, there is almost no container exchange between inland locations at the Ports of Los 
Angeles and Long Beach, only about 2% of the empty containers are reused. Specifically, the 
current situation mostly has movements of loaded containers from exporters to the port, or 
from the port to the importers, while the reverse movements see mostly empty containers. If 
the reuse rate could be increased to 5%, there would be an annual 350 thousand truck trips 
saving or an average of 953 trips daily [4]. In this study, we propose a model that allows a 
“street exchange” which means empty containers can go directly from the importers to the 
exporters without returning to the port. In this way, redundant empty container movement can 
be reduced so that the traffic situation could be relieved.  
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Figure 1. San Pedro Bay Container Trade Imbalance [4] 

Unlike land freight that has the uncertainty in size and amount, sea transportation has 
standardized cargo with a relatively predictable schedule. The ship arrival and dispatch records 
can provide information about the demand and supply for the container movement for the 
next day, though some delay may happen because of the weather or uncertainty in port 
operations. For example, if ships are arriving in three consecutive days, the next day there 
would likely be a ship dispatching. Instead of focusing on just one day’s container assignment 
and vehicle routing problem, the stochastic demand requires researchers to consider 
consecutive days and each day’s final state is the initial state of the next day.  

At the beginning of the day, it is reasonable to know if a container will become available for 
pickup and drop off. Thus, transloading stations around the Ports of Los Angeles and Long 
Beach make demand requests one day at a time. At this point, trucking companies can make 
their daily schedule to fulfill such requests for that day. However, it is possible to study past 
data to derive predictions of what tomorrow’s demand could be based on different scenarios, 
such as a ship arriving or not. This information is unexploited if not incorporated to today’s 
movement of containers. Specifically, this information can be used to position the containers at 
the end of the day to be better equipped to handle tomorrow’s stochastic demand. 

Container movement is limited by the carrier capacity. Nowadays, multiple-trailer trucks (also 
called Road Train) are employed in many countries such as Argentina, Australia, Mexico, the 
United States, and Canada, to move freight efficiently. Particularly, in the United States, trucks 
on public roads are allowed to connect at most two trailers with one dolly connection. The 
availability of multiple-trailer trucks adds research potential to the empty container 
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transportation problem. A truck with multiple trailers, which are loaded or empty, can meet the 
demands of customers for goods and containers in a single operation at a lower cost and time 
consumption. Therefore, we could employ multiple-trailer trucks to our vehicle routing 
framework to construct a more intelligent truck routing algorithm to reuse empty containers, 
whereby reducing total truck movements in the road network.  

1.2 Motivation 

The problem with street exchanges is known as the “Empty Container Reuse Problem”. This 
study builds on the earlier work of Dessouky and Carvajal [5] which only considered today’s 
demand in developing the container reuse plan by considering future days in demand. As 
previously mentioned, double container trailers are used worldwide, such as Mexico, Canada, 
China, etc. However, the double container trailers are prohibited in the Ports of Los Angeles 
and Long Beach. This study shows the importance and possible benefits of using double 
container trailers in the operation of the port which can reduce the container truck miles and 
redundant empty container movement. 

Focusing only on a single day does not optimize the system since it does not consider future 
demand. However, future demand is not known and depends on several factors, like whether a 
ship is arriving at the port on a given day. Therefore, most models only incorporate today’s 
demand and optimize one day at a time. Future demand can be assumed to follow some 
underlying probability distribution. We can learn something about this distribution by studying 
past data. This information can be used in a stochastic optimization model that minimizes the 
expected cost under several possible operating scenarios such as normal, ship arrival, ship 
departure, etc. More specifically how today’s scheduling affects tomorrow’s scheduling is not 
that only unfulfilled demand must be met tomorrow, but the system’s state at the end of today, 
will be the system’s state at the beginning of the day tomorrow. Moreover, since the demand is 
stochastic, we propose a Markov Chain to predict the demand in the future. By classifying the 
scenarios of the port based on the cargo ship schedule, it is possible to find out the transitional 
probabilities from the historical data. After finding the transitional probabilities, we are able to 
model the problem by optimizing a container reuse problem over two days that allows us to 
account for the uncertain future demand. To take advantage of the knowledge of future 
demand, we use a solution approach for vehicle routing that meets today’s demand, and 
incorporates tomorrow’s stochastic demand. The approach is to have a model that can be 
solved at the beginning of the day and yield a feasible daily schedule for that day that considers 
customer time windows and the availability of containers. The schedule will also take into 
account tomorrow’s stochastic demand, such that today’s container movement is done in such 
a way to better handle tomorrow’s stochastic demand. The model will then be solved again 
tomorrow, yielding tomorrow’s container schedule movement, and taking into account the 
demand of the next day as well. This process is repeated until the planning horizon is reached. 
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1.3 Problem Description 

In this study, we assume today’s container demand at each location is deterministic at the 
beginning of the day and tomorrow’s demand is stochastic. For each port scenario, the 
transitional probabilities from one state to another is known. In this way, the model is able to 
optimize the system over the long run. We consider two days in one run since, at the end of the 
today, the container allocation is the offset of the next day. The decision variables correspond 
to the number of containers sent from location i to j at time t.  

The following figures show the current and proposed single container truck movement with 
empty or full containers (Figure 2 and Figure 3). In Figure 2, the current container movements 
are inefficient because a truck moves back and forth between the port and an 
exporter/importer. There is no street exchange in this scenario. Figure 3 shows the proposed 
single container flow with street exchanges so that an empty container can be shipped directly 
from an importer to an exporter. In order to extend the number of possible routes between the 
transloading stations, we proposed to use double container trailers in the model. Figure 4 
indicates the container flow with double container trailers with the assumption that a double 
container truck has to drop off both loads before another pickup. At the same time, depots 
need to be considered in the model to make street exchanges easier to occur. Thus, all the 
locations in the network include importers, exporters, depots, and the port. For each location 
except the port, it has a demand for either loaded containers or empty containers; and it also 
yields empty or loaded containers or both. For example, an exporter has the demand for empty 
containers and can turn the empty container into loaded containers that can satisfy the port’s 
demand. Because of the assumption we made, the possible supply-demand pairs are 
constrained in our model. For example, importers can only receive the truck from the port, etc.  

As shown in Figure 4, there are three types of double container trailers, including the one with 
two empty containers (dash line), the one with two loads (solid line), and the one with one 
empty and one loaded container (dash line with dots). For example, the dashed-dotted line can 
only start from the port since only the port yields both empty and loaded containers. Clearly, 
the using of double container trailers increases the possible truck routes compared to the other 
two systems, though there are limits in the pickup and drop off. One major strength of the 
model is that as long as an OD pair is determined, the container operation is also calculated; 
and the second container delivery route is limited in Figure 3. For example, a truck with both an 
empty container and a loaded container arrives at an exporter; it can only drop off the empty 
container at the location and then go to an importer.  
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Figure 2. Current container flow 

 

Figure 3. Proposed single container flow 

 

Figure 4. Proposed double container flow 
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In order to track the number of containers at each location, we introduce two groups of new 
variables. The first group of variables is used to keep track of the number of containers received 
at each location at a certain period. The second group of variables is used to record the number 
of containers dispatched at each location at a certain period. Similar to the previous study [5], 
the problem is solved by dividing the problem into the assignment problem and the VRP 
problem. First, we solve the problem as a container allocation assignment problem with time 
discretization. At this state, we assume the truck resources are unlimited since the port area 
has a sufficiently large number of trailers. Then, we create vehicle routes to find out the 
minimum number of trucks that can satisfy our assignment problem to reduce the total number 
of trucks in the system, which can reduce the traffic congestion in the port area.  

1.4 Structure of the Report 

The rest of this report is organized as follows. In Section 2, a literature review of relevant 
problems is presented. Section 3 presents the incorporation of the future stochastic demand to 
the container assignment problem. Section 4 presents an algorithm to build truck routes based 
on the container assignments found in Section 3. In Section 5, experimental results of our 
approach for randomly generated data sets and data that is representative of the Ports of Los 
Angeles and Long Beach are presented. In Section 6, we discuss the implementation and 
applicability of our work. Finally, in Section 7, some conclusions are drawn.  
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2. Literature Review 

There has been some prior research on the Empty Container Reuse Problem due to the fact 
that container repositioning has become increasingly more expensive over the years. 
Historically, the problem has been subdivided into two sub-problems. The first problem focuses 
on empty container reuse in inland destinations. The second sub-problem focuses on the 
movement of containers that are near the port areas, usually no more than 20 miles from the 
port. It is this second problem that is the focus of this research. 

In the literature, most people point to the paper by Dejax and Crainic [6] as the one that first 
identified the problem that empty containers were not being properly routed and empty 
container movement should be incorporated into container movement planning. In this paper, 
they describe how loaded and empty containers need to be managed together to fully optimize 
the container movement process. They proposed successive research with new ideas such as 
adding a depot center and integrating empty and loaded container movements at an industry 
level. They wrote several papers afterward developing different models for different situations 
and assumptions. For example, Crainic et al. [7] added the fact that maritime demand was 
stochastic and thus developed an integer model for stochastic demand, with a time window. 
The model was too complex for solving, but their objective was to present formulations for the 
problem and introduce the “Empty Container Problem” to the literature. 

Later on, researchers started developing models and actually solving them for reasonably sized 
problems. Among these, Shen and Khoong [8] studied the problem from the perspective of a 
single company. In their paper, they develop a decision model that yielded when and how to 
move a container, as well as when to lease a container. They then performed some constraint 
relaxations on the model that allows the model to react quickly to supply and demand changes. 
Likewise, Li et al [9] studied the problem at a more global view. They built a model that 
maximized profit for the shipping company. Their model was deterministic and operated on a 
rolling horizon basis. They then tested their model on a real-life example using some ports from 
the east coast of China and showed that not only is their approach more profitable but also 
provides a greener solution. Song and Dong [10] also studied the problem by taking a global 
view of the problem. In their paper, they considered two ports and the intermodal locations 
around the ports. They assume that there is a trade imbalance between the two ports, to 
simulate real-life conditions such as a port from Asia and a port in the USA. They then derive a 
unique solution. In this approach, they model each port separately as integer programs, but 
then they use an inventory control based simulation model to decide when to ship containers 
between the two ports. 

There has also been research done on how other factors affect the solving of the problem. For 
example, Bourbeau et al. [11] developed a mixed integer model that could be subdivided into 
semi-independent problems. They were then able to use parallel programming to solve the 
subproblems faster. They used their model to test how the location of the depots affects the 
problem and came up with an algorithm to find the optimal number and location of the depots. 
Another example would be how Choong at al. [12] studied the effect of the length of the 
planning horizon with regard to the empty container problem. In their paper, they use a model 
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developed in Choong [13] and other empty container models to find the effect of the length of 
the planning horizon and how far in advance does planning need to start. 

Francesco et el. [14] studied the problem of repositioning containers under stochastic demand, 
with uncertain parameters for the probability distribution functions. They built a multi-scenario 
multi-step model that was solved sequentially as events happened. They used a modified 
benders decomposition to solve their multi-step model. Later, Long et al. [15] enhanced this 
research by allowing demand to be non independent and identically distributed on each day.  

Braekers et al [16] tackled the dynamic empty container problem, in which origins and 
destinations are not known beforehand. They constructed a network flow model to optimize 
the movement from importers, exporters, depots, and the port. They used a sequential 
approach and an integrated approach to solve the model. This yielded a sub-optimal result, but 
decreased the complexity of the model, thus reducing the solving time. They tested their 
solving methods using a small example that they created, as well as other examples from other 
papers for comparison. 

Zhang et al. [17] developed a tabu search algorithm for the multi-depot truck transportation 
problem. In their paper, they developed two algorithms to solve this NP-hard problem. The first 
algorithm used clusters while the second one used a reactive tabu search. They then compared 
their algorithms to the optimal solution that could be found for small size instances. They 
determined that the cluster algorithm performed well, but the reactive tabu algorithm 
performed extremely well, although the cluster algorithm is more scalable than the tabu 
algorithm. Funke and Kopfer [18] also studied the VRP problem for the Empty Container 
Problem. In their paper, they assumed that loaded containers had a known origin and 
destination, but empty containers only had a known origin or destination, and the other was 
unknown and needed to be solved. To solve their problem, they build a time and space graph 
with the arcs representing possible truck movements from one location to another. They are 
then able to build an integer model for the graph and solve it to optimality using branch and 
bound techniques. However, they are only able to do so for a small size problem and mention 
that heuristics would be needed to make the model scalable. 

Vidovic et al. [19] studied the problem of solving a VRP for multi-size containers. In their 
problem, they had multiple locations with multiple requests for either 20 foot or 40 foot 
containers, and a depot. They studied the problem in which the demand for the containers was 
known, and each location had a known initial number of containers. They then developed a 
container assignment and vehicle routes where all demands were met. To solve their problem, 
they implemented a modified version of Popovic et al’s [20] variable neighborhood search 
heuristic, which was in turn inspired by Mladenovic and Hansen’s [21] metaheuristic. The idea 
for the heuristic is to find an initial solution, and then do a neighborhood search to find a better 
solution. However, what makes their search interesting and successful is that they change the 
size of their search based on the polar angle between two routes. The idea being that if two 
adjacent routes has a big gap between them, then they are less likely to share a job between 
them and one can eliminate any route exchanges between those two routes. 
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Tan et al. [22] also studied the Empty Container Problem, but at a company level. They 
developed a hybrid model that could be used by transportation companies to determine their 
truck schedules for the day. The model incorporates local search heuristics and several 
specialized genetic algorithms, with the objective being to minimize truck miles, and the 
number of trucks used. The model also determines when it is more efficient for the company to 
outsource a certain job. Sterzik and Kopfer [23] further advanced this research by introducing a 
robust model that different companies could incorporate. They solved their algorithm using a 
tabu search with several heuristics. They tested their algorithm against the algorithm in Zhang 
[24] outperforming it in almost every instance. In another paper by the same authors [25], they 
augment their previous work by building a mixed integer programming model that considers 
both vehicle routing and empty container repositioning simultaneously. Their model minimizes 
trucking operating time which includes travel, service, and waiting times. They solve the model 
by first building an initial solution using a modified version of Clark and Wright’s [26] savings 
algorithm and then searching the solution space using their previous tabu search algorithm. In 
their paper, they specifically run scenarios in which container leasing companies are allowed to 
exchange containers and scenarios in which they are not, and show the benefits of such 
exchanges. 

Probably the most extensive research of container movement in the Ports of Long Beach and 
Los Angeles was done by the Tioga Group [4]. They did extensive research on container 
movement in and out of the Port of Long Beach. After compiling extensive data, they suggested 
a concept of how empty container reuse could be increased in this area. Their work has served 
as a foundation to various other empty container models that use the Ports of Long Beach and 
Los Angeles as their research scenario, especially when using their data. For example, Jula et al. 
[27] built a dynamic model that used the Tioga report data to come up with a feasible solution 
of how to allocate containers on a daily basis. Taking into account that on any single day all 
demand is deterministic, but the demand for the next day is stochastic, they use dynamic 
programming to find the best match of a bipartite transportation network. In that way, they 
meet all the daily demand and to optimize the containers for future days as well. Chang et al. 
[28] studied when and where containers should be substituted with another type. They 
proposed a heuristic method that divided the problem into dependent and independent parts. 
They were then able to apply a branch and bound algorithm to arrive at an integer solution 
relatively fast. They tested their procedure for the Ports of Los Angeles and Long Beach using 
data from the Tioga report, and on randomized scenarios, comparing it to other commercial 
mixed integer programming solvers. Similarly, Lam et al [29] demonstrated how dynamic 
programming can lead to a competitive approximate solution that improves efficiency. They 
first built an empty container model and then used linear approximations to simplify the model. 
They then used dynamic programming to arrive at an approximation of the optimal solution. 
They tested their approach in a simple model, and for a real-life example. They then compared 
their solution to other heuristics used in the industry. 

Dam Le [30] has also assessed the problem from the perspective of the logistics involved to 
make container reuse possible in Southern California. She conducted several interviews with 
field experts to make recommendations on where depots would make the most sense 
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according to expected demand from the different importers and exporters. The problem has 
also been studied in different ports around the world. Islam et al. [31] conducted an extensive 
study of the Port of Auckland. They studied how containers were moved and how truck 
congestion changed throughout the day. They, in particular, studied when empty containers 
should be relocated such that the effect of the empty container movement is minimized, 
especially during peak hours. 

The empty container problem traditionally focuses on meeting the demand for one day. This is 
done because daily demand is deterministic. However, a natural extension to this problem is 
how can we accommodate future stochastic demand and reposition containers such that we 
are better able to handle future demand. Bandeira et al [32] developed a rolling horizon model 
to coordinate different customer demands as to minimize costs. Their model is solved in two 
steps. First, it meets all the demand for that time period. Then it adjusts the solution to allocate 
containers to minimize costs. Erera et al. [33] built a robust optimization framework for 
container allocation. For their solution framework, they first solve an integer model to acquire 
an initial solution. They then use heuristics to manage container inventory at the locations and 
then update their solution as time goes on. This allowed them to find an approximate optimal 
solution and then change their solution to adapt to a stochastic world. 
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3. Container Assignment Problem 

This research enhances the model and methodology of Dessouky and Carvajal [5] by 
incorporating stochastic future demand into the container assignments. This incorporation is 
beneficial since the model is not meant to be solved in a vacuum, but instead it is meant to be 
solved considering future demand. Thus, the solution that is implemented today will have 
future repercussions on tomorrow’s solution. More specifically, the final state of today will be 
the starting state of tomorrow. It is for this reason that if we want to minimize the cost and 
truck miles in the long run, we should take tomorrow’s demand into consideration when 
solving the container assignment today. 

The main challenge in including tomorrow’s demand into our model is that, unlike today’s 
demand which is deterministic, tomorrow’s demand is stochastic. However, it is possible to 
study historical data and derive a stochastic model for tomorrow’s demand. In this case, one 
way to develop a stochastic model is twofold. First, there are different scenarios that could take 
place. For example, an importer demand would look rather different depending if a ship arrives 
on time or is delayed. Thus, there are different scenarios like this one that would affect how the 
demand for containers for the different locations would be. It is then possible to estimate the 
transitional probabilities of the scenarios from historical data. 

3.1 Mathematical Formulation 

We next present the formulation for the Stochastic Double Container Assignment Model 
(SDCAM) given the different scenarios for tomorrow’s demand. 

Parameters: 

I=Total number of importers 

E=Total number of exporters 

𝐷 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑝𝑜𝑡𝑠 

𝑇 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠   

𝑙𝑖,𝑗,𝑡 = 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑡𝑎𝑘𝑒𝑠 𝑡𝑜 𝑔𝑜 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑜𝑖,𝑗,𝑡 = 𝑡𝑖𝑚𝑒 𝑖𝑡 𝑡𝑎𝑘𝑒𝑠 𝑡𝑜 𝑔𝑜 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑟𝑖 = 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑝𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑑𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 

𝑐𝑖 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖  

𝑒𝑖,𝑗,𝑡 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑒𝑔 𝑜𝑓 𝑎 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑟𝑜𝑢𝑡𝑒 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑓𝑖,𝑗,𝑡 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑔 𝑜𝑓 𝑎 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑟𝑜𝑢𝑡𝑒 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗  

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑔𝑖,𝑗,𝑡 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑟𝑜𝑢𝑡𝑒 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 
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�̅� = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 

𝑆 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑓𝑜𝑟 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤  

𝜃𝑠 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

�̅�𝑖,𝑡,𝑠 = 𝑀𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝜑 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑜𝑟 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙𝑓𝑖𝑙𝑦𝑖𝑛𝑔 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 

𝜇𝑠 = 𝑀𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑟𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 

Sets: 

𝑆𝐼 = {1, … , 𝐼} (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠) 

𝑆𝐸 = { 𝐼 + 1, … , 𝐼 + 𝐸} (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠) 

𝑆𝐷 = {𝐼 + 𝐸 + 1, … , 𝐼 + 𝐸 + 𝐷} (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑒𝑝𝑜𝑡𝑠) 

𝑆𝑃 = { 𝐼 + 𝐸 + 𝐷 + 1 } (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡) 

𝑆𝐴 = {𝑆𝐼 ∪ 𝑆𝐸 ∪ 𝑆𝐷 ∪ 𝑆𝑃}(𝑎𝑙𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠)  

𝑆𝑇 = {1, … , 𝑇} (𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦) 

𝑆�̅� = {𝑇 + 1, … , �̅� (𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤′𝑠 𝑑𝑎𝑦) 

𝑆𝑁 = {1, … 𝐼, … 𝐼 + 𝐸, … 𝐼 + 𝐸 + 𝐷} (𝑎𝑙𝑙 𝑛𝑜𝑛 − 𝑝𝑜𝑟𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠) 

𝑆𝜃 = {1, … , 𝑆}   (𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) 

Decision Variables: 

𝑥𝑖,𝑗,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑒𝑔 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗  

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑦𝑖,𝑗,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑔 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗  

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑧𝑖,𝑗,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑚𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑛𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑎𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 

𝑏𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 

�̅�𝑖,𝑗,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑙𝑒𝑔 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑎𝑡  

𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 𝑜𝑓 𝑎 𝑡𝑟𝑢𝑐𝑘 

𝑦𝑖,𝑗,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑔 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑎𝑡  

𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 𝑜𝑓 𝑎 𝑡𝑟𝑢𝑐𝑘 

𝑧�̅�,𝑗,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟  

𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 

�̅�𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 

�̅�𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 
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�̅�𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡𝑜𝑚𝑟𝑟𝑜𝑤 

�̅�𝑖,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡𝑜𝑚𝑟𝑟𝑜𝑤  

ƨ𝑖,𝑡,𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑚𝑒𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

Objective: 

min ∑ ∑ ∑(ei,j,t ∗ xi,j,t + fi,j,t ∗ yi,j,t + gi,j,t ∗ zi,j,t)

jЄSAiЄSAtЄST

+ ∑ ∑ ∑(ei,j,t ∗ x̅i,j,t + fi,j,t ∗ y̅i,j,t + gi,j,t ∗ z̅i,j,t) …

jЄSAiЄSAtЄST̅

 

… + ∑ ∑ ∑ φ ∗ θs ∗ ƨi,t,siЄSAtЄST̅s∈Sθ   

s.t. 

Today’s Constraints: 

Containers provided at time t: 

2 ∑ 𝑥𝑖,𝑗,𝑡

Є𝑆𝐸∪𝑆𝐷∪𝑆𝑃

+ ∑ 𝑧𝑖,𝑗,𝑡

𝑗Є𝑆𝐸∪𝑆𝐷∪𝑆𝑃

= 𝑚𝑖,𝑡      ∀𝑖 ∈ 𝑆𝐼   ∀𝑡 ∈ 𝑆𝑇   (𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (1) 

2 ∑ 𝑥𝑖,𝑗,𝑡

𝑗∈𝑆𝑃

+ ∑ 𝑧𝑖,𝑗,𝑡

𝑗∈𝑆𝑃

= 𝑚𝑖,𝑡    ∀𝑖 ∈ 𝑆𝐸          ∀𝑡 ∈ 𝑆𝑇   (𝐸𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (2) 

2 ∑ 𝑥𝑖,𝑗,𝑡

𝑗∈𝑆𝐸∪𝑆𝐷∪𝑆𝑃

+ ∑ 𝑧𝑖,𝑗,𝑡

𝑗∈𝑆𝐸∪𝑆𝐷∪𝑆𝑃

= 𝑚𝑖,𝑡    ∀𝑖 ∈ 𝑆𝐷   ∀𝑡 ∈ 𝑆𝑇   (𝐷𝑒𝑝𝑜𝑡𝑠) (3) 

2 ∑ 𝑥𝑖,𝑗,𝑡

𝑗Є𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧𝑖,𝑗,𝑡

𝑗Є𝑆𝐼∪𝑆𝐸∪𝑆𝐷

= 𝑚𝑖,𝑡       ∀𝑖 ∈ 𝑆𝑃   ∀𝑡 ∈ 𝑆𝑇   (𝑃𝑜𝑟𝑡) (4) 

Containers received at time t: 

∑ 𝑥𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝑃

+ ∑ 𝑦𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝑃

= 𝑛𝑗,𝑡                           ∀𝑗 ∈ 𝑆𝐼   ∀𝑡 ∈ 𝑆𝑇   (𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (5) 

∑ 𝑥𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

+ ∑ 𝑦𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

= 𝑛𝑗,𝑡     ∀𝑗 ∈ 𝑆𝐸   ∀𝑡 ∈ 𝑆𝑇 (𝐸𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (6) 

∑ 𝑥𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

+ ∑ 𝑦𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

= 𝑛𝑗,𝑡     ∀𝑗 ∈ 𝑆𝐷   ∀∈ 𝑆𝑇   (𝐷𝑒𝑝𝑜𝑡𝑠) (7)  

∑ 𝑥𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑦𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐴

+ ∑ 𝑧𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

= 𝑛𝑗,𝑡                 ∀𝑗 ∈ 𝑆𝑃   ∀𝑡 ∈ 𝑆𝑇   (𝑃𝑜𝑟𝑡) (8) 
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Demand and Feasibility constraints: 

𝑎𝑖,𝑡 = ∑ 𝑚𝑖,𝑞

𝑡

𝑞=1

                        ∀𝑖 ∈ 𝑆𝐴        ∀𝑡 ∈ 𝑆𝑇        (𝑁𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑎𝑡 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡) 
(9) 

𝑏𝑖,𝑡 = ∑ 𝑛𝑖,𝑞

𝑡

𝑞=1

                         ∀𝑖 ∈ 𝑆𝐴         ∀𝑡 ∈ 𝑆𝑇        (𝑁𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡) 
(10) 

𝑏𝑖,𝑡−𝑟𝑖
+ 𝑝𝑖 − 𝑎𝑖,𝑡 ≥ 0         ∀𝑖 ∈ 𝑆𝐴        ∀𝑡 ∈ 𝑆𝑇        (𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡 ) (11) 

𝑏𝑖,𝑡 ≥ 𝑑𝑖,𝑡           ∀𝑖 ∈ 𝑆𝑁         ∀𝑡 ∈ 𝑆𝑇     (𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑒𝑡 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑝𝑜𝑟𝑡) (12a) 

𝑏𝑖,𝑡 − 𝑎𝑖,𝑡 ≥ 𝑑𝑖,𝑡       ∀𝑖 ∈ 𝑆𝑃     ∀𝑡 ∈ 𝑆𝑇      (𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑒𝑡 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡) (12b) 

𝑏𝑖,𝑡 + 𝑝𝑖 − 𝑎𝑖,𝑡 ≤ 𝑐𝑖                         ∀𝑖 ∈ 𝑆𝐴        ∀𝑡 ∈ 𝑆𝑇     (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) (13) 

∑ 𝑥𝑖,𝑗,𝑡
𝑖∈𝑆𝐴

= ∑ 𝑦𝑗,𝑘,𝑡+𝑙𝑖,𝑗,𝑡

𝑘∈𝑆𝐴

     ∀𝑗 ∈ 𝑆𝐴       ∀𝑡 ∈ 𝑆𝑇      (𝑇𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑚𝑢𝑠𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠) (14) 

𝑥𝑖,𝑗,𝑡 , 𝑦𝑖,𝑗,𝑡  , 𝑧𝑖,𝑗,𝑡  ≥ 0                    ∀𝑖 ∈ 𝑆𝐴    ∀𝑗 ∈ 𝑆𝐴   ∀∈ 𝑆𝑇      (𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) (15) 

𝑥𝑖,𝑗,𝑡 , 𝑦𝑖,𝑗,𝑡  , 𝑧𝑖,𝑗,𝑡  ∈ ℤ                     ∀𝑖 ∈ 𝑆𝐴    ∀𝑗 ∈ 𝑆𝐴   ∀∈ 𝑆𝑇     (𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) (16) 

Tomorrow’s Constraints: 

2 ∑ �̅�𝑖,𝑗,𝑡

𝑗Є𝑆𝐸∪𝑆𝐷∪𝑆𝑃

+ ∑ 𝑧�̅�,𝑗,𝑡

𝑗Є𝑆𝐸∪𝑆𝐷∪𝑆𝑃

= �̅�𝑖,𝑡         ∀𝑖 ∈ 𝑆𝐼        ∀𝑡 ∈ 𝑆�̅�           (𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (17) 

2 ∑ �̅�𝑖,𝑗,𝑡

𝑗∈𝑆𝑃

+ ∑ 𝑧�̅� ,𝑗,𝑡

𝑗∈𝑆𝑃

= �̅�𝑖,𝑡                                 ∀𝑖 ∈ 𝑆𝐸       ∀𝑡 ∈ 𝑆�̅�           (𝐸𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (18) 

2 ∑ �̅�𝑖,𝑗,𝑡

𝑗∈𝑆𝐸∪𝑆𝐷∪𝑆𝑃

+ ∑ 𝑧�̅� ,𝑗,𝑡

𝑗∈𝑆𝐸∪𝑆𝐷∪𝑆𝑃

= �̅�𝑖,𝑡        ∀𝑖 ∈ 𝑆𝐷       ∀𝑡 ∈ 𝑆�̅�          (𝐷𝑒𝑝𝑜𝑡𝑠) (19) 

2 ∑ �̅�𝑖,𝑗,𝑡

𝑗Є𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧�̅�,𝑗,𝑡

𝑗Є𝑆𝐼∪𝑆𝐸∪𝑆𝐷

= �̅�𝑖,𝑡           ∀𝑖 ∈ 𝑆𝑃        ∀𝑡 ∈ 𝑆�̅�          (𝑃𝑜𝑟𝑡) (20) 

Containers received at time t for tomorrow: 

∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝑃

+ ∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧�̅�,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝑃

= �̅�𝑗,𝑡                            ∀𝑗 ∈ 𝑆𝐼      ∀𝑡 ∈ 𝑆�̅�     (𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (21) 

∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

+ ∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧�̅� ,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

= �̅�𝑗,𝑡      ∀𝑗 ∈ 𝑆𝐸    ∀𝑡 ∈ 𝑆�̅�     (𝐸𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠) (22) 

∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

+ ∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ 𝑧�̅� ,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐷∪𝑆𝑃

= 𝑛𝑗,𝑡      ∀𝑗 ∈ 𝑆𝐷    ∀∈ 𝑆�̅�        (𝐷𝑒𝑝𝑜𝑡𝑠) (23) 

∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

+ ∑ �̅�𝑖,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐴

+ ∑ 𝑧�̅� ,𝑗,𝑡−𝑜𝑖,𝑗,𝑡

𝑖∈𝑆𝐼∪𝑆𝐸∪𝑆𝐷

= �̅�𝑗,𝑡                  ∀𝑗 ∈ 𝑆𝑃     ∀𝑡 ∈ 𝑆�̅�     (𝑃𝑜𝑟𝑡) (24) 
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Demand and Feasibility constraints: 

�̅�𝑖,𝑡 = ∑ �̅�𝑖,𝑞

𝑡

𝑞=𝑇+1

                              ∀𝑖 ∈ 𝑆𝐴           ∀𝑡 ∈ 𝑆�̅�       (𝑁𝑢𝑚𝑏𝑒𝑟 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑎𝑡 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡) 
(25) 

 �̅�𝑖,𝑡 = ∑ �̅�𝑖,𝑞
𝑡
𝑞=𝑇+1                           ∀𝑖 ∈ 𝑆𝐴           ∀𝑡 ∈ 𝑆�̅�       (𝑁𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑖 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡) (26) 

(𝑏𝑖,𝑇 + 𝑝𝑖 − 𝑎𝑖,𝑇) − �̅�𝑖,𝑡

≥ 0 ∀{𝑖, 𝑡|𝑖 ∈ 𝑆𝑁, 𝑡 ∈ 𝑆𝑇, 𝑡 − 𝑟𝑖 < 𝑇 + 1} (𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑝𝑜𝑟𝑡) 
(27a) 

�̅�𝑖,𝑡−𝑟𝑖
− �̅�𝑖,𝑡 + (𝑏𝑖,𝑇 + 𝑝𝑖 − 𝑎𝑖,𝑇 − 𝑑𝑖,𝑇) + ∑ 𝜃𝑠 ∗ 𝜇𝑠

𝑠∈𝑆𝜃

≥ 0   

∀𝑖 ∈ 𝑆𝑃           ∀𝑡 ∈ 𝑆�̅�                  (𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑜𝑟 𝑃𝑜𝑟𝑡) 

(27b) 

−�̅�𝑖,𝑡 + (𝑏𝑖,𝑇 + 𝑝𝑖 − 𝑎𝑖,𝑇 − 𝑑𝑖,𝑇) + ∑ 𝜃𝑠 ∗ 𝜇𝑠

𝑠∈𝑆𝜃

≥ 0 

∀𝑖 ∈ 𝑆𝑃            ∀𝑡 ∈ 𝑆�̅�, 𝑡 − 𝑟𝑖 < 𝑇 + 1    (𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑜𝑟 𝑃𝑜𝑟𝑡) 

(27c) 

�̅�𝑖,𝑡 − �̅�𝑖,𝑡,𝑠 + ƨ𝑖,𝑡,𝑠 ≥ 0 

∀𝑖 ∈ 𝑆𝑁           ∀𝑡 ∈ 𝑆𝑇   ∀𝑠 ∈ 𝑆𝜃    (𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑒𝑡 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡) 

(28a) 

�̅�𝑖,𝑡 + 𝑝𝑗 − �̅�𝑗,𝑡 − �̅�𝑖,𝑡,𝑠 + ƨ𝑖,𝑡,𝑠 ≥ 0 

∀𝑗 ∈ 𝑆𝑃     ∀𝑡 ∈ 𝑆�̅�   ∀𝑠 ∈ 𝑆𝜃  (𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑝𝑜𝑟𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑒𝑡 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡) 

(28b) 

�̅�𝑖,𝑡 + (𝑝𝑖 + 𝑏𝑖,𝑇 − 𝑎𝑖,𝑇) − �̅�𝑖,𝑡 ≤ 𝑐𝑖 

∀𝑖 ∈ 𝑆𝑁          ∀𝑡 ∈ 𝑆�̅�      (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑝𝑜𝑟𝑡) 

(29a) 

�̅�𝑖,𝑡−𝑟𝑖
− �̅�𝑖,𝑡 + (𝑏𝑖,𝑇 + 𝑝𝑖 − 𝑎𝑖,𝑇 − 𝑑𝑖,𝑇) + ∑ 𝜃𝑠 ∗ 𝜇𝑠

𝑠∈𝑆𝜃

≤ 𝑐𝑖 

∀𝑖 ∈ 𝑆𝑃          ∀𝑡 ∈ 𝑆�̅�       (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡) 

(29b) 

∑ �̅�𝑖,𝑗,𝑡

𝑖∈𝑆𝐴

= ∑ �̅�𝑗,𝑘,𝑡+𝑙𝑖,𝑗,𝑡

𝑘∈𝑆𝐴

  

∀𝑗 ∈ 𝑆𝐴          ∀𝑡 ∈ 𝑆�̅�       (𝑇𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑚𝑢𝑠𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑡𝑤𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠) 

(30) 

�̅�1𝑖,𝑗,𝑡  , �̅�1𝑖,𝑗,𝑡 ,   𝑧�̅� ,𝑗,𝑡  ≥ 0    

∀𝑖 ∈ 𝑆𝐴          ∀𝑗 ∈ 𝑆𝐴          ∀𝑡 ∈ 𝑆�̅�         (𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) 

(31) 

�̅�1𝑖,𝑗,𝑡  , �̅�1𝑖,𝑗,𝑡  , 𝑧�̅� ,𝑗,𝑡  ∈ ℤ    

∀𝑖 ∈ 𝑆𝐴          ∀𝑗 ∈ 𝑆𝐴          ∀∈ 𝑆�̅�            (𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) 

(32) 

The objective of the SDCAM is to minimize the transportation costs needed to meet all of 
today’s deterministic demand and all of tomorrow’s expected demand for all the possible 
scenarios. The model is separated into two main parts. The first part deals with container 
movements made today while the second part deals with container movements made 
tomorrow. Both parts are similar with the second part having a few modifications to account 
for the container movements the model performs today. We will next explain the first part of 
the model and then explain the second part of the model. 

The model has three main integer variables. The 𝑥𝑖,𝑗,𝑡 variables correspond to the first leg of a 

double-container truck going from location i to location j at time t to drop off the first 
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container. The 𝑦𝑖,𝑗,𝑡 variables correspond to the second leg of a double-container truck going 

from location i to location j at time t to drop off the second container. Finally, the z variables 
represent a single-container truck going from location i to location j at time t. Note that i and j 
cannot be the same for any x or z variable since it does not make sense that a location can 
provide itself with containers; however the y variables can have i and j be the same since that 
means the second container is being dropped off at the same location as the first container. 
The rest of the variables only serve to record the total number of received and delivered 
containers at each location for each time period, and are determined by specific summations of 
the main three variables. 

Constraints (1)-(4) are the definition of the 𝑚𝑖,𝑡 variables and thus sum all the containers 
provided by a specific location at a specific point in time. This is done for all locations and all 
times. Notice that a double-container truck trip uses 2 containers and thus there is a 2 
multiplying the x variable, while a single-container truck trip only uses 1 container. Each set of 
variables is for different type of locations. For example, constraint (1) sums up containers 
provided by the importers which can provide empty containers that can go to the exporters, 
depots, or the port, but they cannot go to the other importers.  

Similarly, constraints (5)-(8) are the definition of the 𝑛𝑖,𝑡 variables and thus sum all the 
containers received by a specific location at a specific point in time. This is done for all locations 
and all times. In these constraints each variable represents one container being dropped off at 
a location and thus there is no multiplication of 2. For example, constraint (5) sums up all the 
containers received by an importer. An importer only needs loaded containers, and thus can 
only receive containers from the port. For this reason, the x and z variables can only originate 
from the port. However, notice that the y variable cannot originate from the port, and instead 
must originate from an importer, exporter, or depot. This is because logistically it does not 
make sense to go into the port to drop off a container and then come out to drop another 
container at an importer. 

Constraints (9) and (10) are the definitions of the 𝑎𝑖,𝑡 and 𝑏𝑖,𝑡 variables respectively, which sum 

up all the containers provided/received by location i by time t by aggregating all the 𝑛𝑖,𝑡 𝑜𝑟 𝑚𝑖,𝑡 
variables up to time t. The 𝑎𝑖,𝑡 and 𝑏𝑖,𝑡 variables will then become the variables used in the 
latter constraints to ensure that feasibility of the solution and that demand is met at all 
locations and at all points in time. 

Constraint (11) is the feasibility constraints that the total number of containers received at a 
location, plus the number of containers at the start of the day at that location, minus the 
number of containers provided by that location cannot be negative. Notice that 𝑏𝑖,𝑡 is offset by 
𝑟𝑖, which is the turnover time at location i. This is because after a container arrives at location i 
it must be processed (either unloaded or loaded) before it can be moved again (𝑟𝑖 may be zero 
for locations like the depot where containers do not need to be processed). Constraint (12) 
ensures that demand is met, and notice that the 𝑏𝑖,𝑡 variable is aggregated, and thus demand is 
also aggregated. Constraint (13) is the capacity constraint and is similar to constraint (11), by 
ensuring that capacity is not exceeded for all locations.  
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Finally, constraint (14) makes sure that a double container truck delivers two containers. The x 
variables represent a truck going from location i to location j at time t after some delay, given 
by the parameter li,j,t. This truck must go to another location (this can be the same location) to 
deliver the second container. This is represented by the y variable. This constraint states that all 
the x variables that arrive at a certain location by time t must have a corresponding y variable 
associated with them. Then constraints (15) and (16) are the variable integrality and non-
negativity constraints. 

These are all the constraints for the first part of the model representing today’s container 
movements. As stated before these constraints are repeated in the second part of the model 
representing tomorrow’s container movements. The constraints are the same, apart from 
three; the non-negativity constraints (27a-c)), the demand constraints (28a-b), and the capacity 
(constraints (29a-b)). For tomorrow’s set of constraints however, they are divided into port 
locations and non-port locations. For the non-port locations the constraint states that the sum 
of the total number of container received tomorrow at a location, minus the total number of 
containers provided tomorrow by that location, plus the number of containers at the end of 
today, must be non-negative and less than the location’s capacity. Note that the end of today’s 
state is the beginning of tomorrow, thus any containers left at the end of the day at a given 
location is the number of containers that location will have at the beginning of the day 
tomorrow. The port however functions a little different. The containers demanded by the port 
are containers that will be loaded into ships to be transported overseas. Thus, we also need to 
subtract all the containers that the port demanded for today, thus removing those containers 
from the system. However, the port also provides new containers to the system when ships 
arrive at the port with new containers. The number of new containers available depends on 
what scenario tomorrow is. Therefore, we also add the mean number of containers that will 
become available multiplied by the probability for that scenario.  

The other constraint that changes is the demand constraint (28a-b). As previously explained, 
the demand for each location is based on a probability density function that depends on which 
scenario is occurring. Thus, instead of having a single demand constraint for each location, we 
have S constraints, where S is the number of scenarios that can occur, thus having one 
constraint for each scenario. We also introduce ƨ𝑖,𝑡,𝑠  which acts as a slack variable, allowing the 
demand constraint to be violated if ƨ𝑖,𝑡,𝑠 is positive for location i for time t under scenario s. 
However, we then bring this slack variable to the objective and penalize it by the parameter 𝜑 
for each unit of demand not met under that scenario. This creates a penalty function for 
violations of the demand constraint. This allows the model to hedge container movements 
based on the probability of certain scenarios of occurring or not.  

It is worth reiterating here that the model assumes that tomorrow’s stochastic demand is 
modeled in two steps. First, there are several scenarios that can occur, and each scenario has a 
probability of occurring 𝜃𝑠. Furthermore, it is assumed that no other scenarios exist outside of 

these. Therefore ∑ 𝜃𝑠
𝑆
𝑠=1 = 1. Additionally, each scenario has a known probability distribution 

that determines tomorrow’s demand. Hence, the demand constraint can be thought as being 
subdivided into S different constraints, where each constraint is the realization of each possible 
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scenario. Each constraint takes the difference of the total number of containers received by 
time t of tomorrow minus the mean aggregated demand for scenario s by time t. To strictly 
enforce this demand this difference should be positive. However, the demand is not known and 
we do not strictly enforce it. We achieve this by introducing a penalty variable ƨ for each of 
these constraints, which yields S penalty variables. Each of these variables determines how 
many containers we are not fulfilling under scenario s. We can then take these penalty 
variables and bring them to the objective. We then penalize each container that we are not 
fulfilling in this scenario, and weight that by the probability of that scenario happening.  

If solved the model will yield container movements for today and tomorrow. However, the 
container movements for tomorrow are never actually made. Instead, the model works on a 
rolling horizon in which the model is solved at the beginning of each day. The container 
assignments for today are then fulfilled, then at the beginning of tomorrow, once the random 
variables have become realized, the model is solved again, and the new solution is then 
implemented. This is done iteratively ad infinitum solving two days at a time. 

The advantages of the SDCAM compared to the deterministic model (DCAM) presented in [5] is 
that the SDCAM takes into consideration future container movements that need to be made in 
later days, and can take advantage of situations were moving a container preemptively might 
reduce truck miles. For example, suppose a container is needed today and it can be taken from 
either location i or location j. In the DCAM model the container would be taken from the 
location which minimizes the distance, let’s say location i. However, there may be a good 
probability that location i will need more containers than location j tomorrow. Therefore, in 
order to reduce the cost and truck miles in the long run over all the days one should move the 
container from location j instead of location i and this would be considered in the SDCAM, but 
not in the DCAM. It is also for this reason that if SDCAM is run for only one day and compared 
to the DCAM, the DCAM will have less cost and trucking miles. This is because the DCAM is set 
to minimize the trucking cost and trucking miles for only one day, while the SDCAM is set to 
optimize the cost and trucking miles in the long run, and as such it will sometimes sacrifice local 
minimization, for a global minimization, as seen in the example. 

Another situation where considering tomorrow’s demand leads to a reduction of cost and truck 
miles is when one location has a large probability of needing a lot of containers. The DCAM 
optimizing for today, will simply not take this information into account by performing container 
movements that are only necessary to meet today’s demand. However, the SDCAM will move 
some containers at the end of the day to either the location that needs the containers, or to a 
warehouse close by. Therefore, tomorrow’s container movement will be reduced. This also has 
the incidental advantage that the SDCAM will proactively move containers more at the end of 
the day, probably at a time with less congestion in the streets, thus reducing congestion at peak 
hour times.  
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4. Vehicle Routing Problem 

After solving the Container Assignment model, a truck schedule that supports such assignments 
needs to be found. Each container assignment is treated as a job that needs to be satisfied by 
an empty truck. Each job is defined by a starting location, an ending location, and a time 
window. This allows the conversion of the container assignments (both double container trips 
and single container trips) to be converted into jobs. For example, a container assignment 𝑥𝑖,𝑗,𝑡 

and 𝑦𝑗,𝑘,𝑡+𝑙𝑖,𝑗,𝑡
 can be transformed into a job starting at time t that begins at location i, goes to 

location j, and ends at location k. This can be done for all container assignments to convert 
them to jobs. These jobs can then be converted to a time and space graph and an edge can be 
added from one job to another, if it is possible for a truck to service job v and then be able to 
move to the starting location for another job w before its start time. The cost of this edge is 
equal to the distance the truck must move to get from the ending location of job v to the 
starting location of job w. This can be done for all jobs resulting in a directed time and space 
graph with non-Euclidean distances. Solving a Vehicle Routing Problem (VRP) on this graph 
would yield a truck schedule supporting the container assignments that were previously found, 
thus finding a solution to the Empty Container Problem. The specific VRP represented by this 
graph is a VRP with tight time windows with non-Euclidean distances. 

It is known that the VRP is an NP-hard problem, making it difficult to solve optimally for 
problems of practical size. Thus, to get a good solution for real sized problems, this research 
uses a modified version of Ropke and Pisinger’s Adapted Large Neighborhood Search (ALNS) 
[34]. This algorithm is a tabu search algorithm that has no theoretical guarantees but has been 
shown to perform well on VRP problems with tight time windows. Its power lies on the ability 
to search large neighborhoods of variable size and move fast towards a solution, while being 
able to become infeasible at some iterations to escape local minima.  

There are two main steps to solve the VRP using ALNS. The first step is finding an initial feasible 
solution, and the second is exploring the search space iteratively for good solutions until 
convergence or the max number of iterations is reached. Next, we present our algorithm for 
finding an initial feasible solution and our modified ALNS for our specific problem. 

The first step needed to find an initial solution is to transform the container assignments into 
jobs, such that we can build a graph that will represent the problem. To do this we assume that 
the Container Assignment Problem has been solved and that the container movement variables 
(𝑥𝑖,𝑗,𝑡, 𝑦𝑖,𝑗,𝑡, or 𝑧𝑖,𝑗,𝑡) are available. We then introduce our truck job nodes as 𝑤𝑖,𝑗,𝑘,𝑡 in Figure 5.  
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Figure 5. Truck Job Construction 

These nodes refer to both single and double container truck trips, with the formal definition 
found below. 

Truck Job.  𝑤𝑖,𝑗,𝑘,𝑡 =

𝑥𝑖,𝑗,𝑡+𝑦𝑗,𝑘,𝑡

2
 + 𝑧𝑖,𝑗,𝑡   𝑖𝑓 𝑗 = 𝑘

𝑥𝑖,𝑗,𝑡+𝑦𝑗,𝑘,𝑡+𝑙𝑖,𝑗,𝑡

2
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We can then graph these nodes and connect two jobs with a directed edge from node  wi,j,k,t to 

node  wp,q,r,s if t + li,j,t + lj,k,t+li,j,t
+ lk,p,t+lj,k,t+li,j,t

+li,j,t
≤ s. That is, a single truck has enough 

time to serve job  wi,j,k,t at time t and then have enough time to move from location k to 

location p before the start of job  wp,q,r,s at time s. Figure 6 gives a simple demonstration of the 

network created by the truck job construction. 

 

Figure 6. Truck Job Network 
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Before we formally present the algorithm to find an initial feasible solution we introduce some 
parameters. Each truck schedule is held in ordered sets 𝐿𝑝. Each ordered set 𝐿𝑝 holds the truck 

schedule for truck p. The elements of each set are the container jobs 𝑤𝑖,𝑗,𝑘,𝑡, with truck p 

serving the first element in the ordered set, moving to the second element, then serving the 
second element and so on until all elements have been served. For example, suppose 𝐿𝑝 only 

has two elements with the first element being 𝑤𝑖,𝑗,𝑘,𝑡 and the second element being 𝑤𝛼,𝛽,𝛾,𝑠  

(we will assume both jobs are double container jobs). Then the truck route for p would be to 
start its route at location i at time t. Pickup two containers and move to location j to drop the 
first container. Then drop the second container at location k. Then the empty truck p moves 
from location k to location 𝛼. Pickup two containers at time s, drop the first container at 
location 𝛽, and end its route at location 𝛾. From construction there will be enough time for the 
truck to move from location k to location 𝛼, such that it arrives before time s. The next 
parameter 𝜎𝑝 represents the ending time of the last job in truck route p. That is, 𝜎𝑝 = 𝑡 +

𝑙𝑖,𝑗,𝑡 + 𝑙𝑗,𝑘,𝑡+𝑙𝑖,𝑗,𝑡
 were all subscripts come from the last element {𝑖, 𝑗, 𝑘, 𝑡} in the ordered set 

𝐿𝑝. If the ordered set 𝐿𝑝 is empty, then 𝜎𝑝 is set to 0. Finally, we let 𝛿𝛼,𝑖,𝑡 be the travel time 

from the last location of the last job in the ordered set 𝐿𝑝 (𝛼) to location i arriving at time t. To 

be more specific if the last element in the ordered set 𝐿𝑝 is {𝛽, 𝛾, 𝛼, 𝑠} and we are considering 

adding the tuple {𝑖, 𝑗, 𝑘, 𝑡}, then 𝛿𝛼,𝑖,𝑡= 𝑜𝛼,𝑖,𝑡 . We now present our algorithm to get an initial 

feasible solution below. We call this algorithm “VRP Initial Solution Construction”. 

 

VRP Initial Solution Construction 

1. Solve the empty container problem to get the job variables (xi,j,t, yi,j,t, or zi,j,t). 

2. Set all wi,j,k,t such that  

wi,j,k,t =

xi,j,t + yj,k,t

2
 + zi,j,t      if j = k

xi,j,t + yj,k,t+li,j,t

2
  otherwise

 

3. Set p = 1 

4. Set α = 0 

5. Choose a positive wi,j,k,t with the smallest t subscript such that: 

t − δα,i,t ≥ σp . Break ties based on the smallest distance between α  and i. 

Suppose we choose wi′,j′,k′,t′ 

6. Add the tuple {i′, j′, k′, t′}  to the ordered set Lp. 

7. Set wi′,j′,k′,t′ = wi′,j′,k′ ,t′ − 1 

8. Set α =  i′ 

9. Repeat Steps 5 to 8 until no more wi,j,k,t can be chosen in Step 5. 

10. If there is at least one positive wi,j,k,t set p = p + 1 and go back to Step 4. Otherwise 

STOP. 
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The algorithm above is a greedy algorithm that tries to minimize truck idle time. The idea being 
that if idle time is minimized then the number of trucks required to service all truck jobs is 
decreased. It does this by first adding a new truck to the system. It assigns the earliest possible 
job to this truck. It then calculates the ending time of the job and eliminates all truck jobs that 
cannot be serviced by the truck due to time window constraints. It then adds the earliest job 
the truck can service breaking ties by the necessary distance travelled to get to the job. The 
algorithm does this until no more jobs can be added to the truck. At this point, another truck is 
introduced, and the process is repeated until all jobs are serviced. This algorithm yields a 
feasible solution since at termination the number of jobs are finite and by construction each 
truck route is feasible. The algorithm (excluding the solving of the empty container problem) 
can be implanted in 𝑂(𝑛2) time were n is the number of truck jobs. 

After obtaining a feasible solution we can apply a modified version of ALNS. Before we present 
the algorithm we introduce some parameters. The first parameter 𝜁 determines how many 
single job truck routes each iteration will try to eliminate. The second parameter 𝛥 determines 
how many jobs will be removed and reinserted at every iteration. Notice that 𝛥 ≥ 𝜁 since 
removing one truck means that one job is also removed. The third parameter Ψ determines 
how many iterations of the heuristics will be performed. Conversely, the variable 𝜓 gives the 
current iteration number. Furthermore, let 𝑝𝑚𝑎𝑥 represent the maximum number of trucks that 
are currently being used. We introduce a new set G which will hold the removed jobs that later 
will need to be reinserted back to some route in order to preserve feasibility. Next, let ƨ 
represent the minimum cost of adding a job. Finally, ƕ holds the place where the minimum 
cost of inserting a job appears. We now introduce our modified ALNS. 

 

Modified ALNS 

1. Set ψ = 1 

2. Set p = 1 

3. If ordered set Lp contains only one tuple. Remove it from the ordered set Lp and add the 

tuple to set G. Then set pmax = pmax − 1  

4. If set G has ζ elements go to Step 6. Otherwise, CONTINUE. 

5. If p = pmax, CONTINUE. Otherwise, set p = p + 1 and go back to Step 3. 

6. Randomly remove any tuple from a random truck route (Lp) and add it to set G. 

7. If G has less than Δ elements go back to Step 6. Otherwise, CONTINUE. 

8. Sort the tuples in G based on their starting time (t). 

9. Remove the first tuple {i′, j′, k′, t′}  from G. 

10. Set p = 1 

11. Set ƨ =  ∞ and ƕ = {0} 

12. If tuple {i′, j′, k′, t′} can be inserted on truck route Lp. Calculate the additional cost of 

inserting the job on route Lp. If this cost is less than ƨ. Set ƕ = p. Otherwise, CONTINUE. 

13. If p = pmax,  CONTINUE. Otherwise, set p = p + 1 and go back to Step 12. 
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14. If ƨ < ∞ insert tuple {i′, j′, k′, t′} to truck route ƕ. Otherwise, set pmax = pmax + 1 and 

add tuple {i′, j′, k′, t′} to truck route Lpmax
. 

15. If G is empty, CONTINUE. Otherwise, go back to Step 9. 

16. If ψ = Ψ, STOP. Otherwise, set  ψ = ψ + 1 and go back to Step 2. 

 

As mentioned before the ALNS is a tabu search algorithm, that at each iteration it removes 𝛥 
truck jobs at random and then reintroduces them based on starting time and cost. Additionally, 
because more trucks are more expensive than any distance reduction, the algorithm prioritizes 
removing jobs from trucks that have only one truck job. The power of the algorithm is that it 
searches the solution space quickly, and can escape from a local minima. It achieves this by 
allowing the cost function to increase on some iterations. As shown in the paper by Ropke and 
Pisinger the algorithm in practice does tend to perform very well compared to other well-
known algorithms.  
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5. Experimental Analysis 

In the previous research [5], the benefits of using DCAM have been shown compared with the 
current container movement operations. In this study, these experiments are designed to 
compare the model performance under stochastic demand between DCAM and SDCAM. In this 
section we compare the two models on randomized data sets as well as on a data set 
representative demand near the port areas in Los Angeles County. 

5.1 Randomized Experiments 

To test the effect of including future stochastic demand when solving the Empty Container 
Problem, we perform experiments where we change both the demand distribution for each 
location, and the probability distribution for the different scenarios. In our experiments we 
represent three main events (scenarios) that could impact demand at the port: (1) no ship 
arrival, (2) a ship arrival, and (3) a ship departure. The transitional probabilities then give the 
probability of which event will occur tomorrow given the events (scenario) of yesterday and 
today. Each scenario is represented by a set of transitional probabilities and the demand 
distribution. We also assumed that the cost of using an additional truck is much greater than 
any mileage cost. For each experimental trial, we model ten days and it is assumed that day 
zero and the first day are scenario one (i.e., no ship arrival). We simulate a grid size of 25x25 
with all locations being uniformly randomly located in the grid, except for the port which is 
located at the bottom center of the grid. We have a location capacity of 24 containers at the 
importers and exporters, a depot capacity of 36 containers, and a port capacity of 1500 
containers. We also have an unloading and loading rate of containers of 1 hour at all locations. 
Additionally, the time it takes a truck to enter and leave the port is 2 hours. We ran the 
modified ALNS for 1000 iterations each day, removing 15 jobs and trying to eliminate a total of 
3 trucks per iteration. We simulate a 12 hour day. These parameters are summarized in Table 1 
below 
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Table 1. Parameter settings for randomized experiments 

Parameter name Parameter value 

# of importers (I) 7 

# of exporters (E) 5 

# of depots (D) 2 

Loading and unloading time of containers 1 hour 

Location of port bottom center 

Truck turnover time at port 2 hours 

Daily time horizon 12 hours 

Time discretization size 15 mins 

Grid size 25x25 

Location capacity 24 

Time horizon 10 days 

Number of scenarios 3 

Number of ALNS iterations (Ψ) 1000 

Number of jobs to remove at each iteration (𝛥) 15 

Number of trucks to be removed at each iteration (𝜁 ) 3 

We ran three different transitional probability distributions representing the probability of 
tomorrow’s scenario (i.e., no ship arrival, ship arrival, or ship departure) depending on the 
scenario of yesterday and today. These three different transitional probability distributions are 
shown in the Appendix. As seen in the tables, the transitional probabilities represented in Table 
A1 have the least variability while the ones in Table A3 have the most variability. We then ran 
five different uniform distribution cases for tomorrow’s demand. For each case, the demand 
distribution also depends on the scenario for tomorrow. Similarly, the demand distributions in 
Table A4 have the least variability and these increase for each case until the 5th case (Table A8) 
which has the most variability. Finally, for each experiment we ran 10 replications.  

We next test how including future stochastic demand affects our methodology for solving the 
Empty Container Problem. To do so in each replication we ran two models. In the first model 
we used DCAM to obtain the container assignments for each of the 10 days in our time horizon, 
and the modified ALNS model to obtain the truck schedule. In the second model, we used the 
SDCAM to obtain the container assignments for each of the 10 days in our time horizon, and 
then ran the modified ALNS model. Note that the SDCAM explicitly accounts for the uncertain 
future demand while the DCAM model does not. We compare both of these models against a 
solution knowing perfect information which is computed by assuming that the entire demand 
for the 10 days is known and the container assignments are solved collectively for these 10 
days. Afterwards, these assignments are used as the jobs for the modified ALNS. Since in reality 
the demand is not known for the 10 days, the solution for this model will serve as a point for 
comparison to both the DCAM and the SDCAM results. We compare the results by using the 
ratio of either the SDCAM or the DCAM result over the perfect information model result. Below 
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we show the average of the ratios in Table 2 and standard deviation of the ratios in Table 3 for 
our experiments. 

Table 2. Average of the ratios for randomized experiments 

  

Transition 
Probability 

Distribution 1 

Transitional 
Probability 

Distribution 2 

Transitional 
Probability 

Distribution 3 

  SDCAM DCAM SDCAM DCAM SDCAM DCAM 

Demand 
Distribution 

1 1.07 1.14 1.10 1.15 1.15 1.17 

2 1.12 1.18 1.16 1.20 1.22 1.24 

3 1.13 1.23 1.16 1.22 1.17 1.18 

4 1.16 1.25 1.19 1.25 1.18 1.22 

5 1.19 1.25 1.20 1.27 1.23 1.27 

Table 3. Standard Deviation of the ratios for randomized experiments 

  

Transitional 
Probability 

Distribution 1 

Transitional 
Probability 

Distribution 2 

Transitional 
Probability 

Distribution 3 

  SDCAM DCAM SDCAM DCAM SDCAM DCAM 

Demand 
Distribution 

1 0.025 0.026 0.038 0.044 0.038 0.047 

2 0.035 0.027 0.042 0.033 0.059 0.048 

3 0.041 0.048 0.045 0.030 0.050 0.048 

4 0.053 0.056 0.044 0.028 0.077 0.086 

5 0.057 0.041 0.055 0.033 0.073 0.061 

As seen in Table 2, the SDCAM performs better than the DCAM; however, Table 3 shows that 
for the most part the SDCAM has a slightly higher standard deviation than the DCAM. SDCAM 
has a higher standard deviation because the DCAM will try to minimize today’s demand and 
thus it will not make any unnecessary moves trying to minimize tomorrow’s demand. It will also 
move containers in such a way to minimize the cost for today, lowering its standard deviation. 
However, the SDCAM will make some preemptive movements to try and minimize tomorrow’s 
movement. These movements will sometimes pay off, but sometimes it will not. This will 
increase the variability of the model, but in the long run these movements lower the average 
cost for the system. It is for this reason that the SDCAM has a lower average cost, but a slightly 
higher standard deviation.  

Another result that can be observed in Table 3 is that the ratios increases both as the demand 
and transitional probability variability increases. Both models perform worse when there is a 
higher variability. DCAM does not incorporate the transitional probabilities and instead only 
focuses only on the today’s demand. Meanwhile, the SDCAM relies on the transitional 
probabilities to make a prediction on tomorrow’s demand. If the variability for these 
probabilities starts to grow to the point where each scenario is equally likely then the model 
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has no useful information on what tomorrow’s scenario is going to be, and thus has less 
information about the demand. Meaning that the SDCAM would perform worse, because it will 
make unnecessary container movements more often.  

In summary, SDCAM leads to solutions that use around 4% to 7% less truck miles to solve the 
Empty Container Problem as compared to the DCAM. SDCAM hedges container movements 
depending on what is the probabilities of tomorrow’s demand and the distance that a container 
must move. This leads to SDCAM to preemptively move some containers, or to move containers 
from further away locations. In the long run this leads to a reduction in miles, at the expense of 
increasing the standard deviation, compared to a solution that will always move the containers 
the same way regardless of future demand. 

5.2 Ports of Los Angeles and Long Beach Experiments 

We next test how the DSCAM compares to the DCAM using data reflective of the Ports of Long 
Beach. We use the same Los Angeles and Long Beach scenario used in [5], with the same 
locations, distance matrix, and parameters. However, the Los Angeles and Long Beach port data 
available only has the mean demand for each location, but in order to test DSCAM different 
scenarios and demand distributions are needed. Thus, we use the same transition probabilities 
as in A1-A3 but the new demand distributions probabilities A9-A11 can be found in the 
Appendix. We also ran each trial for 10 days and each experiment was run for 10 trials. Table 4 
below shows the parameters used in the experiments. 

Table 4. Parameter settings for LA & LB Port experiments 

Parameter name Parameter value 

# of importers (I) 5 

# of exporters (E) 3 

# of depots (D) 2 

Loading and unloading time of containers 1 hour 

Truck turnover time at port 2 hours 

Daily time horizon 12 hours 

Time discretization size 1 hour 

Location capacity 10 

Time horizon 10 days 

Number of scenarios 3 

Number of ALNS iterations (Ψ) 700 

Number of jobs to remove at each iteration (𝛥) 10 

Number of trucks to be removed at each iteration (𝜁 ) 2 

For each experimental trial we ran three different models. In the first model we used the DCAM 
to obtain the container assignments for each of the 10 days in our time horizon, and the 
modified ALNS model. In the second model, we used the SDCAM to obtain the container 
assignments for each of the 10 days in our time horizon, and then ran the modified ALNS 
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model. We compare both of these models against a solution knowing perfect information 
which is computed by assuming that the entire demand for the 10 days is known and the 
container assignments are solved collectively for these 10 days. Afterwards, these assignments 
are used as the jobs for the modified ALNS. Since in reality the demand is not known for 10 
days, the solution for this model will serve as a point for comparison to both the DCAM and the 
SDCAM results. We compare the results by using the ratio of either the SDCAM or the DCAM 
result over the perfect information model result. Below we show the average of the ratios in 
Table 5 and standard deviation of the ratios in Table 6 for our experiments. 

Table 5. Average of the ratios for LA & LB Port experiments 

  

Transition 
Probability 

Distribution 1 

Transitional 
Probability 

Distribution 2 

Transitional 
Probability 

Distribution 3 

  SDCAM DCAM SDCAM DCAM SDCAM DCAM 

Demand 
Distribution 

1 1.04 1.10 1.05 1.11 1.07 1.13 

2 1.07 1.14 1.09 1.16 1.11 1.15 

3 1.10 1.16 1.12 1.18 1.14 1.19 

Table 6. Standard Deviation of the ratios for LA & LB Port experiments 

  

Transitional 
Probability 

Distribution 1 

Transitional  
Probability  

Distribution 2 

Transitional  
Probability  

Distribution 3 

  SDCAM DCAM SDCAM DCAM SDCAM DCAM 

Demand 
Distribution 

1 0.015 0.019 0.023 0.024 0.019 0.025 

2 0.017 0.011 0.045 0.030 0.036 0.019 

3 0.025 0.024 0.065 0.036 0.029 0.045 

The results for the Ports of Los Angeles and Long Beach data sets are similar to the randomized 
experiments. Table 5 shows that the SDCAM performs around 4% to 6% better than the DCAM 
because it considers important information about future demand that the DCAM does not 
consider. Also, as predictions for tomorrow’s state and demand locations improve the SDCAM 
solution will also improve.  
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6. Implementation 

This problem addresses how to efficiently move empty containers to reduce the number of 
total trucks and truck miles that are required to meet demand. As more and more containers 
pass through ports every year, it becomes increasingly more important to efficiently move 
these containers. As shown in this report empty container reuse helps improve the container 
movement and reduce congestion at the port. Furthermore, it has been shown that if laws and 
infrastructure were to be modified to allow double container trucks to operate, there would be 
a lot of efficiency gained. We ran experiments, both on randomized data sets and using data 
from the Ports of Los Angeles and Long Beach to show that these gains can be significant. 
Additionally, the approach that this paper developed can be implemented to yield truck routes 
for both loaded and empty container movements. The implementation of our approach will 
require a programming language, such as Julia, and an optimization solver, such as Gurobi. 
Additionally, historical data needs to be collected to obtain the transitional probabilities 
between scenarios and probability density functions for the demands at the different locations. 
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7. Conclusion 

In this report we build on the model proposed in [5] by incorporating future stochastic demand 
leading to a better solution in the long run. We test the model on randomized data sets and on 
scenarios based on data from the Port of Los Angeles and Long Beach. The results show that the 
stochastic model performs about 4-7% better in terms of total miles traveled than the model 
that does not take into account future demand. One future research direction could account for 
unforeseen events throughout the day that might delay some trucks or container movements. 
This may cause the current solution to become inefficient or even infeasible.   
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9. Data Management  

Products of Research  

The primary data source was publicly available from the report "SCAG Regional Travel Demand 
Model and 2008 Model Validation" (LSA Associates, 2012), which was conducted by the 
Southern California Association of Governments (SCAG) in 2012. Within this model the 
Southern California region is divided into 4, 109 blocks and each block is associated with a pair 
of longitude and latitude, which represents its location. Also, randomly generated data sets 
were used.  

Data Format and Content  

All data sets were stored as excel files. 

Data Access and Sharing  

The data is stored in the Dryad open source repository.  

Reuse and Redistribution  

The citation for this data set is: 

Dessouky, Maged (2020), Data from: Congestion reduction through efficient container 
movement under stochastic demand, v3, Dryad, Dataset, 
https://doi.org/10.5061/dryad.mcvdncjxf  

  

https://doi.org/10.5061/dryad.mcvdncjxf
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10. Appendix 

Table A1. Transitional probability distribution 1 

Tomorrow’s State Today’s state Yesterday’s state Probability 

1 1 1 0.1 

2 1 1 0.45 

3 1 1 0.45 

1 1 2 0.05 

2 1 2 0 

3 1 2 0.95 

1 1 3 0.05 

2 1 3 0.95 

3 1 3 0 

1 2 1 0.7 

2 2 1 0.05 

3 2 1 0.25 

1 2 2 0 

2 2 2 0 

3 2 2 1 

1 2 3 0.9 

2 2 3 0.01 

3 2 3 0.09 

1 3 1 0.7 

2 3 1 0.25 

3 3 1 0.05 

1 3 2 0.9 

2 3 2 0.09 

3 3 2 0.01 

1 3 3 0 

2 3 3 1 

3 3 3 0 
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Table A2. Transitional probability distribution 2 

Tomorrow’s State Today’s state Yesterday’s state Probability 

1 1 1 0.2 

2 1 1 0.4 

3 1 1 0.4 

1 1 2 0.1 

2 1 2 0 

3 1 2 0.9 

1 1 3 0.1 

2 1 3 0.9 

3 1 3 0 

1 2 1 0.6 

2 2 1 0.1 

3 2 1 0.3 

1 2 2 0 

2 2 2 0 

3 2 2 1 

1 2 3 0.8 

2 2 3 0.05 

3 2 3 0.15 

1 3 1 0.6 

2 3 1 0.3 

3 3 1 0.1 

1 3 2 0.8 

2 3 2 0.15 

3 3 2 0.05 

1 3 3 0 

2 3 3 1 

3 3 3 0 
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Table A3. Transitional probability distribution 3 

Tomorrow’s State Today’s state Yesterday’s state Probability 

1 1 1 0.3 

2 1 1 0.35 

3 1 1 0.35 

1 1 2 0.2 

2 1 2 0 

3 1 2 0.8 

1 1 3 0.2 

2 1 3 0.8 

3 1 3 0 

1 2 1 0.5 

2 2 1 0.15 

3 2 1 0.35 

1 2 2 0 

2 2 2 0 

3 2 2 1 

1 2 3 0.7 

2 2 3 0.1 

3 2 3 0.2 

1 3 1 0.5 

2 3 1 0.35 

3 3 1 0.15 

1 3 2 0.7 

2 3 2 0.2 

3 3 2 0.1 

1 3 3 0 

2 3 3 1 

3 3 3 0 
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Table A4. Demand Distributions 1 

Location State 1 State 2 State 3 

Importer 1 (59,63) (63,67) (28,32) 
Importer 2 (69,73) (73,77) (43,47) 

Importer 3 (46,50) (78,82) (38,42) 

Importer 4 (63,67) (68,72) (41,45) 
Importer 5 (52,56) (83,87) (43,47) 

Importer 6 (49,53) (62,66) (38,42) 

Importer 7 (62,66) (81,85) (33,37) 

Exporter 1 (48,52) (53,57) (83,87) 

Exporter 2 (58,62) (48,52) (78,82) 
Exporter 3 (38,42) (43,47) (93,97) 

Exporter 4 (53,57) (41,45) (73,75) 

Exporter 5 (43,57) (58,62) (86,90) 

Port (400,425) (365,385) (468,493) 

Table A5. Demand Distributions 2 

Location State 1 State 2 State 3 

Importer 1 (56,66) (60,70) (25,35) 

Importer 2 (66,76) (70,80) (40,50) 

Importer 3 (46,50) (75,85) (35,45) 

Importer 4 (60,70) (65,75) (38,48) 

Importer 5 (50,58) (80,90) (42,48) 

Importer 6 (48,55) (58,70) (38,43) 

Importer 7 (58,70) (78,88) (30,40) 

Exporter 1 (45,55) (50,60) (80,90) 

Exporter 2 (55,65) (45,55) (75,85) 

Exporter 3 (35,45) (40,50) (85,95) 

Exporter 4 (50,60) (38,48) (70,80) 

Exporter 5 (40,50) (55,65) (83,93) 

Port (375,450) (350,400) (443,518) 
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Table A6. Demand Distributions 3 

Location State 1 State 2 State 3 

Importer 1 (54,68) (58,72) (23,37) 

Importer 2 (64,78) (68,82) (38,52) 

Importer 3 (44,52) (73,87) (33,47) 

Importer 4 (58,72) (63,77) (36,50) 

Importer 5 (48,60) (78,92) (40,50) 

Importer 6 (46,57) (56,72) (36,45) 

Importer 7 (56,72) (76,90) (28,42) 

Exporter 1 (43,57) (48,62) (78,92) 

Exporter 2 (53,67) (43,57) (73,87) 

Exporter 3 (33,47) (38,52) (83,97) 

Exporter 4 (48,62) (36,50) (68,82) 

Exporter 5 (38,52) (53,63) (81,95) 

Port (370,455) (345,405) (438,523) 

Table A7. Demand Distributions 4 

Location State 1 State 2 State 3 

Importer 1 (51,71) (55,75) (20,40) 

Importer 2 (61,81) (65,85) (35,55) 

Importer 3 (41,55) (70,90) (30,50) 

Importer 4 (55,75) (60,80) (33,53) 

Importer 5 (45,63) (75,95) (37,53) 

Importer 6 (43,60) (53,75) (33,48) 

Importer 7 (53,75) (73,93) (25,45) 

Exporter 1 (40,60) (45,65) (75,95) 

Exporter 2 (50,70) (40,60) (70,90) 

Exporter 3 (30,50) (35,55) (80,100) 

Exporter 4 (45,65) (33,53) (65,85) 

Exporter 5 (35,55) (50,70) (78,98) 

Port (350,475) (325,425) (418,543) 
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Table A8. Demand Distributions 5 

Location State 1 State 2 State 3 

Importer 1 (49,73) (53,77) (18,42) 

Importer 2 (59,83) (63,87) (33,57) 

Importer 3 (39,57) (68,92) (28,52) 

Importer 4 (53,77) (58,82) (31,55) 

Importer 5 (43,65) (73,97) (35,55) 

Importer 6 (41,62) (51,77) (31,50) 

Importer 7 (51,77) (71,95) (23,47) 

Exporter 1 (38,62) (43,67) (73,97) 

Exporter 2 (48,72) (38,62) (68,92) 

Exporter 3 (28,52) (33,57) (78,102) 

Exporter 4 (43,67) (31,55) (63,87) 

Exporter 5 (33,57) (48,72) (76,100) 

Port (345,480) (320,430) (413,548) 

Table A9. Demand Distributions 1 for the San Pedro Ports Scenarios 

Location State 1 State 2 State 3 

Importer locations (38,42) (43,47) (33,37) 

Exporter locations (28,32) (23,27) (33,37) 

Port (195,205) (185,195) (205,215) 

Table A10. Demand Distributions 2 for the San Pedro Ports Scenarios 

Location State 1 State 2 State 3 

Importer locations (36,44) (41,49) (31,39) 

Exporter locations (26,34) (21,29) (31,39) 

Port (190,210) (180,200) (200,220) 

Table A11. Demand Distributions 3 for the San Pedro Ports Scenarios 

Location State 1 State 2 State 3 

Importer locations (34,46) (39,51) (29,41) 

Exporter locations (24,36) (19,31) (29,41) 

Port (185,215) (175,205) (195,225) 
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