INTRODUCTION

Between 1996 and 1998, North Carolina rose to fourth in the nation in the number of fatal crashes involving large trucks. In an effort to better understand the nature of the problem, the North Carolina Governor's Highway Safety Program (GHSP) requested that the UNC Highway Safety Research Center (HSRC) conduct a comprehensive analysis of available state and federal crash data. The chief source of federal crash data was the Fatal Analysis System (FARS) which is maintained by the National Highway Traffic Safety Administration (NHTSA). The principle source of state data was that maintained by the North Carolina Division of Motor Vehicles (NCDMV). FARS provides information only on fatal crashes, while the NCDMV crash data provide information on all crashes irrespective of their severity.

The purpose of the GHSP analysis was twofold: (1) to define more specifically the parameters of the truck safety problem in North Carolina as a basis for subsequent countermeasure development efforts, and (2) to provide an ongoing 'yardstick' against which such programs might be evaluated on an ongoing basis. While FARS, in essence, provides a national level yardstick, its fatal-only focus and the fact that its availability is so delayed make it unsuitable for the development, management, and evaluation of day-to-day crash reduction activities at the state level.

A parallel effort funded by North Carolina's Motor Carrier Safety Assistance Program (MCSAP) and carried out by the Commercial Vehicle Enforcement Section of the NCDMV addressed the use of these same data for the purpose of documenting the impact of commercial vehicle 'enforcement' programs on truck safety. HSRC support of the MCSAP has, in large part, been in the context of the development and evaluation of North Carolina's Commercial Vehicle Safety Plan (CVSP). The goals, objectives, and strategies documented in the state's CVSP comprise the basis for the MCSAP funding provided each year by the Federal Motor Carrier Safety Administration (FMCSA).

In addition to the GHSP and MCSAP problem definition and program evaluation efforts, the North Carolina Department of Transportation in 1998 established a truck safety task force in an effort to solicit broad-based input to the development of truck safety legislation in the state. These efforts were responsible for the passage of the truck safety provisions of House Bill 303.

Since 1998, the results of the HSRC analysis work (both for GHSP and MCSAP) have been made available on the Internet on HSRC's web site: www.hsrc.unc.edu under the headings of http://www.hsrc.unc.edu/research/human_driver.htm and http://www.hsrc.unc.edu/research/human_truck.htm. A list of material available on the web is found in Appendix D. The present document provides an update to the previous GHSP analysis which covered the period 1993-1997. The current results are for the period 1995-1999.

The reader is encouraged to review the full range of analysis documents on the HSRC website; in particular, the enforcement-oriented results which document the effectiveness of a program of increased enforcement activity in specifically targeted high crash counties. As a result of these stepped up enforcement activities, North Carolina has been
successful in moving from fourth to eighth in the nation (according to the CY1999 FARS results)

Specific Focus on Heavy Trucks

It is important to point our at the outset that while the CMV Enforcement Section of the NCDMV is responsible for all commercial motor vehicles (CMVs), the truck safety focus of FARS (and in turn NHTSA's 'Top Ten' list) is on 'heavy trucks.' The manner in which 'heavy trucks' are defined in state and federal crash data bases is problematic from the standpoint of permitting one to arrive at identical crash frequencies. The criteria used to define 'heavy truck' in either the FARS or NCDMV data bases are shown below.

Here is the Boolean expression used to indicate that a vehicle is a Large Truck. Any FARS vehicle that is a Large Truck then allows that crash to be counted in the FARS Large Truck total.

SAS selection statements applied to FARS data set:
if ($60<=$ body_typ <= 64) or body_typ=66 or (71 <= body_typ <= 72) or body_typ=78 or (body_typ=79 and ($1<=$ tow_veh <=4)) then lrgtrk=1 ; *large; else $\operatorname{lrgtrk}=0$;

Similarly, for the NCDMV data set, any vehicle type indicated as a 3 axle truck, 4 axle truck, or a truck tractor and trailer would then allow that crash to be counted in the NC Heavy Truck total.

SAS selection statement:
if vehtype in $(8,9,24)$
To the extent that tractor trailers comprise the majority of heavy truck crashes (by either definition), North Carolina is content that its selective focus on these vehicle types is effective in addressing the heart of the problem. It must be pointed out, however, that heavy trucks represent only a subset of all commercial motor vehicles (CMV).

The HSRC analyses have also made use of data from the Motor Carrier Management Information System (MCMIS). . . data which are essentially compiled through FMCSA's maintenance of SAFETYNET. While these data (at least in North Carolina) have until CY2000 constituted an 'underestimate' of commercial vehicle crashes in the state (due to a 'dual track' reporting system), they nevertheless provide an empirical basis for addressing the role of carrier factors in crash causation. In the case of analyses conducted by HSRC for DMV Enforcement, these data have been used to investigate the probable relationship between carrier size (number of power units) and crash risk (crashes per power unit).

General Approach

While the purpose of the present discussion is to present the results of the analyses supported by the GHSP, reference will be made to the analysis of DMV enforcement efforts to the extent that the state's approach to CMV crash reduction cannot be understood solely in terms of the analysis work alone.

The results which follow address the use of data from both FARS and North Carolina's own vehicle crash data. FARS data are used mainly to quantify the magnitude of the problem and to provide a 'starting point,' if you will, for the subsequent analysis of the state data. Using the state data, information is provided on crash frequency and the frequency of fatal crashes for all 100 North Carolina counties.

Using a subset (1998 and 1999) of the 1995-1999 crash data, the present GHSP effort explored the use of Geographic Information Systems (GIS) technology for the visual representation of the spatial characteristics of the truck crash problem. The GIS portion of the effort was supported by the North Carolina Center for Geographic Information and Analysis (CGIA) and was based in part on prior NCDOT-funded work to develop a preliminary version of a spatially-referenced crash data system.

While financial support for the GIS portion of the work was from GHSP, the work itself was framed in the context of identifying the spatial attributes of crashes in relationship to the eight DMV enforcement districts in the state. GIS plots of the '98 and '99 fatal truck crash data are provided for each of the eight districts as well as for the 30 individual North Carolina counties comprising the 2000-2001 CVSP focus of DMV Enforcement. GHSP support of the GIS-based evaluation technology is continuing, with the current 2000-2001 focus largely on the evaluation of various GIS analysis 'tools' and their value for problem definition and geographically-targeted program development/evaluation.

GIS plots are provided of major crash 'corridors;' in particular the I40/I85 corridor, the I95 corridor, the I-77 corridor, and the area within Buncombe and Haywood counties referred to as the 'Gorge.' The results of additional analysis work on crashes along the I95 corridor are also provided.

CGIA's GIS capability was also utilized to address the relationship between fatal truck involved crashes and the location of trauma centers statewide. To the extent that heavy truck crashes often result in severe injuries to those involved, the proximity of trauma services to major crash sites is important. . . in terms of increasing the probability of survival associated with prompt emergency medical response.

The follow-on GIS work will focus on the mile posting of CMV enforcement actions and on the use of GIS tools in enabling program development personnel to achieve a more effective spatial alignment of enforcement actions and problem locations. The CVSP focus of the HSRC work remains on the evaluation of countermeasure development and evaluation. For the results of this work, the reader is referred to the HSRC web site on the Internet.

We turn now to (a) the analyses of the FARS and North Carolina DMV crash data, (b) to their spatial representation in a GIS format, (c) to supplemental analyses on carrier related variables conducted using the FMCSA "A\&I On-Line" data, and (c) to the general role of population and travel demand on crashes and the implied involvement of speed in the increased probability of fatal crashes.

A Summary of Truck-Involved Crash Trends for the Period 1995-1999

Figure 1 shows a comparison of the number of heavy truck fatal crashes in North Carolina for the period 1995-1999. The two sources of data are the Fatal Analysis Reporting System (FARS) and the North Carolina DMV crash records system. The criteria for defining a heavy or large truck in terms of FARS are given in Appendix A. The criteria used by HSRC are based upon vehicle types 8,9 , and 24 as described in the NC data (essentially 3 and 4 -axle trucks and tractor trailers). The comparison shows a consistently larger number of fatal crashes when using the FARS criteria. Trend lines have been computed (in MS Excel) for both sets of data. The data show that while the crash frequencies differ in magnitude, the year-to-year trends are indistinguishable.

Figure 1
Comparison of NC and FARS 'Heavy Truck' Fatal Crash Counts for the period 1995-1999

Figure 2 compares fatal crash trends between North Carolina and the US as a whole for this same time period. The North Carolina data do not show the sharp increase in fatal crashes seen nationwide from 1995 to 1996. Both the US and North Carolina show similar gains in fatal crashes between 1996 and 1998. Between 1998 and 1999, the data show that North Carolina experienced an 18.5 percent reduction in fatal truck involved crashes where the US experienced only a 1 percent reduction during this same time
period. These comparisons are based upon data from the Fatal Analysis Reporting System (FARS).

The magnitude of these differences is best seen when the state data and national data are expressed as a percentage of the 1995 level. Figure 3 shows that when viewed in this manner, the rate of increase fatal truck-involved crashes was significantly higher in North Carolina that the US between 1996 and 1998. But whereas the US showed little improvement in truck safety between 1998 and 1999, North Carolina made impressive gains in crash reduction. The magnitude of the gains made from 1998 to 1999 was sufficient to improve North Carolina's overall position nationally from $4^{\text {th }}$ to $8^{\text {th }}$.

Figure 2
A Comparison of Fatal Heavy Truck-Involved Crashes in North Carolina and the US for the Period 1995-1999
(Source: FARS)

Figure 3
Percent Change in the Number of Heavy Truck-Involved Fatal Crashes Relative to 1995:
A Comparison of North Carolina and the US Overall 1995-1999

Month-of-the-Year, Day-of-the-Week, and Time-of-Day

According to FARS, fatal truck-involved crashes in North Carolina showed little month-to-month variation with the exception of the months of September through November when the frequency of heavy truck fatal crashes was slightly elevated.

Figure 5 shows fatal crash frequencies for the period 1995-1999 by individual day-of-theweek. The data show a lower frequency of fatal truck-involved crashes on the weekend (most likely related to exposure). On the average, crash frequencies rise to their highest levels on Wednesdays and Thursdays.

Figure 6 shows the relative frequency of fatal truck-involved crashes in North Carolina as a function of the time-of-day. The data show peaks during the 6-9 am period, a consistent increase from 9 to noon, and another increase in crashes between 1 and 5 pm with the peak being in the neighborhood of 3 pm .

Figure 4
Average Percent of NC Fatal Heavy Truck-Involved Crashes as a Function of Month of the Year Source: FARS 1995-1999

Figure 5
Percent of Heavy Truck Fatal Crashes in North Carolina as a Function of Day of the Week
(Source: FARS 1995-1999)

Figure 6
Average Percent Fatal Crashes Involving Large Trucks in North Carolina by Hour of the Day, 1995-1999 Source: FARS

Location, by Individual County and (DMV) Enforcement District

Table 1 lists crash data by individual North Carolina county. Data are presented by year for the period 1995-1999 showing (a) total number of truck-involved crashes, (b) total number of fatal truck-involved crashes, and (c) the percent of truck-involved crashes that were fatal. The data are presented alphabetically by county. According to the table, there were a total of 41,025 truck-involved crashes, of which 744 involved a fatality. Overall, 1.82 percent of all truck-involved crashes during this period involved one or more fatalities each.

Table 2 presents an expanded picture of these data in terms of crash severity, this time arranged in terms of DMV enforcement districts (Districts 1-8), and by level of injury severity. (Refer to the bottom portion of Figure 7 for a graphic display of DMV Enforcement districts). The number of fatal crashes is plotted in Figure 7, by year, and by district. Districts 2, 3, and 5 were well) the average 17 percent statewide trend in crash reduction. Statewide crash severity totals are presented in Table 3. Table 4 presents these same data where the frequencies associated with each injury level are expressed as percentages of total truck-involved crashes. The reductions (1 each per year) in Districts 4,6 , and 8 are likely not significant. District 1 was the only district to show a marked (62 percent) increase in fatal crashes between 1998 and 1999 (from 13 to 21 crashes).

Heavy Truck-Involved Crashes in North Carolina, by County	5-Yr Overall	
Fatals	Mean \%Fatal	

Table 2
 Source：NCDMV Crash Data 1995－1999
 District 6俞为芯

88

劵等

$\stackrel{4}{6}$
8 水

多 yy

No Injury
Class C
Class B
Class A
Fatal
Totals

No Injury
Class C
Class B
Class A
Fatal
Totals

No Injury
Class C
Class B
Class A
Fatal
Totals

No Injury
 \forall sselo 흔․

Table 3
Heavy Truck Crash Severity Statewide in North Carolina 1995-1999

	Statewide (all districts)					
	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	
No Injury	5286	4863	4851	4839	5089	
Class C	1690	1934	2080	1776	1894	
Class B	820	910	920	943	878	
Class A	344	390	387	356	333	
Fatal	132	130	144	185	153	
Totals	$\mathbf{8 2 7 2}$	$\mathbf{8 2 2 7}$	$\mathbf{8 3 8 2}$	$\mathbf{8 0 9 9}$	$\mathbf{8 3 4 7}$	

Table 4
Heavy Truck Crash Severity Levels as a Percentage of Total Statewide Heavy Truck Crashes 1995-1999

	Statewide				
	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$
No Injury	64%	59%	58%	60%	61%
Class C	20%	24%	25%	22%	23%
Class B	10%	11%	11%	12%	11%
Class A	4%	5%	5%	4%	4%
Fatal	2%	2%	2%	2%	2%
Total	$\mathbf{1 0 0 \%}$				

Figure 7
Fatal Crashes by Year, by Enforcement District 1995-1999

Figure 8
Severity of Injury Incurred By Truck Driver NC Crash Data, 1995-1999

The injury severity data in the above tables does not distinguish 'who' was injured. . . the driver of the truck or the driver of the 'other' vehicle. Figure 8 reports the severity of injuries received by the truck driver. The data show that in over 88 percent of the truckinvolved crashes, the driver of the truck was not injured, and in less than 1 percent of crashes was the driver of the truck killed.

Vehicle Characteristics of Trucks Involved in Crashes

Figure 9 reports the distribution of gross vehicle weights (GVW) for large trucks involved in fatal crashes in North Carolina between 1995 and 1999. It is clear from these data that while 'heavy' trucks are defined as those having GVWs of 10,000 pounds or greater, the vast majority of 'heavy' trucks involved in fatal crashes have GVWs of 26,000 pounds or greater.

Figure 9
Distribution of Gross Vehicle Weights (GVW) for Large Trucks Involved in Fatal Crashes in North Carolina 1995-1999
$\square 10,001 \mathrm{tp} 14,000 \mathrm{lbs} \square 14,001$ to $16,000 \mathrm{lbs} \square 16,001$ to $19,500 \mathrm{lbs} \square 19,501$ to $26,000 \mathrm{lbs} \square 26,001$ to $33,000 \mathrm{lbs} \square 33,001 \mathrm{lbs}$ and up

In terms of body type, Figure 10 reports the relative frequency of occurrence of various body types in fatal truck-involved crashes between 1995 and 1999. The body type data reflect the previous GVW data showing that the two classes of heavy trucks most often involved in crashes involving a fatality were (a) high GVW single unit trucks (SUTs), and (b) truck/tractor (i.e., tractor trailers). The general trends toward the involvement of these types of vehicles in fatal crashes are shown in Figure 11. The trend for tractor trailer involvement mirrors closely the overall trend shown earlier. A similar trend is not seen in the involvement patterns over time of the high GVW single unit truck.

Figure 10
Percent of NC Fatal Truck-Involved Crashes as a Function of Body Type
Source: FARS 1995-1999

Figure 11
Fatal Crashes Involving Single Unit High GVW and
Truck/Tractor Vehicle Types in North Carolina 1995-1999
(Source: FARS)

- SUT Hi GVW - - Truck/Tractor ——Poly. (Truck/Tractor) ——Poly. (SUT Hi GVW)

Roadway Factors

Figure 12 provides data on fatal heavy truck-involved crashes as a function of the type of route. According to these data, over half (58 percent) of all fatal truck-involved crashes during the period 1995-1999 occurred on NC or US numbered highways. Only 16 percent of all fatal truck-involved crashes occurred on Interstate type roads.

Figure 12
Fatal Heavy Truck-Involved Crashes as a Function of Type of Route Source: FARS 1995-1999

Figures 13 and 14 differentiate roads in terms of their 'class.' On rural roads (see Figure 13), the highest frequency of fatal truck-involved crash occurred on (rural) principle arterials, followed by major collectors, and minor arterials. In 1999, only rural minor collectors experienced fewer fatal truck-involved crashes than rural interstates. On urban roads (see Figure 14), the data show trends toward an increase in fatal truck-involved crashes on urban interstates, urban freeways and expressways, principal and minor urban arterials.

Figure 13
Fatal Heavy Truck-Involved Crashes as a Function of Rural Road Class
Source: FARS 1995-1999

Figure 14
Fatal Truck-Involved Crashes as a Function of Urban Road Class
Source: FARS 1995-1999

With respect to the relative safety of rural and urban freeways (in terms of the likelihood of fatal truck-involved crashes), Figure 15 shows that the 'urban interstate' is overtaking the rural interstate in terms of total truck-involved fatal crashes. When one considers that there are almost twice as many miles of rural interstate in North Carolina as there are miles of urban interstate, these data point to a much greater risk of severe truck-involved crashes in the urban environment. It is also instructive to point out that between 1998 and 1999, the statewide crash reduction trend appears to reflect more the crash reduction trend on rural interstates than that on urban interstates. This is not to say that the statewide crash reduction improvements in 1999 can be totally attributed to gains on rural interstates.

Overall, however, considering the combined data in Figures 13 and 14, it appears that crash reduction improvements statewide appear to have been achieved almost totally in the rural as opposed to urban roadway environment.

Figure 15
Fatal Truck-Involved Crashes on Rural and Urban Interstates in North Carolina Source: FARS 1995-1999

Number of Lanes and Traffic Flow Control

Figure 16 shows that fatal truck-involved crashes during the period 1995-1999 were most likely to have occurred on either two or four-lane roadways. While more than twice as many fatal crashes occurred on 2 lane roads as on 4 lane roads, the four lane road showed the greatest increase in fatal crashes over the five year period (from 33 fatal crashes in 1995 to 51 crashes in 1999). The 5-lane roadway, while accounting for only 23 or the 890 fatal truck-involved crashes during this period showed an eight fold increase over the period from 1995 to 1999 (refer to Figure 17).

Figure 16
Number of Fatal Truck-Involved Crashes in NC as a Function of Number of Lanes Source: FARS 1995-1999

Figure 17
Increase in Fatal Truck-Involved Crashes on 4 and 5-Lane Roads in North Carolina

Source: FARS 1995-1999

With respect to traffic flow (i.e., separation of directions of travel), the data in Figure 18 supports the rather obvious fact that serious (in this case, fatal) crashes are more likely on roads where the directions of travel are not divided. Over the period 1995-1999, the data show a four to five-fold reduction in the frequency of fatal truck-involved crashes with the addition of a median. The data suggest that a median-with-barrier can lead an additional three to four-fold reduction in crashes beyond what is achieved with the median alone. These conclusions should not be taken as definitive since exposure and operational traffic variables were not controlled for in these observations.

Figure 18
Fatal Heavy Truck-Involved Crashes in NC as a Function of Traffic Flow Control Source: FARS 1995-1999

High Crash Locations

Tables 5 and 6 provides information on the actual roadway locations of truck-involved crashes. Table 5 provides data on fatal truck-involved crash locations statewide for the period 1995-1999. Table 6 provides data on the ten (10) locations within each of the 30 counties targeted by DMV or increased CMV enforcement in FY2001 (Oct '2000 through Sep '2001). Actual crash frequencies over the five-year period are shown for each of the high crash locations in Table 6.

Table 5

Fatal Crash Locations by County
 1995-1999

OUNTY	ACCTOWN	ONROAD	TOROAD
ALAMANCE	MEBANE	5 TH ST	CRAWFORD ST
ALAMANCE	GRAHAM	I40	NC49
ALAMANCE	GRAHAM	I 40	NC54
ALAMANCE	GRAHAM	I40	NC54
ALAMANCE		I40	ORANG
ALAMANCE	BURLINGTON	I40	RP1154
ALAMANCE		NC49	RP1105
ALAMANCE		NC49	RP1753
ALAMANCE		NC87	RP1562
ALAMANCE		RP1001	RP1607
ALEXANDER		US64	RP1111
ALEXANDER		US64	RP1165
ALLEGHANY		NC18	RU1150
ALLEGHANY		US221	RU1328
ANSON	WADESBORO	CASWELL ST	RUTHERFORD ST
ANSON		NC218	RP1438
ANSON		NC742	RP1120
ANSON		US52	RP1664
ANSON		US74	RP1730
ANSON		US74	RP1733
ASHE		NC16	RP1576
ASHE		NC163	RP1201
ASHE		RP1118	WATAU
ASHE		RP1315	RP1310
ASHE		RP1315	RP1320
AVERY		US221	RP1524
BEAUFORT		NC33	RP1100
BEAUFORT		NC33	RP1140
BEAUFORT		US17	RP1152
BEAUFORT		US17	RP1421
BEAUFORT		US17	RU1419
BEAUFORT		US264	RU1608
BERTIE		NC11	RP1145
BERTIE		NC308	WINDSOR
BERTIE		US13	RP1303
BERTIE		US13	RP1500
BERTIE		US13	RU1154
BERTIE		US17	RP1504
BLADEN		NC41	RP1100
BLADEN		NC41	RP1108
BLADEN		NC87	RP1336
BLADEN		NC87	RP1743
BLADEN		RP1318	RP1316
BRUNSWICK	BELVILLE	NC133	RP1554
BRUNSWICK		NC211	RP1500
BRUNSWICK		NC211	RU1341
BRUNSWICK		RP1115	RP1125
BRUNSWICK		US17	NC130
BRUNSWICK		US17	RP1115
BRUNSWICK		US17	RP1514
BRUNSWICK		US17	US17B
BRUNSWICK		US17	US17B
BRUNSWICK	SHALLOTTE	WHITEVILLE RD	MAIN ST
BUNCOMBE		I40	MILE061
BUNCOMBE	ASHEVILLE	I40	US19
BUNCOMBE		NC112	RP3635
BUNCOMBE		NC63	RP1620
BUNCOMBE		NC63	RP1843
BUNCOMBE		RP2776	RP2785
BURKE		I40	MILE109
BURKE		I40	MILE114
BURKE		I40	MILE114
BURKE		I40	RP1102
BURKE		I40	US64

BURKE		NC181	NC183
BURKE		NC181	RP1265
BURKE		NC181	RP1402
BURKE		NC181	RP1405
BURKE		NC181	RP1406
BURKE		RP1233	RP1223
BURKE		US64	RP1949
BURKE		US70	RP1233
CABARRUS		I85	SPEEDWAY BLVD
CABARRUS		NC24	RP1132
CABARRUS		NC49	RP2600
CABARRUS		NC73	
CABARRUS		NC73	RP1529
CABARRUS		US601	RP1147
CALDWELL	LENOIR	CREEKWAY DR	MEADOW LANE DR
CALDWELL	LENOIR	MORGANTON BLVD	HOOVER ST
CALDWELL		NC18	RP1709
CALDWELL	GRANITE FALLS	US321	PINECREST AVE
CALDWELL		US321	RP1346
CALDWELL		US321	US321A
CARTERET		NC24	RP1660
CARTERET		US70	RP1141
CARTERET		US70	RP1411
CASWELL		NC57	RP1542
CATAWBA	LONG VIEW	2ND AVE	
CATAWBA		I 40	NC16
CATAWBA		I 40	NC16
CATAWBA	HICKORY	I 40	RP1007
CATAWBA		I 40	RP1717
CATAWBA	NEWTON	NC10	NOTTINGHAM DR
CATAWBA		NC150	IREDE
CATAWBA		NC150	RP1848
CATAWBA		NC16	RP1810
CATAWBA	NEWTON	US321	NC10
CATAWBA	MAIDEN	US321	PINEHURST ST
CHATHAM		NC22	NC902
CHATHAM		NC87	RP1515
CHATHAM		RP2303	RP2309
CHATHAM		US1	WAKE
CHATHAM	PITTSBORO	US15	LOG BARN ACRES
CHATHAM		US421	RANDO
CHATHAM		US421	RP2119
CHATHAM	SILER CITY	US421	RP2120
CHATHAM		US421	RP2126
CHATHAM		US421	RP2135
CHATHAM		US421	RP2135
CHATHAM		US421	RP2139
CHATHAM		US64	NC751
CHATHAM		US64	RP1500
CHATHAM		US64	RP1700
CHOWAN		NC32	RP1316
CHOWAN		NC32	RP1317
CHOWAN		RP1303	RP1322
CLEVELAND	SHELBY	DEKALB ST	BUFFALO ST
CLEVELAND	SHELBY	DIXON BLVD	LINK RD
CLEVELAND	SHELBY	DIXON BLVD	POST RD
CLEVELAND	SHELBY	FALLSTON RD	
CLEVELAND		I85	SC
CLEVELAND		NC150	RP1149
CLEVELAND		NC18	RP1107
CLEVELAND		RP1313	RP1340
CLEVELAND		US74	RP1162
CLEVELAND		US74	RP1316
CLEVELAND		US74	RP2238
COLUMBUS	WHITEVILLE	J K POWELL BLVD	COLLEGE ST
COLUMBUS		NC410	US74
COLUMBUS		NC905	SC
COLUMBUS		US701	RP1168
COLUMBUS		US701	RP1551
COLUMBUS		US74	RP1506
COLUMBUS		US74	RP1562
COLUMBUS		US74	RP1562
COLUMBUS		US74	RP1572
COLUMBUS		US74	RP1700

COLUMBUS		US74	RP1731
COLUMBUS		US76	RP1504
COLUMBUS		US76	SC
COLUMBUS		US76	SC
CRAVEN		NC101	RP1824
CRAVEN		NC43	RP1504
CRAVEN		NC43	RP1644
CRAVEN		RP1262	RU1272
CRAVEN		RP1436	US17
CRAVEN		US17	RP1616
CRAVEN		US17	RP1628
CRAVEN		US70	RP1176
CRAVEN		US70	RP1225
CUMBERLAND	FAYETTEVILLE	EASTERN BLVD	GILLESPIE
CUMBERLAND	FAYETTEVILLE	GILLESPIE ST	MOUNTAIN DR
CUMBERLAND		I95	MILE069
CUMBERLAND		I95	RP1806
CUMBERLAND		I95	RP1832
CUMBERLAND		I95	RP2215
CUMBERLAND	FAYETTEVILLE	MURCHISON RD	DURHAM ST
CUMBERLAND	FAYETTEVILLE	MURCHISON RD	MATHEWS ST
CUMBERLAND		NC2 4	RP1006
CUMBERLAND		NC87	HARNE
CUMBERLAND		NC87	RP2237
CUMBERLAND		NC87	RP2238
CUMBERLAND	FAYETTEVILLE	OWEN DR	EASTERN BLVD
CUMBERLAND	FAYETTEVILLE	OWEN DR	RAEFORD RD
CUMBERLAND	FAYETTEVILLE	RANKIN ST	RUSSELL ST
CUMBERLAND		RP1141	RP2995
CUMBERLAND		RP1704	CHALLENGER DR
CUMBERLAND		RP2273	RP2219
CUMBERLAND		US13	RP1821
CUMBERLAND		US13	RP1828
CUMBERLAND		US301	RP2220
CURRITUCK		NC168	RP1214
DAVIDSON		I85	RP1295
DAVIDSON		I85	RP2085
DAVIDSON		I85	RP2183
DAVIDSON		I85	US29
DAVIDSON		NC8	RP1118
DAVIDSON		NC8	RP1848
DAVIDSON		NC8	RU2412
DAVIDSON		RP1147	RP1151
DAVIDSON		RP1708	RP1961
DAVIDSON		RP2205	RP2229
DAVIDSON		RP3010	RP1412
DAVIDSON		US64	DAVIE
DAVIDSON		US64	RANDO
DAVIE		I 40	FORSY
DAVIE		I 40	MILE179
DAVIE		US601	RP1135
DAVIE		US64	DAVID
DAVIE		US64	IREDE
DUPLIN		I 40	MILE376
DUPLIN		I 40	US117
DUPLIN		NC111	RP1546
DUPLIN		NC24	NC11
DUPLIN		NC24	RP1723
DUPLIN		NC24	RP1923
DUPLIN		NC241	RP1711
DUPLIN		NC41	I40
DUPLIN	WALLACE	NC41	NC11
DUPLIN		NC41	RP1967
DUPLIN		RP1519	RU1526
DUPLIN		US117	RP1912
DURHAM	DURHAM	ELLIS RD	RIDDLE RD
DURHAM	DURHAM	GEER ST	
DURHAM	DURHAM	I40	MILE272
DURHAM	DURHAM	I40	NC751
DURHAM	DURHAM	I85	AVONDALE DR
DURHAM	DURHAM	I85	NC147
DURHAM		I85	RP1632
DURHAM	DURHAM	PLUM ST	VALE ST
DURHAM	DURHAM	ROXBORO RD	OAK HILL DR

DURHAM		RP1464	US501
DURHAM		RP1838	DURHA
DURHAM		US501	RP1628
DURHAM		US501	RP1629
DURHAM		US501	RP1640
DURHAM		US70	RP1926
EDGECOMBE	PRINCEVILLE	MUTUAL BLVD	OLD NC44
EDGECOMBE		NC42	NC111
EDGECOMBE		NC42	RP1608
EDGECOMBE		US64A	TARBORO
FORSYTH		I40	MILE201
FORSYTH	W SALEM	I40	NC150
FORSYTH	CLEMMONS	I40	RP1101
FORSYTH	W SALEM	I40	US158
FORSYTH	W SALEM	I40	US52
FORSYTH	KERNERSVILLE	I40B	NC66
FORSYTH	W SALEM	OLD WALKERTOWN RD	OAKDALE TER
FORSYTH		RP1003	RP2687
FORSYTH		RP2643	RP2794
FORSYTH	W SALEM	SPRAGUE ST	WAUGHTOWN ST
FORSYTH		US158	GUILF
FORSYTH	CLEMMONS	US158	HAMPTON RD
FORSYTH		US158	RP1971
FRANKLIN		NC56	RP1109
FRANKLIN		NC56	RP1622
FRANKLIN		NC98	RP1101
FRANKLIN		US401	RU1702
GASTON	GASTONIA	I85	MILE016
GASTON	GASTONIA	I85	MODENA ST
GASTON		I85	NC7
GASTON		I85	RP1302
GASTON		I85	US74
GASTON		NC16	DEAD END RD
GASTON		RP2400	NC274
GASTON		RP2400	RP2403
GATES	GATESVILLE	US13	RP1131
GATES		US13	US158
GRAHAM		US129	RP1103
GRANVILLE	BUTNER	GATE 2 RD	
GRANVILLE		I85	US15
GRANVILLE		I85	US15
GRANVILLE		I85	US15
GRANVILLE	BUTNER	NC56	BIRCH DR
GRANVILLE		NC56	RP1625
GRANVILLE		NC96	RP1422
GRANVILLE		NC96	RP1623
GRANVILLE		RP1445	RP1505
GRANVILLE		US15	RP1443
GRANVILLE		US158	US15
GUILFORD	GREENSBORO	BATTLEGROUND AVE	DAVID CALDWELL RD
GUILFORD	GREENSBORO	FRIENDLY AVE	DOWN WIND RD
GUILFORD	GREENSBORO	GALLIMORE DAIRY RD	ALBERT PICK RD
GUILFORD	GREENSBORO	HOLDEN RD	COLLIER DR
GUILFORD	GREENSBORO	I40	BURNT POPLAR RD
GUILFORD	GREENSBORO	I40	FREEMAN MILL RD
GUILFORD		I40	GREEN
GUILFORD	GREENSBORO	I40	GUILFORD COLLEGE RD
GUILFORD	GREENSBORO	I40	WENDOVER AVE
GUILFORD	GREENSBORO	I85	CREEK RIDGE RD
GUILFORD		I85	NC62
GUILFORD	GREENSBORO	I85	RANDLEMAN RD
GUILFORD		I85	RP1129
GUILFORD	GREENSBORO	MARKET ST	BOEING DR
GUILFORD		NC150	RP2501
GUILFORD		NC61	RP3224
GUILFORD		NC62	RP1137
GUILFORD		NC68	KELLY FORD RD
GUILFORD		NC68	NC65
GUILFORD		NC68	RP2023
GUILFORD		NC68	RP2048
GUILFORD	HIGH POINT	NC68	WILLARD DAIRY RD
GUILFORD		RP3549	RP3317
GUILFORD	GREENSBORO	TRENT ST	SAINT CHARLES LN
GUILFORD		US158	RP2037

GUILFORD	GREENSBORO	US29	CONE BLVD
GUILFORD		US29	RP1145
GUILFORD	GREENSBORO	US421	ALAMANCE CHURCH RD
GUILFORD		US421	RP3394
GUILFORD	GREENSBORO	WENDOVER AVE	SPRING GARDEN ST
HALIFAX		I95	NASH
HALIFAX		195	NC903
HALIFAX		I95	RP1002
HALIFAX		NC125	RU1814
HALIFAX		NC43	NC561
HALIFAX		NC48	RP1555
HALIFAX		NC903	SCOTLAND NECK
HALIFAX	ROANOKE RAPIDS	US158	CHURCH ST
HARNETT		I95	DUNN
HARNETT		I95	RP1709
HARNETT		I95	RP1808
HARNETT		NC217	RP2021
HARNETT		NC2 4	RP1117
HARNETT		NC87	RP1207
HARNETT		US401	RP1403
HARNETT	LILLINGTON	US421	RP1269
HAYWOOD		I40	MILE012
HAYWOOD		I40	MILE017
HAYWOOD		I40	MILE030
HAYWOOD		I40	US276
HAYWOOD		PVA WELCOME CENTER	
HAYWOOD		US19	RP1361
HAYWOOD		US23	US276
HENDERSON		I26	MILE017
HENDERSON		I26	MILE024
HENDERSON		I26	MILE025
HENDERSON		I26	MILE026
HENDERSON	HENDERSONVILLE	US25	STONEY MTN RD
HENDERSON	HENDERSONVILLE	US64	KING ST
HERTFORD		NC11	RP1108
HERTFORD		NC11	RP1213
HERTFORD		NC561	RP1198
HERTFORD		RP1212	RP1213
HERTFORD		US13	GATES
HERTFORD		US158	RP1179
HOKE		NC211	RP1203
IREDELL		I40	RP1502
IREDELL		I40	RP1512
IREDELL		I77	MECKL
IREDELL		I77	RP1109
IREDELL		I77	RP1311
IREDELL		I77	RP1312
IREDELL	STATESVILLE	I77	RP2171
IREDELL		I77	RP2342
IREDELL		I77	US21
IREDELL		I77	US21
IREDELL		I77	US70
IREDELL		NC115	RP2948
IREDELL	MOORESVILLE	PLAZA DR	LOCK DOCK PL
JACKSON		RP1120	RU1121
JACKSON		US23	US23B
JACKSON		US441	US19
JOHNSTON	KENLY	CHURCH ST	EDGERTON ST
JOHNSTON		I40	MILE319
JOHNSTON		I40	RP1322
JOHNSTON	BENSON	195	I40
JOHNSTON		I95	RP1007
JOHNSTON	SMITHFIELD	I95	RP1007
JOHNSTON		I95	RP1171
JOHNSTON		I95	RP2130
JOHNSTON		I95	US701
JOHNSTON	SMITHFIELD	MARKET ST	5TH ST
JOHNSTON	SMITHFIELD	MARKET ST	SECOND ST
JOHNSTON		NC242	RP1117
JOHNSTON		NC39	RU1734
JOHNSTON		NC42	RP1524
JOHNSTON		NC42	RP2117
JOHNSTON		NC50	RP1378
JOHNSTON		RP1003	US70

JOHNSTON		RP2320	RP2360
JOHNSTON		RP2398	US70
JOHNSTON	SELMA	US70	
JOHNSTON	CLAYTON	US70	
JOHNSTON		US70	RP1002
JOHNSTON		US 70	RP2308
JOHNSTON		US70	RP2522
JOHNSTON		US70	RP2556
JOHNSTON		US70	RP2556
JOHNSTON		US70	RU2314
JOHNSTON		US701	RP1137
JOHNSTON		US701	RP1181
JOHNSTON		US70B	RP1918
JONES		NC58	RP1122
JONES		US17	A ST
LEE	SANFORD	HORNER BLVD	WALL ST
LEE		NC87	RP1139
LEE		RP1166	RP1175
LEE		US1	CHATH
LEE		US1	MOORE
LEE		US1	RP1198
LEE		US1	RP1466
LEE		US421	RP1531
LENIOR		NC11	RP1168
LENIOR		NC11	RP1353
LENIOR		NC58	RP1920
LENIOR		RP1514	RP1513
LENIOR		RP1573	RP1607
LENIOR		US70	RP1603
LENIOR		US70	RP1603
LENIOR		US70	RP2001
LINCOLN	LINCOLNTON	GENERALS BLVD	ASPEN ST
LINCOLN		NC150	RP1367
LINCOLN		NC16	RP1388
LINCOLN		NC16	RP1390
LINCOLN		NC182	RP1168
LINCOLN		NC27	NC150
LINCOLN		NC27	RP1138
LINCOLN		NC27	RP1712
LINCOLN		NC27	RP1712
MACON		US23	RP1152
MACON		US23	RP1682
MACON	FRANKLIN	US441	
MACON		US64	RP1448
MACON		US64	RP1448
MACON		US64	RP1448
MADISON		US23	RP1347
MADISON		US23	RP1506
MADISON		US23	RP1508
MADISON		US23	RU1352
MADISON		US25	RP1140
MARTIN	WILLIAMSTON	EAST BLVD	WILLOW DR
MARTIN	WILLIAMSTON	HAUGHTON ST	LIBERTY ST
MARTIN		NC11	BERTI
MARTIN		NC11	BERTI
MARTIN		NC11	BERTI
MARTIN		PVA FERTILIZER COMPA	
MARTIN		US13	RP1139
MARTIN		US13	RP1405
MCDOWELL		I 40	BURKE
MCDOWELL		I 40	MILE073
MCDOWELL		I40	MILE093
MCDOWELL		I40	RP1001
MCDOWELL		RP1001	RP1183
MCDOWELL	MARION	US221	HANKINS RD
MCDOWELL		US221	RP1555
MCDOWELL		US221	RP1589
MCDOWELL		US64	RUTHE
MECKLENBERG	CHARLOTTE	BROOKSHIRE BLVD	HONEYWOOD AVE
MECKLENBERG	CHARLOTTE	BROOKSHIRE FRWY	BEATTIES FORD RD
MECKLENBERG	CHARLOTTE	I77	NC16
MECKLENBERG	CHARLOTTE	I77	REMOUNT RD
MECKLENBERG	CHARLOTTE	I77	WOODLAWN RD
MECKLENBERG	CHARLOTTE	I85	BILLY GRAHAM PKWY

MECKLENBERG	CHARLOTTE	I85	I77
MECKLENBERG	CHARLOTTE	I85	RP2074
MECKLENBERG	CHARLOTTE	I85	STATESVILLE RD
MECKLENBERG	CHARLOTTE	INDEPENCDENCE BLVD	ALBEMARLE RD
MECKLENBERG	CHARLOTTE	INDEPENDENCE BLVD	GLENDORA DR
MECKLENBERG	MATTHEWS	INDEPENDENCE BLVD	WINDSOR SQUARE DR
MECKLENBERG	CHARLOTTE	PARK RD	MOCKINGBIRD LN
MECKLENBERG	CHARLOTTE	PARKWOOD AVE	16 TH ST
MECKLENBERG	CHARLOTTE	PVA COTTWONWOOD ST	
MECKLENBERG	CHARLOTTE	ROZZELLES FERRY RD	CORNONET WAY
MECKLENBERG		RP0000	FAYETTE RD
MECKLENBERG	HUNTERSVILLE	SAM FURR RD	GLENHURST DR
MECKLENBERG	CHARLOTTE	StARITA RD	I85
MECKLENBERG	CHARLOTTE	THE PLAZA	JAMES RD
MECKLENBERG	CHARLOTTE	US21	LAKEVIEW RD
MECKLENBERG	CHARLOTTE	W T HARRIS BLVD	DEMILL LN
MECKLENBERG	CHARLOTTE	W T HARRIS BLVD	STATESVILLE RD
MITCHELL		NC226	RP1116
MONTGOMERY		I73	NC24
MONTGOMERY		I73	US220A
MONTGOMERY		US220	NC211
MONTGOMERY		US220	RANDO
MOORE		NC24	MONTG
MOORE		NC24	RP1825
MOORE		NC24	RU1279
MOORE		RP1229	RP1230
MOORE	SOUTHERN PINES	US1	MORGANTON RD
MOORE		US1	RP1825
NASH		I95	NC58
NASH		I95	RP1604
NASH		I95	RP1717
NASH	ROCKY MOUNT	NC4	US301
NASH		NC58	RP1425
NASH		NC97	RP1940
NASH		RP1524	I95
NASH		US264	RP1105
NASH		US264	WILSO
NASH	ROCKY MOUNT	WESLEYAN BLVD	COLLEGE RD
NEW HANOVER	WILMINGTON	OLEANDER DR	HAWTHORNE PL
NEW HANOVER		RP1187	US421
NEW HANOVER		RP1322	RP1321
NEW HANOVER		US17	PENDER
NEW HANOVER		US17	RP1399
NEW HANOVER		US421	NC132
NEW HANOVER		US421	PENDE
NORTHAMPTON		I95	NC46
NORTHAMPTON		I95	NC46
NORTHAMPTON		NC48	RP1296
NORTHAMPTON	CONWAY	US158	
NORTHAMPTON	GARYSBURG	US158	RP1239
ONSLOW		NC53	RP1216
ONSLOW	JACKSONVILLE	PVA JACKSONVILLE	
ONSLOW		RP1413	RP1848
ONSLOW	JACKSONVILLE	US17	RIVERVIEW ST
ONSLOW		US17	RP1327
ONSLOW		US17	RP1410
ONSLOW		US17	RP1439
ONSLOW		US258	RP1235
ONSLOW		US258	RP1263
ORANGE	CHAPEL HILL	AIRPORT RD	HOMESTEAD RD
ORANGE	CHAPEL HILL	CAMERON AVE	MCCAULEY ST
ORANGE		I 40	RP1120
ORANGE		I40	RP1723
ORANGE		US70	RP1560
PAMLICO		NC306	BEAUF
PAMLICO		RP1322	RP1321
PASQUOTANK	ELIZABETH CITY	HUGHES BLVD	SAWYER ST
PASQUOTANK	ELIZABETH CITY	WEEKSVILLE RD	PITTS CHAPEL RD
PENDER		I 40	NEW H
PENDER		NC210	RP1409
PENDER		NC53	NC50
PENDER		NC53	RP1122
PENDER		NC53	RP1128
PENDER		NC53	RP1520

PENDER		RP1002	NC210
PENDER		RP1336	RP1345
PENDER		US17	RP1561
PENDER		US421	RP1113
PENDER		US421	RP1209
PERQUIMANS	HERTFORD	US17	
PERSON		US158	RU1725
PERSON		US501	RP1330
PERSON		US501	RP1500
PERSON		US501	RP1715
PITT	GREENVILLE	DICKINSON AVE	GRACE ST
PITT	GREENVILLE	MEMORIAL DR	IONE ST
PITT		NC33	RP1403
PITT		RP1529	RP1541
PITT		RP1753	RP1922
PITT	GREENVILLE	STANTONSBURG RD	BS BARBECUE RD
PITT		US264	RP1529
PITT		US264	RP1529
PITT		US264A	RP2102
POLK		I26	MILE031
POLK		I26	MILE032
POLK		I26	MILE036
POLK		I26	US74
RANDOLPH	ASHEBORO	DIXIE DR	DUBLIN RD
RANDOLPH	LIBERTY	GREENSBORO ST	LIBERTY GROVE RD
RANDOLPH		I73, R	RP1121
RANDOLPH	ARCHDALE	I85	TRINITY
RANDOLPH		NC49	RP1194
RANDOLPH		RP2114	RP2113
RANDOLPH	LIBERTY	RP2407	RP2409
RANDOLPH		US220	MONTG
RANDOLPH		US220	RP1217
RANDOLPH	SEAGROVE	US220	RP2856
RANDOLPH		US421	RP2261
RANDOLPH		US64	RP1003
RANDOLPH		US64	RP1416
RANDOLPH		US64	RP1419
RANDOLPH		US64	RP1424
RICHMOND	ROCKINGHAM	BROAD AVE	MANESS AVE
RICHMOND		RP1486	RP1424
RICHMOND		US1	MOORE
RICHMOND		US1	RP1100
RICHMOND		US1	RP1203
RICHMOND		US1	RP1696
ROBESON	SAINT PAULS	FIFTH ST	BLUE ST
ROBESON		I95	NC72
ROBESON	LUMBERTON	I95	NC72
ROBESON		I95	RP1155
ROBESON		I95	RP1529
ROBESON		I95	US301
ROBESON		I95	US301
ROBESON		I95	US74
ROBESON	LUMBERTON	I95	US74
ROBESON		NC211	RP1001
ROBESON	ROWLAND	PVA PARKING LOT	
ROBESON		RP1004	RP1968
ROBESON		RP1352	RP1355
ROBESON		RP1589	NC72
ROBESON		RP1752	US301
ROBESON		RP2100	NC211
ROBESON		US74	NC130
ROBESON		US74	NC72
ROBESON		US74	RP1165
ROBESON		US74	RP1197
ROBESON		US74	RP1373
ROBESON		US74	RP1550
ROBESON		US74	RP2210
ROBESON		US74	RP2225
ROBESON		US74	RP2245
ROBESON	LUMBERTON	US74	RP2500
ROCKINGHAM	REIDSVILLE	FREEWAY DR	GOLDWATER TR
ROCKINGHAM		NC135	RP2154
ROCKINGHAM		NC135	RP2205
ROCKINGHAM		NC68	RP1103

ROCKINGHAM	REIDSVILLE	RICHARDSON DR	COACH ST
ROCKINGHAM		US158	RP2394
ROCKINGHAM		US158	RP2670
ROCKINGHAM		US220	RP1360
ROCKINGHAM		US220	RP1378
ROCKINGHAM		US220	RU1391
ROCKINGHAM	EDEN	VAN BUREN RD	ARBOR LN
ROWAN	SALISBURY	I85	RP1002
ROWAN		I85	RP1002
ROWAN		I85	RP2114
ROWAN		I85	RP2538
ROWAN	SALISBURY	JAKE ALEXANDER BLVD	I85
ROWAN		PVA DERRICK TRUCK ST	
ROWAN		RP1221	RP2335
ROWAN		RP1560	US29
ROWAN		RP1728	RP1526
ROWAN		RP1984	RP2019
ROWAN		RP2539	RP1002
ROWAN	ROCKWELL	US52	GOLD HILL AVE
ROWAN		US52	RP2340
RUTHERFORD		NC226	RP1727
RUTHERFORD		RP2210	RP2147
RUTHERFORD		US74	RP1954
RUTHERFORD	SPINDALE	US74B	ELM ST
SAMP SON	ROSEBORO	EAST ST	NC242
SAMPSON		NC24	RP1240
SAMP SON		NC24	RP1262
SAMP SON		NC24	RP1301
SAMP SON		NC24	RP1406
SAMP SON		NC2 4	RP1420
SAMP SON		NC41	BLADE
SAMP SON		NC55	RP1801
SAMP SON		RP1004	RP1930
SAMP SON	NEWTON GROVE	US13	ALEX BENTON RD
SAMP SON		US13	RP1658
SAMP SON	HARRELLS	US421	RP1115
SAMPSON		US421	RP1128
SAMPSON		US421	RP1141
SAMPSON	HARRELLS	US421	RP1152
SAMP SON		US421	RP1933
SAMPSON		US701	JOHNS
SAMPSON		US701	RP1734
SCOTLAND		NC79	RP1119
SCOTLAND		RP1001	RP1392
SCOTLAND		RP1323	RP1369
SCOTLAND		RP1323	RP1425
SCOTLAND		RP1323	RP1425
SCOTLAND		US401	RP1305
SCOTLAND		US401	US401B
SCOTLAND		US74	US74B
SCOTLAND		US74	US74B
STANLY		NC24	NC205
STANLY		NC49	RP1508
STOKES	KING	MOUNTAIN VIEW RD	HELSABECK RD
STOKES		NC65	RP2084
STOKES		NC8	RP1001
STOKES		US52	RP1106
SURRY		NC104	RP1923
SURRY	ELKIN	NC268	PLEASANT HILL DR
SURRY		NC89	NC18
SURRY		NC89	RP1607
SURRY		NC89	RP1639
SURRY		NC89	RP1755
SURRY		NC89	VA
SURRY	MOUNT AIRY	US52	
SURRY		US52	RP1856
SWAIN		US19	NC2 8
SWAIN		US74	RU1305
UNION	MONROE	ROOSEVELT BLVD	DICKERSON BLVD
UNION		RP1001	RP1620
UNION		RP1301	RP1307
UNION	MONROE	SKYWAY DR	CEDAR ST
UNION		US601	RP1003
UNION		US601	RP1004

UNION		US601	RP1622
UNION		US601	RP2112
UNION		US601	SC
UNION	MARSHVILLE	US74	
UNION		US74	RP1373
UNION	INDIAN TRAIL	US74	RP1520
UNION		US74	RP1754
VANCE	HENDERSON	I85	NC39
VANCE		I85	RP1371
VANCE		I85	US1
VANCE		I85	US158
VANCE		RP1533	RP1596
VANCE		RP1577	NC39
VANCE		US1	RP1502
WAKE	RALEIGH	BARWELL RD	DAMON CT
WAKE	RALEIGH	BIG OAK ST	SOURWOOD ST
WAKE	MORRISVILLE	CHAPEL HILL RD	WATKINS RD
WAKE	CARY	CHATHAM ST	WEST ST
WAKE		I40	MILE301
WAKE		I40	NC54
WAKE		I40	RP1795
WAKE		I40	RP2547
WAKE		I40	US1
WAKE	RALEIGH	I440	WAKE FOREST RD
WAKE	RALEIGH	LEESVILLE RD	RAY RD
WAKE	FUQUAY VARINA	MAIN ST	ACADEMY ST
WAKE	MORRISVILLE	MORRISVILLE CARPENTE	DAVIS DR
WAKE		NC55	RP1301
WAKE		NC55	RP1624
WAKE		RP1101	RP1125
WAKE		RP1152	RP1539
WAKE		RP1664	ROCKWOOD DR
WAKE		RP2555	RP2542
WAKE	CARY	US1	KILDAIRE FARM RD
WAKE		US1	RP1010
WAKE		US1	US64
WAKE		US264	NC97
WAKE		US401	RP2036
WAKE		US401	RP2041
WAKE	KNIGHTDALE	US64	
WAKE		US64	NC55
WAKE		US64B	US64
WAKE		US70	RP3052
WARREN		I85	RP1210
WARREN		US158	RP1317
WARREN		US158	RP1325
WASHINGTON		NC32	NC45
WASHINGTON		NC45	US64
WASHINGTON	PLYMOUTH	US64	PEMBROKE CIR
WASHINGTON		US64	TYRRE
WATAUGA		NC105	RP1113
WATAUGA		US321	COUNTRY CLUB DR
WAYNE		NC111	RP1911
WAYNE		NC55	RP1105
WAYNE		NC55	RP1784
WAYNE		NC581	RP1002
WAYNE		NC581	RP1343
WAYNE		RP1002	RP1353
WAYNE		US117	RP1926
WAYNE		US13	RP1127
WAYNE		US70	LENOI
WILKES	WILKESBORO	NC16	CORPORATION ST
WILKES		NC18	RP1726
WILKES		NC18	RP1763
WILKES		NC2 68	RP2090
WILKES		PVA JOHNSTON LUMBER	
WILKES		US421	RP1152
WILKES		US421	RP2402
WILSON		I95	RP1103
WILSON		NC222	NC111
WILSON		NC42	RP1500
WILSON		PVA BENCHMARK CAROLI	
WILSON		RP1001	RP1156
WILSON		RP1003	RP1418

WILSON	RP1103	RP1175
WILSON	RP1136	RP1131
WILSON	US264	RP1507
WILSON	US264	RP1622
WILSON	US264A	RP1001
WILSON	US301	RP1003
WILSON	US301	RP1340
WILSON	US301	RP1648
WILSON	US301	RP1658
YADKIN	I77	MILE073
YADKIN	I77	SURRY
YADKIN	NC67	RP1510
YADKIN	NC67	RP1542
YADKIN	US421	I77
YADKIN	US421	RP1112
YADKIN	US421	RP1141
YADKIN	US421	RP1166
YADKIN	US421	RU1113
YADKIN	US421	RU1126
YANCEY	US19E	RP1196
YANCEY	$U S 19 E$	$R P 1307$
YANCEY	$U S 19 E$	$R P 1454$

Table 6
Ten Locations Having the Highest Number of Truck-Involved Crashes Within Each of the 30 Counties Targeted for Increased CMV Enforcement in FY2001

COUNTY	ACCTOWN	ONROAD	FROMRD	FREQ
ALAMANCE	BURLINGTON	I40	NC62	31
ALAMANCE	GRAHAM	I 40	NC87	26
ALAMANCE	GRAHAM	I40	NC49	25
ALAMANCE	GRAHAM	I 40	NC54	25
ALAMANCE	MEBANE	I 40	RP1928	24
ALAMANCE	BURLINGTON	I 40	RP1158	22
ALAMANCE	MEBANE	I 40	RP1007	12
ALAMANCE	BURLINGTON	I 40	RP1149	11
ALAMANCE	GRAHAM	I 40	RP1981	10
ALAMANCE		I40	GUILF	9
BUNCOMBE	ASHEVILLE	I40	US19	21
BUNCOMBE	ASHEVILLE	I26	NC191	20
BUNCOMBE	ASHEVILLE	I40	US25	18
BUNCOMBE	ASHEVILLE	I26	NC146	14
BUNCOMBE	ASHEVILLE	I40	NC191	13
BUNCOMBE	ASHEVILLE	I240	US19	8
BUNCOMBE		I26	NC280	8
BUNCOMBE	ASHEVILLE	I 40	I26	8
BUNCOMBE		I40	RP1205	8
BUNCOMBE	ASHEVILLE	I40	RP1220	8
BURKE	MORGANTON	I40	US 64	20
BURKE		NC181	RP1405	20
BURKE		I40	RP1001	18
BURKE	MORGANTON	I40	NC18	17
BURKE		I40	RP1761	17
BURKE	MORGANTON	I 40	RP1142	12
BURKE		I 40	RP1704	11
BURKE		I40	RP1755	9
BURKE	HILDEBRAN	I40	RP1002	8
BURKE		I40	RP1758	8
CABARRUS	CONCORD	I85	RP1394	49
CABARRUS	CONCORD	I85	NC73	40
CABARRUS	CONCORD	I85	US29	22
CABARRUS	KANNAPOLIS	I85	RP2180	11
CABARRUS	KANNAPOLIS	I85	RP2126	10
CABARRUS	CONCORD	US601	OLD CHARLOTTE RD	8
CABARRUS	CONCORD	I85	RP2894	7
CABARRUS	CONCORD	NC73	I85	7
CABARRUS	CONCORD	US601	CABARRUS AVE	7
CABARRUS		US601	NC24	7
CATAWBA	HICKORY	I 40	RP1007	23
CATAWBA	HICKORY	I40	RP1476	14
CATAWBA	CLAREMONT	I40	RP1717	13
CATAWBA	CLAREMONT	I40	RP1715	12
CATAWBA	HICKORY	US321	US70	10
CATAWBA	HICKORY	1ST AVE	1ST ST	9
CATAWBA	HICKORY	I 40	US321	9
CATAWBA	HICKORY	US70	US321	9
CATAWBA	HICKORY	FAIRGROVE CHURCH RD	US70	8
CLEVELAND		I85	NC161	22
CLEVELAND	KINGS MOUNTAIN	I85	RP2283	19
CLEVELAND		I85	NC216	15
CLEVELAND		US74	RP2238	12
CLEVELAND	MOORESBORO	US74	US74B	12
CLEVELAND	SHELBY	DIXON BLVD	EARL RD	10
CLEVELAND		US74	RP1161	7
CLEVELAND	SHELBY	DIXON BLVD	POST RD	6
CLEVELAND		I85	US29	6
CLEVELAND		US74	NC226	6
CUMBERLAND	FAYETTEVILLE	EASTERN BLVD	GROVE ST	14
CUMBERLAND	FAYETTEVILLE	I95	US13	14
CUMBERLAND		I95	NC82	13
CUMBERLAND	FAYETTEVILLE	I95	NC53	12
CUMBERLAND		I95	RP1806	12
CUMBERLAND		I95	NC87	11

CUMBERLAND	FAYETTEVILLE	GROVE ST	B ST	9
CUMBERLAND	FAYETTEVILLE	GROVE ST	EASTERN BLVD	9
CUMBERLAND		I95	RP1815	9
CUMBERLAND	SPRING LAKE	BRAGG BLVD	SPRING AVE	8
DAVIDSON	LEXINGTON	I85	US64	22
DAVIDSON	LEXINGTON	I85	NC150	15
DAVIDSON		I85	RP2205	14
DAVIDSON	LEXINGTON	I85	US29	13
DAVIDSON		I85	RP1133	12
DAVIDSON	THOMASVILLE	I85	NC109	11
DAVIDSON	LEXINGTON	I85	NC8	10
DAVIDSON		I85	RP1295	9
DAVIDSON		US64	RP2099	9
DAVIDSON		I85	RP2010	7
DURHAM	DURHAM	I85	GUESS RD	27
DURHAM	DURHAM	I85	US70	23
DURHAM	DURHAM	I85	RP1637	22
DURHAM	DURHAM	I85	HILLANDALE RD	21
DURHAM	DURHAM	I40	NC55	20
DURHAM	DURHAM	ERWIN RD	MAIN ST	19
DURHAM	DURHAM	I40	RP1999	19
DURHAM	DURHAM	I85	DUKE ST	19
DURHAM	DURHAM	I40	NC54	18
DURHAM	DURHAM	I85	RP1632	17
FORSYTH	WINSTON SALEM	I40	US52	36
FORSYTH	WINSTON SALEM	I 40	US311	23
FORSYTH	WINSTON SALEM	I40	NC109	21
FORSYTH	WINSTON SALEM	US52	US421	19
FORSYTH	WINSTON SALEM	US52	AKRON DR	18
FORSYTH	CLEMMONS	I40	RP1101	15
FORSYTH	WINSTON SALEM	US52	LIBERTY ST	15
FORSYTH	WINSTON SALEM	US52	PATTERSON AVE	15
FORSYTH	KERNERSVILLE	I40	NC66	14
FORSYTH	CLEMMONS	I40	RP1103	13
GASTON	GASTONIA	I85	RP1307	60
GASTON	MCADENVILLE	I85	NC7	46
GASTON	GASTONIA	I85	CHESTER ST	33
GASTON	MCADENVILLE	I85	NC273	30
GASTON	KINGS MOUNTAIN	I85	US74	28
GASTON	MCADENVILLE	I85	RP2000	22
GASTON	GASTONIA	I85	OZARK AVE	21
GASTON	GASTONIA	I85	NC274	19
GASTON	BELMONT	I85	RP2093	18
GASTON	GASTONIA	I85	COX RD	15
GUILFORD	GREENSBORO	I40	WENDOVER AVE	75
GUILFORD	GREENSBORO	I85	ELM EUGENE ST	50
GUILFORD	GREENSBORO	I40	CHIMNEY ROCK RD	43
GUILFORD	GREENSBORO	I40	RP3000	40
GUILFORD	GREENSBORO	I40	HIGH POINT RD	38
GUILFORD	GREENSBORO	I40	GUILFORD COLLEGE RD	36
GUILFORD	GREENSBORO	I40	NC6	36
GUILFORD	GREENSBORO	I40	NC68	36
GUILFORD		I40	NC61	31
GUILFORD	GREENSBORO	I40	RP3045	31
HALIFAX		I95	US158	36
HALIFAX		I95	NC481	26
HALIFAX	ROANOKE RAPIDS	I95	NC903	26
HALIFAX	ROANOKE RAPIDS	I95	NC561	18
HALIFAX	ROANOKE RAPIDS	I95	NC125	16
HALIFAX		I95	RP1600	7
HALIFAX		I95	RP1002	5
HALIFAX	WELDON	US158	I95	5
HALIFAX	ENFIELD	I95	NASH	4
HALIFAX		NC125	US301	4
HARNETT		I95	RP1808	25
HARNETT		I95	RP1002	24
HARNETT	DUNN	I95	US421	20
HARNETT		I95	RP1709	8
HARNETT	DUNN	CUMBERLAND ST	ELLIS AVE	6
HARNETT		I95	RP1793	6
HARNETT		I95	RP1811	5
HARNETT	LILLINGTON	MAIN ST	FRONT ST	5
HARNETT		NC210	RP2072	5
HARNETT	LILLINGTON	US421	NC210	5

PITT	GREENVILLE	GREENVILLE BLVD	10 TH ST	4
PITT	GREENVILLE	MEMORIAL DR	5 TH ST	4
PITT	GREENVILLE	MEMORIAL DR	WESTHAVEN RD	4
PITT		NC11	RP1110	4
PITT		RP1401	RP1403	4
RANDOLPH		I85	RP1558	13
RANDOLPH	ARCHDALE	I85	US311	12
RANDOLPH	ASHEBORO	DIXIE DR	PARK ST	8
RANDOLPH		I85	RP1547	7
RANDOLPH		US421	RP2407	6
RANDOLPH	ASHEBORO	DIXIE DR	NC42	5
RANDOLPH	ASHEBORO	NC49	RP1163	5
RANDOLPH		US220	RP1504	5
RANDOLPH		US421	RP2261	5
RANDOLPH	ASHEBORO	DIXIE DR	CLIFF RD	4
ROBESON	LUMBERTON	I95	US301	49
ROBESON		I95	NC20	29
ROBESON	LUMBERTON	I95	US74	18
ROBESON		I95	RP1726	16
ROBESON		I95	RP1723	15
ROBESON	LUMBERTON	I95	NC72	12
ROBESON	LUMBERTON	I95	RP1529	11
ROBESON		I95	RP1758	11
ROBESON	LUMBERTON	I95	NC711	10
ROBESON		I95	RP1718	10
ROWAN	SALISBURY	I85	RP2528	22
ROWAN		I85	RP2120	21
ROWAN		I85	RP2538	21
ROWAN	SALISBURY	I85	RP1505	19
ROWAN	SPENCER	I85	RP1915	18
ROWAN	SALISBURY	I85	US52	18
ROWAN		I85	RP1500	16
ROWAN	SALISBURY	I85	RP1002	13
ROWAN		I85	RP2539	13
ROWAN	SALISBURY	I85	RP1526	11
SURRY	MOUNT AIRY	I77	NC89	20
SURRY	ELKIN	I77	RP1138	19
SURRY	MT AIRY	US52	NEWSOME ST	17
SURRY	MT AIRY	US52	RP1815	15
SURRY	DOBSON	I77	RP1001	13
SURRY		NC89	I77	11
SURRY		NC89	NC752	11
SURRY	PILOT MOUNTAIN	US52	NC268	11
SURRY		I77	NC752	10
SURRY	MT AIRY	US52	ROCKFORD ST	9
UNION	STALLINGS	US74	RP1365	25
UNION	INDIAN TRAIL	US74	RP1367	22
UNION	INDIAN TRAIL	US74	RP1008	19
UNION	INDIAN TRAIL	US74	RP2356	18
UNION	INDIAN TRAIL	US74	RP1377	17
UNION	MONROE	US74	STAFFORD ST	11
UNION	MONROE	US74	DICKERSON BLVD	10
UNION		US74	RP1754	10
UNION	MONROE	US74	ROCKY RIVER RD	9
UNION	MONROE	US74	US601	9
WAKE	CARY	I 40	RP1652	50
WAKE	RALEIGH	NEW BERN AVE	TRAWICK RD	41
WAKE	RALEIGH	NEW BERN AVE	CORPORATION PKWY	40
WAKE	RALEIGH	I440	CAPITAL BLVD	29
WAKE	RALEIGH	WAKE FOREST RD	I440	29
WAKE	CARY	US1	CARY PKWY	28
WAKE	RALEIGH	I440	GLENWOOD AVE	26
WAKE	RALEIGH	NEW BERN AVE	I440	26
WAKE	RALEIGH	I 40	US70	25
WAKE		I40	RP3015	24
WAYNE	GOLDSBORO	US117	RP1926	13
WAYNE	GOLDSBORO	US70	NC581	13
WAYNE		US117	RP1915	10
WAYNE	GOLDSBORO	US70	NC111	9
WAYNE		NC55	RP1110	8
WAYNE	GOLDSBORO	US117	ELM ST	8
WAYNE		US70	RP1242	7
WAYNE		RP1938	RP1120	6
WAYNE		US117	RP1120	6

WAYNE	GOLDSBORO	US70	US117	6
WILSON	WILSON	I95	US264	16
WILSON	WILSON	RALEIGH RD	WARD BLVD	13
WILSON		I95	NC42	12
WILSON	WILSON	WARD BLVD	NASH ST	11
WILSON	WILSON	NASH ST	WARD BLVD	10
WILSON		US264	NC58	10
WILSON	WILSON	US264	NC91	10
WILSON	WILSON	US301	FOREST HILLS RD	10
WILSON	WILSON	HERRING AVE	WARD BLVD	9
WILSON	WILSON	US264	I95	9

Maneuvers and Contributing Factors

Table 7 ranks from high to low the percent of time that a specific factor (on the part of the CMV driver) was reported as 'contributing' in some way to the crash. Factors have been ranked separately for 1998 and 1999. The 'average' has been calculated across the entire five year period of 1995-1999. It is instructive to point out that in two thirds or more of the time, there is no contributing factor reported on the part of the CMV driver. Where a contributing factor was reported, it was most likely to have been for (a) erratic/reckless driving, (b) driving too fast, (c) driving on the wrong side of the road. . . lane encroachment, (d) failure to yield or to obey traffic control device, or (e) run off road.

With respect to what the CMV driver was doing (in terms of a maneuver) at the time of the crash, the data are not extremely informative (see Table 8). Going straight and negotiating a curve are likely exposure factors and not risk factors per se. To the extent that crashes associated with having to avoid an animal are not that common, the relatively high crash frequencies associated with this condition suggests that it presents a high maneuver risk. Likewise 'slowing/stopping in lane,' 'starting in lane and/or stopped in lane' suggest that unexpected maneuvers occasioned by sudden or unexpected accelerations and/or deccelerations are also problematic.
Percent of Fatal Truck-Involved Crashes Where Specific Contributing Factor
Was Attributed to CMV Driver
Source: FARS 1995-1999

$\underset{4}{\geq}$

 $\underset{\sim}{\ominus}$

Run Off Rd
Weq Equip
Unlawful Noise
Other Viol
Improper Loading

Unknown Hit and Run
Improper Lane Change Improper Tailing
 Other Impr Turn Flat Tire

W/O Req Equip
Unknown
Veh Unattended

Veh Unattended Improper Loading Run Off Rd

Other Viol | W/O Req Equip |
| :--- |
| Unknown |
| Veh Unattended |

Wrong Side of Road Homocide
Failure to Yield
Failure to Obey

> Unlawful Noise Operator Inexperience $\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \frac{5}{0} \\ & 3\end{aligned}$ | $\overline{1}$ |
| :--- |
| |
| |

Other Impr Turn

Veh Unattended
Hit and Run

Improper Tailing prop | Fail to Signal |
| :--- |
| Wrong Way |

Locked Wheel Insuff Pass Dist

Erratic/Reckless
Driving Too Fast
Wrong Side of Road
Failure to Yield
Failure to Obey
Homecide

Table 8
Commercial Vehicle Maneuver Associated With Fatal Heavy Truck-Involved Crashes in North Carolina Source: FARS 1995-1999

	1995	1996	1997	1998	1999
Going Straight	126	113	127	157	125
Negotiate Curve	15	12	29	34	29
Avoid Animal	11	6	8	7	9
Left Turn	6	6	3	13	9
Slowing/Stopping	5	7	8	6	4
Stopped in Lane	3	5	9	5	4
Starting in Lane	0	5	2	3	4
Backing Up	5	3	4	3	2
Enter Parking	0	0	0	0	1
U-Turn	0	0	0	0	1
Changing Lanes	1	2	2	0	1
RTOR Permitted	3	0	1	1	0
RTOR Not Known	1	0	1	1	0
Other	1	0	0	1	0
Unknown	0	0	1	0	0
Passing	1	6	0	0	0
Leave Parking	0	0	0	1	0
	178	165	195	232	189

* Ranked Based on 1999 Data

Figure 19 shows a roll over as being associated with fatal truck-involved crashes on the order of 12 to 15 percent of the time. Where a roll over took place in conjunction with a fatal crash, it most often occurred subsequent to the crash as opposed to being the first event or event which gave cause to the crash..

Figure 19
Percent of Rollovers Reported as Either 'First' or 'Subsequent'
Event in Fatal Truck Involved Crashes
Source: FARS 1995-1999

Driver-Related Factors (Alcohol, Age, etc.)
Figure 20 shows that CMV drivers involved in crashes had been drinking in less than 1 percent of the cases.

Figure 20
Truck Drivers Involved in Crashes 1995-1999
Drinking and Not Drinking
Source: FARS
Drinking
0.25\%

With respect to license status, Table 9 shows, by year, the status of the CMV driver's license. Conditions are reported as a percentage of all reported cases. The data show that the driver was driving with a valid license in approximately 95 percent of the time. These data suggest that there has been an increase in the involvement of drivers (in fatal crashes) operating on suspended licenses (from fewer than 1 percent of all fatal crashes in 1995 to over 3 percent in 1999).

Table 9
License Status (as a Percent of Total Cases) for Heavy Truck Operators Involved in Fatal Crashes in North Carolina Source: FARS 1995-1999

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	5yr Avg
	0	0	0.52	0	0	0.10
Not Licensed	0	0	0	0.53	0.11	
Not Required	0	0	0	0	3.17	1.51
Suspended	0.56	1.2	2.6	0	0	0.77
Revoked	1.69	1.2	0.52	0.43	0	3.46
Not Valid		4.22	3.65	2.16	3.7	3.43
Valid	94.35	95.78	94.27	96.98	94.71	95.22
Unknown	1.69	0	1.56	0.86	1.06	1.03

With respect to the age of the CMV driver involved in fatal crashes, refer to the data in Figure 21. The data show a 6-7 percentage point decrease (from 26.26 to 19.6 percent) in the number of drivers, age 15-30, involved in fatal truck crashes. There is no evidence for a change in the likelihood of involvement for drivers in the 31 to 50 year old age range. The data, however, show a greater than 4 percentage point increase (from 20.41 to 24.62 percent) increase in the involvement of older drivers (age 51 and older).

Figure 21
Change from 1995 to 1999 in the Percentage of Heavy Truck Drivers in Each Age Group Involved in Crashes Source: FARS

The Application of Geographic Information Systems (GIS) Capabilities

In attempting to convey the spatial attributes of truck-involved crashes in North Carolina to both the general public and to commercial vehicle enforcement personnel, the utility of a GIS or map-like interface to these kinds of data became readily obvious. Use of terms like the 'crescent' to describe the geographic location and extent of truck-involved crashes statewide implies a certain visual 'image' for the area under discussion. Defining the extent of the problem in visible, geographic (map-like) terms also proved helpful from the standpoint of allowing enforcement personnel operating within a defined geographic area of responsibility (districts) to more clearly orient to the spatial characteristics of the problem in ways that tabular data did not. And to the extent that enforcement personnel constitute a limited resource, the use of a GIS-type interface, seems to allow those responsible for the management of such resources a useful means to spot major discrepancies between the location of the problem and the spatial allocation/distribution of resources to address the problem.

Working with the North Carolina Center for Geographic Information and Analysis (CGIA), HSRC and GHSP sought to build on previous FHWA efforts at using GIS to characterize the locus of ped/bike crashes and truck crash 'corridors.' By building upon this prior work, HSRC and GHSP were able to also explore the utility of the analysis tools developed by CGIA in the context of those earlier efforts.

The GIS products described here represent very preliminary results in efforts to develop a spatially referenced crash data system for application to commercial motor vehicle crashes. These efforts are preliminary more in the sense of the scope of the data associated with the applications . . . in this case, a focus only on fatal truck-involved crashes over the period 1998 to 1999. Nevertheless, the effort provided the opportunity to experiment with the NCDOT's emerging linear referencing system and its ability to derive 'coordinates' from 'on-at-and-from' type road description used to indicate crash locations.

The effort also allowed HSRC the opportunity to explore further the results of other analyses (e.g., the relationship of crash frequency to population) as well as to address new issues such as the proximity of fatal truck-involved crashes to major trauma centers across the state.

Perhaps the greatest value of the current GIS efforts has been the insight its has prompted on the part of DMV Enforcement that perhaps GIS can help in establishing the connection between the spatial density of crashes and the spatial density of CMV enforcement activities. It is hoped that the use of GIS can help conceptually in arriving at a more useful notion of the capacity of the enforcement system to exercise not only broad area coverage (visibility) but also broad area effectiveness. How 'dense' must enforcement activity be (e.g., in terms of enforcement actions per square mile) to be 'effective'? And from a temporal standpoint, how long must this density be in place to be effective? Are concentrated wolf pack efforts, for example, more effective than a consistent broad-based 'presence' over a large geographic area? These questions are important from the standpoint of understanding resource needs in terms of the relationship between capacity and effectiveness.

GIS "Products" Generated in FY2000

The Crash Density Plot. Figure 22 is an example of the use of existing GIS analysis tools to define the relative density of crashes across the state. The data are all fatal truckinvolved crashes over the two-year period between 1998 and 1999. Major aspects of the state road network are shown. Points are locations of actual crashes. The density plot is more informative than previous statewide plots which simply color-coded counties in terms of crash frequency. The density plot focuses on the relative magnitude of the problem independently of county boundaries. In this particular plot, one notices an area of crash density along SR74 near the North Carolina/South Carolina border. In the density plot, this area shows up even though a traditional county level orientation might not show these counties as being high in crashes. The same can be seen for Bertie County in the eastern portion of the state. Crash density can be high in a particular area even though the frequency of crashes in the county may not be sufficient to bring attention to the area otherwise.

Figure 22
Relative Densities of Fatal Truck-Involved Crashes in North Carolina Source: NCDMV Crash Files, 1998 and 1999

The Use of 'Clustering' Tools/Displays. Figure 23 demonstrates the use of GIS analysis capabilities to define 'clusters' of fatal truck-involved crashes based upon their proximity to either (a) distance from urban areas with populations greater than 40,000 or (b) distance from a 'municipality.' The figure shows how the clustering tool within GIS can be used to evaluate 'buffers' of various sizes (e.g., $5,10,15$, or 20 mile radius). The bar chart shows for each radius the percent of fatal crashes falling within that area. The top portion of the chart shows that approximately half of all fatal truck-involved crashes in North Carolina during the period 1998-1999 occurred within 20 miles of a major (greater
than 40,000) population area. The plots clearly show the 'crescent,' the greater Charlotte metropolitan area, the Asheville area, and the coastal areas around Wilmington. The bottom portion of the chart shows that almost 80 percent of all fatal truck-involved crashes occurred within 10-15 miles of a 'municipality.' While effective in capturing a higher percentage of fatal crashes than clusters defined on major population areas, the plot is not particularly informative in terms of targeting specific geographic areas.

Figure 23
USE OF GIS CRASH REFERENCING SYSTEM TO ‘CLUSTER' 1998 amd 1999 FATAL TRUCK CRASH LOCATIONS

DATA ARE FOR FATAL, HEAVY TRUCK-INVOLVED CRASHES IN NORTH CAROLINA, SOURCE : NCDMV CRASH DATA 1998-1999

Percart of Fitaln vethin a Dutance of

Further Information on Relationship Between Crashes, Population, and

Population Growth. Preliminary analyses (see Figure 24) had shown that the frequency of crashes (for calendar year 1998) at the county level could, on the average, be reasonably well predicted on the basis of the population of the country. Fatal crashes were not as well predicted solely on the basis of population, but rather reflected the fact that most fatals occurred in rural areas on NC and US-numbered highways.

Figure 25 takes a closer look at the relationship over between fatal truck-involved crashes and population size. . . in this case, counties with population of 100,000 or greater. The comparison is between 1998 and 1999. The data show that for 1998, approximately 39 percent (72 of 186) fatal crashes occurred in counties with populations of 100,000 or greater. By contrast, in 1999, 34 percent of all fatal truck-involved crashes took place in counties with populations of 100,000 or greater . . . i.e., an approximate 5 percent reduction in the percentage of truck-involved fatals occurring in the most highly populated counties . . .perhaps reflecting an increasing 'migration' of the crash problem into the less populated counties.

Figures 26 and 27 take a more dynamic view of population; in this case looking at counties which experienced either 10 percent growth in population from 1990-1999 or 20 percent growth. The data across both years shows that counties which grew more than 10 percent over the 10 year period accounted (in 1998 and 1999) for approximately 64 percent of all fatal truck-involved crashes. By contrast, those counties which grew by more than 20 percent accounted for approximately 21 percent of all fatal truck-involved crashes. Since the two sets of counties are not mutually exclusive, it is not possible to use these data to relate population 'growth' rates to crashes.

Figure 25
Fatal Truck Involved Crashes in Counties With

Populations of $\mathbf{1 0 0 , 0 0 0}$ or Greater Comparison Source: NCDMV Crash Data

Commercial Motor Vehicle Fatal Crashes

(72 of 180 fatak were in tigh papatospn opastes)

Commercial Motor Vehicle Fatal Crashes
437 of 110 fatak were in righ poosioson opuntes)

200 MEles
$=\frac{3 e^{1}}{4}$

Figure 26

Fatal Truck-Involved Crashes in Counties Which Grew by More than 10 Percent over the Period 1990-1999 Source: NCDMV Crash Data

Commercial Motor Vehicle Fatal Crashes

(118 of 196 ftals in ccurties that grw move than 10 paroent 1890-96)

Commercial Motor Vehicle Fatal Crashes

(73 af 110 fatals in sesties fiat grw reore fan 10 percert $1800-99$

1999 fatals
Population change 1990-99

Figure 27
 Fatal Truck-Involved Crashes in Counties Which Grew by More than 20 Percent over the Period 1990-1999 Source: NCDMV Crash Data

Commercial Motor Vehicle Fatal Crashes

9P of 185 fatak in ceurties fiat grw reore flan 20 percent $1800-991$

Commercial Motor Vehicle Fatal Crashes
424 of 110 fatak in seenties fiat grw more fian 20 percent $1800-991$

GIS Plots of Fatal Truck-Involved Crashes in 30-County Enforcement Area.
Appendix A contains GIS displays of 1998 and 1999 fatal truck-involved crash locations for each of the 30 high crash counties targeted for increased CMV enforcement activity in FY2001. Appendix B displays these same crash locations in the context of individual DMV Enforcement 'district' plots. Figure 28 provides an example of the type of aerial imagery that is available through the web site maintained by NCCGIA at http://www.ncmapnet.com/. The display of aerial photographs for all fatal truck crash locations during this period is beyond the scope of this report. The imagery is available free of charge over the Internet. The ability to go directly from the location reported in the DMV Form 349 crash report to the precise location in the on-line aerial data, while desirable and technically feasible, is not a current capability of the system.

Figure 28
 Renresentative Aerial Imagerv of Crash I ocations

It is the intent of the GIS work funded by GHSP in FY2001 to work toward the creation of a more effective and better integrated user interface for the coordinated GIS-based display of crash location information, crash report parameters, aerial imagery, and citation/adjudication data. It is also the intent of the FY2001 work to explore the feasibility of linking crash data to other external (Internet-based) sources of carrier data (e.g. that available through the FMCSA "A\&I On-line" site.

Fatal Truck Crash Locations With Respect to Major North Carolina 'Corridors'. Appendix C provides GIS plots of fatal crash locations along each of the major transportation 'corridors' in the state (i.e., I-40/I-85; I-95; I-40 (The Gorge); and I-77). Fatal crash locations are again those for 1998 and 1999. Figure 29 provides important
information on the I-95 corridor in terms of truck crashes, their severity compared to other corridors in the state. For example, in 1998, 21 percent of all fatalities resulting from truck-involved crashes occurred in the nine counties immediately surrounding I-95. In that same year, Robeson County led the state in the number of trucks involved in fatal crashes per vehicle mile traveled. . . 2.5 times the rate in Guilford Co. which had the same number of crashes. In 1998, the average number of fatal truck-involved crashes per mile traveled through the I-95 corridor was 1.5 times the average number for all North Carolina counties. The number of fatalities per mile traveled along the I- 95 corridor was 1.39 times that for the state overall.

Fatal Truck Crash Locations With Respect to Location of Trauma Centers. To the extent that not all victims of truck-involved crashes are pronounced dead on the scene, the prompt availability of emergency and trauma room facilities may be critical in improving the survival rate for those involved in a truck-related crash. Figures 35 and 36 show the proximity of fatal truck-involved crash locations to major trauma centers. By creating 'buffer' zones around each trauma center location of either a 10,20 , or 50 -mile radius, the GIS system can determine what percentage of crashes fall within that distance from the center. The data show that for the two year period 1998-1999 only 19-20 percent of all fatal truck crashes occurred within 10 miles of a trauma center; 42-48 percent within 20 miles; and 95-97 percent within 50 miles. A further GIS analysis could be done using the system's knowledge of the road network combined with assumed vehicle speeds to calculate a mean transport time for each crash location. The system could also compute flight times from crash locations to trauma facilities.

Figure 29
Fatal Truck Involved Crashes and Proximity to Major Trauma Centers in NC (1998)

Commercial Motor Vehicle Fatal Crashes

50
Mile

Figures 30

Fatal Truck Involved Crashes and Proximity to Major Trauma Centers in NC (1999)

Commercial Motor Vehicle Fatal Crashes

Commercial Motor Vehicle Fatal Crashes

20 Mile Radius

Commercial Motor Vehicle Fatal Crashes

50 Mile
Radius

- 1938 fitals
- Trauma etmers
\square 80-aile buller of vauna centers
Geunly moundaries

So, What Do the Data Suggest We Should be Doing?

Discussion

Given a continuation of the present system which permits large, heavily loaded commercial vehicles and smaller passenger vehicles to unconditionally share the same roadway, the frequency of truck-involved collisions will continue, and will be, to a great extent, a direct function of population size and resulting travel demand factors and their joint, negative impact on different vehicle types being able to operate safely in a limited space. (ala Physics 101)

Where traffic density increases, the frequency of truck-involved, as well as all other types of crashes, will increase . . at least until such time that an ITS type of automated highway system (AHS) provides the means for system (versus driver) control over lane selection, vehicle speeds, and following distance. Collisions between elements in a largely driver controlled (versus managed), high speed operating system are inevitable.

While one does not want to say that drivers under such conditions can do nothing to avoid crashes, the present data suggest that for non-fatal truck-involved crashes, the commercial and non-commercial driver are equally likely to have contributed in some way to the crash. It remains interesting to note that in the case of fatal truck-involved crashes, it is more often (60-70 percent of the time) the driver of the passenger vehicle who is cited as contributing to the crash.

Some would argue that the dead (non-CMV) driver cannot defend himself or herself. Driver 'errors' (misperceptions, etc.), when they occur under congested, slower speed conditions, are somewhat protected from fatal or serious injury outcomes. Where similar errors take place in rural areas, characterized more often by narrower lane conditions, greater variation in horizontal and vertical curvature, lack of signalized means of traffic control, and unlimited/uncontrolled roadway access, those same errors will have an increased likelihood of being fatal. Under circumstances where roadway design and traffic control do not prohibit or lessen the likelihood of fatal driver errors, an increase in the likelihood of fatal truck-involved crashes will continue to be high.

So long as these system dynamics continue to operate, the most prudent course of action that one could take to reduce the personal injury associated with such collisions would be (a) to seek vehicle improvements (passenger protection devices and mechanisms) that would make such collisions more 'survivable' and (b) to pursue traffic control and traffic management strategies capable of offsetting the effects of lower road design standards and lack of effective traffic control characteristic of more 'rural' areas..

The decrease in fatal truck-involved crashes in 'rural' areas of our state is due to a number of factors: (a) increased enforcement focus in high crash counties, (b) aggressive efforts on the part of the NCDOT to 'upgrade' roadway design and roadway operational characteristics in those areas where 'rural' types of development are rapidly giving way to urbanization, and last but not least, (c) more widespread availability of airbag equipped vehicles and more widespread passenger use of restraint systems (e.g, seatbelts).

The increasing frequency of fatal crashes on urban classes of roadways cautions against adopting any simple dichotomy which says that crash frequency is an 'urban' (congestion-related) phenomenon and fatal crashes are a 'rural' phenomenon. The data show a slow, but consistent increase in fatal truck-involved crashes on almost all classes of urban roads except those classified as urban freeways and expressways. When looking at the frequency of fatal crashes on rural versus urban interstates, taking into account the high ratio of rural to urban interstate miles, the data suggest a higher risk of fatal crashes (i.e., the probability of any single crash being fatal) in the urban interstate environment.

While commercial motor vehicle (CMV) enforcement activities (e.g., driver and vehicle roadside inspections and the like) have been shown over the past year to result in a significant reduction in fatal crashes, the data suggest that it is not due to their 'enforcement' value alone since driver and vehicle out-of-service rates appear to have little or no correlation with carrier crash risk. It is more likely that their impact has been by way of fostering, directly or indirectly, better behavior on the part of the commercial vehicle driver (e.g., through better adherence to the hours-of-service requirements and a lessening of the impact of fatigue, to better adherence to traffic laws, etc.).

Enforcement cannot do it all. Neither is it realistic or feasible to expect the NCDOT to over night improve the design and traffic control of all roadways statewide. So what are the suggestions for improving truck safety in the near term?

Recommendations

- Consider system-level options for reducing the volume of heavy commercial vehicles carrying goods on roadways that must be shared with smaller, non-commercial vehicles.
- Off-load some portion of the shipping demand from large commercial vehicles operating on shared rights of way to other forms of transportation (e.g., rail) operating on separate rights of way. The evidence from Europe suggests that such an approach can have a measurable impact on reducing truck-involved crashes.
- Where the level of commercial vehicle usage of public roadways cannot be reduced or diverted to other modalities (such as rail), manage shipping patterns to minimize conflicts with non-commercial users of the roadway.
- For example, increase night-time movement of goods to avoid peak morning, mid day, and afternoon capacity demands. (Refer to Atlanta's success during the 1996 Olympic Games)
- Provide information to non-commercial users of the system that would allow at least some small percentage of those users to alter travel schedules and routes to avoid potential conflicts with large commercial vehicles, especially on those roadways less suited to shared use.
- Provide information (either in-vehicle or outside the vehicle through signing, strategically placed kiosks, etc.) of locations/areas known to have a high frequency of truck-involved crashes . . . especially those locations having a high frequency of fatal truck-involved crashes.
- Expand the FMCSA 'no zone' program to emphasize the risk associated with 'angle' crashes and the extent to which such crashes are influenced by inadequate traffic control methods, recognized 'errors' on the part of passenger car drivers to underestimate the speed of large approaching vehicles, and their tendency to ignore the significant differences in vehicle operating capabilities (especially the increased stopping distances associated with the braking system of large vehicles).
- Consider reducing posted speeds in areas where the data show there is a high probability of truck-involved crashes resulting in fatalities.
- Continue programs that promote adequate availability, and trucker awareness, of truck rest areas (both publicly and privately maintained).
- While fatal truck-involved crashes are obviously the result of collisions between commercial and non-commercial vehicles, the development of effective countermeasures needs to recognize the different dynamics of fatal and non-fatal crashes.
- To the extent that the data show that vehicle and driver out-of-service actions bear little correlation with carrier crash risk, encourage agencies responsible for CMV 'enforcement' to adopt practices that focus more on observable commercial vehicle driver behavior (e.g.,. the Level III inspection activity) and on cooperative efforts with carriers (especially smaller carriers) to increase compliance. Enforcement should not be seen as a tool for 'developing' appropriate behavior on the part of commercial vehicle drivers and the carriers for whom they work, but rather as a means for reducing the undesirable 'extremes' which occur with any acquired/learned behavior. (Note: When you've punished all the 'bad' behavior, what you're left with is not necessarily the behavior(s) you're ultimately trying to achieve).
- Experiment with 'enforcement' methods that are not as inherently 'labor-intensive' as those which characterize current uniformed field operations (e.g., automated surveillance methods, the use of E-citations, etc.). The goal should be to achieve effective, area-wide surveillance and system compliance without significant increases in current manpower levels.
- Carefully consider the tradeoffs between the advantages of larger, longer, and heavier commercial vehicles with an increase in the overall number of commercial vehicles. Considerations should focus carefully on the predicted safety impacts and not solely on their effect upon the infrastructure (i.e., size and weight impacts).
- Even though tractor trailers presently constitute the vast majority of heavy vehicles involved in fatal crashes, careful attention should be given to monitoring the involvement of single unit trucks (SUTs), especially with regard to their greater predicted involvement in E-commerce delivery activity.
- Seek to identify desired operational changes (e.g., shifting some of load to rail; scheduling for off-peak driving times; etc.) and how positive incentives might be used to encourage compliance with desired ways of doing things. Work closely with carriers to identify incentives that are likely to reinforce desired behaviors. Efforts should focus on rewarding desired changes, not on punishing reluctance to change.
- Develop and use statistical modeling techniques to determine 'how much' change is required to meet FMCSA crash reduction goals given realistic assumptions about continued travel demand and crash risk. For example, can the actual number of fatal, truck-involved crashes in North Carolina be reduced by limiting 'exposure' even if the risk of a crash per mile driven remains the same?
- Consider multi-modal analysis efforts that would address (a) lives lost per pound and per mile traveled, regardless of the modality, (b) dollar loss per pound and/or per pound traveled, again regardless of modality. Analyses should factor in the cost of delay that may be associated with some modalities. Analyses should also address impacts of safety-driven, multi-modal countermeasures on just-in-time manufacturing and delivery strategies.
- Work closely with ITS and CVO committees within the NCDOT to formulate and evaluate innovative 'operational' (traffic engineering) changes considered to have potential for reducing truck-involved crashes (e.g., lane restrictions, etc.).
- Given that the data for North Carolina show an exponentially higher crash risk for the small carrier, DMV Enforcement and FMCSA (Raleigh) should work together to identify strategies aimed at helping smaller carriers to be compliant. . . rather than to simply punish their limited ability to comply.
- Vigorously pursue those components of the proposed North Carolina CVISN implementation effort which focus on 'safety.'
- Continue to work through crash data coordinating groups in the state to improve the timeliness and accuracy of CMV crash data reporting.
- Improve CMV awareness training for state and local law enforcement personnel oriented toward the collection of accurate carrier data on the 349 crash reporting form.
- Work together to ensure a prompt transition from the old NCDOT crash data base system to the new Oracle-based system.
- Work together to encourage prompt implementation of new NCDOT linear referencing system.
- Accelerate development of Geographic Information System (GIS) analysis tools.
- Continue GHSP advocacy and funding support for truck safety programs in North Carolina.
- Work to establish high-level (Governor's Office) support for a more integrated, multi-agency approach to commercial vehicle safety in North Carolina.
- Ensure that 'multi-agency' involvement includes legislative, enforcement, AND judicial participation.
- Give serious consideration to the judication portion of the overall system and to the 'evenness' with which commercial motor vehicle laws are applied across the different counties and regious in the state.
- Work with judicial personnel to identify approaches to enforcement and adjudication which are not manpower and personnel prohibitive.

